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Recall: Combining Model Parallelism
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Model Parallelism:
• Tensor parallelism: communication-heavy

• Pipeline parallelism: tuning microbatch sizes to minimize bubbles

• Data parallelism: cannot run if layer (model) size exceeds GPU capacity



Today
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Mixed Precision Training

Learning Objectives

• Explain why mixed precision improves training speed using modern 
hardware

• Describe the key techniques that make mixed precision stable
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Outline
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• Mixed Precision Hardware

• What is Mixed Precision Training? 

• Considerations for Mixed Precision

• Mixed Precision Software 
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Mixed Precision Hardware
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2006 – Now: Compute and Scaling
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Success of Machine Learning Today



2006 – Now: Compute and Scaling

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
7

Success of Machine Learning Today



Vector Processing Unit
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• A processing unit that operates on an 
entire vector in one instruction (SIMD) 

• The operand to the instructions are 
vectors instead of a scalar 

• Work done in parallel in one instruction 
cycle

• Accelerated speed



Tensor Cores: Matrix Multiplication Units
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• Tensor cores are:

• Special hardware execution units

• Execute matrix multiply operations in 
parallel

• Fused multiply-add on small matrices in 
one instruction cycle

• Built to accelerate deep learning

• Different flavors

• (V100) Volta Tensor Cores     FP16

• (T4) Turing Tensor Cores   FP16/INT8/INT4

• …
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Tensor Cores: Different Flavors
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Tensor Cores: Mixed Precision Matrix Math on 4x4 Matrices
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Internals of Tensor Cores (Volta)
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• Accelerate matrix multiplications and convolutions

• Tensor core optimized libraries: cuDNN, cuBLAS, CUTLASS

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
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What is Mixed Precision Training?
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What is Mixed Precision Training? In a Nutshell
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• Idea that you can train deep neural networks in multiple precisions: 

• Make precision decisions per layer or operation

• Full precision (Fp32) where needed to maintain task-specific accuracy

• Reduced precision (Fp16) everywhere else for speed and scale

• By using multiple precisions, we can have the best of both worlds: speed 
and accuracy

• Goal: accelerate deep neural network training with mixed precision under 
the constraints of matching accuracy of full precision training and no 
changes to how model is trained
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IEEE 754 Floating Point Representation Recap
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• Number (e.g., 2.45) can be represented by  
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IEEE 754 Floating Point Representation Recap
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• Number can be represented by  



0 10000001 10100000000000000000000
Assume bias is 127
(-1)^0 * (1.101 binary) * 2^(129 - 127) = 1.625 * 4
                                                          = 6.5
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New Floating-Point Format
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Mixed Precision Training Benefits
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• Accelerates speed

• Tensor cores are 8x faster than FP32

• Reduces memory bandwidth pressure

• FP16 halves memory traffic compared to FP32

• Reduces memory consumption 

• FP16 halves the size of activation and gradient tensors 

• Enables larger models, mini batches or inputs
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Why Not Use Pure FP16? 
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• Models cannot always converge properly in pure FP16

• FP16 has a narrower dynamic range than FP32

• May cause underflow/overflow issues and other arithmetic issues

• Weight updates

• Optimizer takes very small increments when search narrows into a solution

• Late updates often cannot be represented in FP16, but can be crucial for accuracy

• Reductions

• Large sums of values, e.g., in linear layers and convolutions, can be too big for FP16

• Adding small values to a large sum can lead to rounding errors
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Considerations for Mixed Precision Training
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• Goal #1: Make mixed precision training general purpose, not only for 
limited class of applications

• Goal #2: With no changes to hyperparameters or the model 
architecture

Three parts:



Precision Choices for Different Classes of Operations
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Precision of OPS: Conservative Recommendations
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• Operations that can use FP16 
• Matrix multiplications

• Most element-wise operations (e.g., relu, tanh, add, sub, mul)

• Operations that need FP32 mantissa
• Reduction operations

• Operations that need FP32 range 
• Element-wise operations where |f(x)| >> |x|, e.g., exp, log, pow

• Loss functions
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Master Weights
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• Problem: in late stages of training, weight updates become too small 
for addition in FP16

• Consequence: weight update gets clipped to zero when 𝑤≫ 𝛼∇

• Conservative solution: keep master copy of weights in FP32 so small 
updates can accumulate
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Master Weights: Illustration
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Loss Scaling: Put All Tensors in FP16 Range
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• Range representable in FP16: ~40 powers of 2

• Gradients are small:

• If cast to Fp16, some lost to zero

• Much of fp16 representable ranges was 
left unused

• Solution:

• Move small gradients values to fp16 range

• Scaling gradients during backpropagation 
to prevent underflow

• Gradients are scaled before 
backpropagation begins and rescaled 
before updating weights

Histogram of activation gradient values
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• Range representable in FP16: ~40 powers of 2

• Gradients are small:

• If cast to Fp16, some lost to zero

• Much of fp16 representable ranges was 
left unused

• Solution:

• Move small gradients values to fp16 range

• Scaling gradients during backpropagation 
to prevent underflow

• Gradients are scaled before 
backpropagation begins and rescaled 
before updating weights

Histogram of activation gradient values

Question: How can we make better use of FP16 
representable range to capture gradients? 
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• Range representable in FP16: ~40 powers of 2

• Gradients are small:

• If cast to Fp16, some lost to zero

• Much of fp16 representable ranges was 
left unused

• Solution:

• Shift small gradients values to fp16 range

• Scaling gradients during backpropagation 
to prevent underflow

• Gradients are scaled before 
backpropagation begins and rescaled 
before updating weights

Histogram of activation gradient values



Loss Scaling: Algorithm
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Automatic Loss Scaling: Frees Users from Choosing a Scaling Factor
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• 1. Start with very large scale factor (e.g., 2^24)

• 2. If gradients overflows (with Inf or a Nan): decrease the scale by 2 and 
skip the update

• 3. If no overflows have occurred for some time: increase the scale by 2
(e.g., 2000 iterations)

Train With Mixed Precision - NVIDIA Docs

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html


Mixed Precision Training Example
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• ResNet-50 training for ImageNet 
classification

• 8 GPUs on DGX-1

• Comparing to FP32 training
• ~3x speedup

• Equal accuracy

• No hyperparameters changed



Mixed Precision is Generalizable
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• Works across a wide range of tasks, problem domains, deep neural 
network architectures



Mixed Precision Trains Faster: Drastically Reduces Training Time
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Weeks to days

Days to hours

Hours to minutes
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Mixed Precision Software
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• Available for major DL frameworks

• Works with all types of optimizers
• SGD, Adam, etc

• Works with multiple models, optimizers, and losses

Mixed Precision Software
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PyTorch|DeepSpeed|Megatron|…



• Traditionally a lot of work (recap on methodology)

• Model conversion

- Switch everything to run on FP16 values

- Cast to FP32 for loss functions, normalization, and element-wise ops that need 
full precision

• Master weights

- Keep FP32 copy of model parameters 

- Make FP16 copies during forward/backward passes

• Loss scaling 

     - Scale the loss value, unscale the gradients in FP32 

      - Check gradients at each iteration to adjust loss scale and skip on overflow

Enabling Mixed Precision
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• Automates everything from the previous slides

• Framework software to run mixed precision automatically 

• Details vary by framework, but core idea is the same

• Automatic Mixed Precision (AMP) does two things:

Automatic Mixed Precision (AMP)
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• Make type decisions for each operation a prior (static graph) or at runtime (eager 
execution)

• Define conservative set of rules to replace “by-hand” mixed precision

Divide the universe of operations into three kinds:

Automatic Casting
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Automatic Casting
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AMP for PyTorch
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Mixed Precision Advances DL Research
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Summary: Mixed Precision Training
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• Mixed precision improves efficiency but may hurt quality
• FP16 vs. INT8 

• Automatic Scaling at runtime may help quality
• E.g., scaling the gradient to prevent underflow
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Course Project (Reproducibility Challenge)
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SonicMoE: Accelerating MoE with IO and Tile-aware 
Optimizations https://github.com/Dao-AILab/sonic-moe

Scaling Speculative Decoding with Lookahead Reasoninghttps://github.com/hao-ai-lab/LookaheadReasoning
Taming the Long Tail: Efficient Reinforcement Learning 

for Language Models via Adaptive Speculative Decoding https://github.com/mit-han-lab/fastrl
Fast-dLLM: Training-free Acceleration of Diffusion LLM 

by Enabling KV Cache and Parallel Decoding https://github.com/NVlabs/Fast-dLLM
Kimi Linear: An Expressive, Efficient Attention 

Architecture https://github.com/fla-org/flash-linear-attention

Mem0: The Memory Layer for Personalized AI  https://github.com/mem0ai/mem0

… …

4-credit undergraduate students, 3-credit graduate students
Some suggestions below, but it can be any machine learning system related papers that you are interested in



Course Project (Open-End Research Project)
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•Benchmark and analyze important DL workloads to understand their performance gap and 

identify important angles to optimize their performance.

•Apply and evaluate how existing solutions work in the context of emerging AI/DL workloads.

•Design and implement new algorithms that are both theoretically and practically efficient.

•Design and implement system optimizations, e.g., parallelism, cache-locality, IO-efficiency, to 

improve the compute/memory/communication efficiency of AI/DL workloads.

•Offer customized optimization for critical DL workloads where latency is extremely tight.

•Build library/tool/framework to improve the efficiency of a class of problems.

•Integrate important optimizations into existing frameworks (e.g., DeepSpeed), providing fast 

and agile inference.

•Combine system optimization with modeling optimizations.

•Combine and leverage hardware resources (e.g., GPU/CPU, on-device 

memory/DRAM/NVMe/SSD) in a principled way.

4-credit graduate students
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Questions?
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