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Today
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3D Parallelism

• Data Parallelism (DP), Tensor Parallelism (TP), Pipeline Parallelism (PP)

Learning Objectives

• Understand how data, tensor, pipeline parallelism interact in 3D 
parallel training

• Develop the ability to reason about parallelism configuration trade-
offs 
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Megatron-v2
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3D Parallelism and Performance Analysis 
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Combining Model Parallelism
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Pipeline parallelism
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Question: How do we know which parallelism to choose?



Performance Analysis of Combined Parallelism
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(BubbleFraction)



Performance Analysis of Combined Parallelism
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Assume d = 1, n = p * t
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Performance Analysis of Combined Parallelism
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Scatter/gather Communication Optimization
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Evaluation – TP vs. PP
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Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al.  SC’21

8 Nvidia 80GB A100 
cards per node, 8 
nodes are connected 
through fat-tree 
topology
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Question: Why does the performance peak at t = p = 8?
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nodes are connected 
through fat-tree 
topology

t > 8, expensive cross-
server allreduce 
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Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al.  SC’21

8 Nvidia 80GB A100 
cards per node, 8 
nodes are connected 
through fat-tree 
topology

t > 8, expensive cross-
server allreduce 
t < 8, bubble fraction 
increase

Question: Why does the performance peak at t = p = 8?
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Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al.  SC’21

8 Nvidia 80GB A100 
cards per node, 8 
nodes are connected 
through fat-tree 
topology



Evaluation - Scatter-gather optimization
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Performance Analysis of Combined Parallelism
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m = B / (d * b) = b’ / d
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Assume t=1, n = d*p
m = B / (d * b)
Assume b’ = B/b (ratio of batch size to 
microbatch size) ~ total # of minibatches
m = b’ / d
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Question: How do n, b’, d affect the bubble fraction?
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Evaluation - DP vs. Model Parallelism
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Question: Why does throughput decrease 
as pipeline parallel size increase?
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Question: Why does throughput decrease 
as tensor-parallel size increase?



Evaluation - DP vs. Model Parallelism
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Limitations of tensor-parallelism:
1. More frequent Allreduce
2. Allreduce is on critical path 



Evaluation - Pipeline Parallelism (Non-Interleaved)
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GPT-3 style:
            #heads: 128
            hidden_dim: 20480
            micro-batchsize: 1

PP = 1, 3-layer Transformer 15B
PP = 8, 24-layer Transformer 121B

TP= 8 fixed, #GPUs from 8 to 64
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Question: Why does larger batch size scale better?
GPT-3 style:
            #heads: 128
            hidden_dim: 20480
            micro-batchsize: 1

PP = 1, 3-layer Transformer 15B
PP = 8, 24-layer Transformer 121B

TP= 8 fixed, #GPUs from 8 to 64
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Evaluation – Non-Interleaved vs. Interleaved
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Evaluation - Selection of Microbatch size
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Evaluation - End-to-end Performance
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Models Trained with 3D Parallelism
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First open-source project on LLM training through collaboration of AI researchers around the world
Combined multi-dimensional parallelism on Jean Zay cluster in France (estimated cost €3M)



Models Trained with 3D Parallelism
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Summary: Combining Model Parallelism
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Model Parallelism:
• Data parallelism: cannot run if layer (model) size exceeds GPU capacity

Overwhelm the centralized server Amortize aggregation but face stragglers
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Model Parallelism:
• Data parallelism: cannot run if layer (model) size exceeds GPU capacity

• Tensor parallelism: communication-heavy

Tensor 
Parallelism

Tensor 
Parallelism
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Model Parallelism:
• Data parallelism: cannot run if layer (model) size exceeds GPU capacity

• Tensor parallelism: communication-heavy

• Pipeline parallelism: tuning microbatch sizes to minimize bubbles
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Model Parallelism:
• Data parallelism: cannot run if layer (model) size exceeds GPU capacity

• Tensor parallelism: communication-heavy

• Pipeline parallelism: tuning microbatch sizes to minimize bubbles

Rule of thumb:
• Use tensor parallelism within a node and pipeline model parallelism to scale to 

multiple nodes

• Decide tensor-parallel size and pipeline-parallel size based on GPU memory size

• Data parallelism can be used to scale to more GPUs
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Questions?
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