1L ILLINOIS

AAAAAAAAAAAAAAAA

CS 498: Machine Learning System
Spring 2026

Minjia Zhang

The Grainger College of Engineering

Pipeline Parallelism
Multi-Dimensional Parallelism

First assignment (due in two weeks Feb 25 EOD)
Learning Objective

* Analyze pipeline execution and quantify bubble overhead
* Understand differences in pipeline schedules

2
COMPUTER SCIENCE GRAINGER ENGINEERING

Data Parallelism Cannot Train Large Models

H,-"'.H ;'. "
—] —H]
GPU 1
—| et
- , :. " ;.
e~ e
GPU 2

175B * 16 Bits
= 350GB Memory

Nvidia H100 94 GB

Even the best GPU CANNOT fit the model into memory!

3
COMPUTER SCIENCE GRAINGER ENGINEERING

Model Parallelism

Inter-layer (Pipeline) parallelism A /A\\:’/AX AN
. . 'l \gyf
- Split sets of layers across multiple i’w @&»ﬁ,@?‘\s} 13\\3/’
o RN

%\9} RS @‘ 4"4 /,\ .:v,. /\Q; g,.’p
let’\ //Q“) \," "" V" \0‘. s
S e ‘5‘;3'\0‘“@. e giv,
‘\\ s @ /7N SO "
S “\“‘\\'// 5‘&‘\& /,"’ LR \\
/ \\
WA 208 // 2N ‘/

%

- Layer O, 1, 2 and layer 3, 4, 5 are on
different devices

" devices

__

Intra-layer (Tensor) parallelism

_ Sp!lt individual layers across multiple \\'//A\'/A\

devices ‘qf‘ SOAN ,JA\\‘ ‘
. . : & .. \} ’lf ‘\“9-1 ‘\

- Both devices compute different parts .};:;:g,o:‘:f.’z,o,,, 4,“: ,‘3‘1 ,,.:,

of layerO, 1, 2,3,4,5

g\ ’M;‘-"sv\ ’:0:;" 'I‘,re\ /'9 ‘\'
s o

,%Qow%w é
177 \\\ I K\
\{V%\\ AN

— \//\v

4
COMPUTER SCIENCE GRAINGER ENGINEERING

Inter-Layer Model Parallelism

f"f,.x“ ;"‘.‘“-x - a-"'n.m"“'x

— B
P —Kor— e — e o
\ \...,-f"# “x..,-"' i x‘«\‘.’; S H*f
GPU 1 GPU 2 GPU 3 GPU 8
b Lad Ll Ll

350GB / 8 cards = 43.75G < 80G

With model parallelism, large ML models can be placed and trained on GPUs.

5
COMPUTER SCIENCE GRAINGER ENGINEERING

Inter-Layer Model Parallelism

.-f""f,.xxu -"-l.‘.‘x"\. - J_.a-".‘h.x

— ﬁ.nx

S SN S
\ \...,-f"# H“x..,-'" i x‘«\‘.’; S H.,‘ff
GPU 1 .~ GPU2 GPU 3 GPU 8

350GB / 8 cards = 43.75G < 80G

With model parallelism, large ML models can be placed and trained on GPUs.

Question: How to achieve high training throughput through
inter-layer model parallelism?

6
COMPUTER SCIENCE GRAINGER ENGINEERING

Simple Inter-Layer Parallelism

Worker 1
Worker 2
Worker 3
Worker 4
- ket N e

loss

DNN training involves a bi-directional execution
- The forward pass for a minibatch starts at the input layer
- The backward pass ends at the input layer

7
COMPUTER SCIENCE GRAINGER ENGINEERING

Simple Inter-Layer Parallelism

Worker 1 S N
111

Worker 1 §§\“
Worker 2 Worker 2 | \

Worker 3
Worker 3 |

Worker 4

orker X
Worker 4 —
Forward Backward
N
loss — Pass Pass NN - dle

DNN training involves a bi-directional execution
- The forward pass for a minibatch starts at the input layer
- The backward pass ends at the input layer

8
COMPUTER SCIENCE GRAINGER ENGINEERING

&
A
[
(©

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

77
7

Idle

DA

e

w
A~
7/ - 7.
7 \\\\

Yrszz2s
r \\

Backward
Pass

Time

Forward
Pass

Worker 1
Worker 2
Worker 3
Worker 4

loss

Worker 1] Bejs lJ

Worker 2
Worker 3
Worker 4

i
)

Idle

DA

e

w
A~
770 -
\\\\ \\

Time
Backward
Pass

Pass

Worker 3
Worker 4

&
O
(o
©

. -

(O
Q.

S

Q

>

(qo]
—

a

Q
s
<
Q 3

O =

(@)
£ =
V)

10
INEERI

loss

&
A
[
0

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

7 ;
.

. ,w -

\\N“..\\ &

loss

Worker 4

T (Q\|
— o0
O)
- N
S o
= 2

11
NE

&
A
[
0

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

i

.

—

7
R

-

Z

-7

.
s
\\ \\

V77
\\\\

\\

T (Q\|
— o0
O)
- N
S o
= 2

Worker 3

Time

Worker 4

Y dle

Backward
Pass

Forward
Pass

12
INE

&
A
[
(©

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

77
7

7)) -
-

%

-

.
-

\\\\\\A..
7/ - 7/
\\ \\\\

NNy dle

Time
Backward
Pass

Worker 1
Worker 2
Worker 3

Worker 4 op4*Ep4 l

loss

13
INE

Simple Inter-Layer Parallelism

Worker 1

Worker 2

Worker 3

Worker 4

COMPUTER SCIENCE

loss

Worker 1

Worker 2

Worker 3

Worker 4

%/

N

Forward
.

Time
Backward

Pass

i

NNy Idle

14
GRAINGER ENGINEERING

&
A
[
(©

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

77

Z

e

7

—

x\

Q

\\

\\\\\

B8

—

\\\\\k =

\\

1
R
)

N
o

<

0%~

o

\\\\

Worker 2

Worker 3

Time

Worker 4

NNy Idle

Backward
Pass

Forward
Pass

loss

15
INE

&
A
[
(©

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

727 =
. -
“
-
777 -
\\\\&w Sy
77/ - 7/

\\ \\\\

Worker 3
Worker 4

S v (Q\|
— —
O ()
P s
S S
< =

loss

16
INEERI

&
A
[
0

-

(O
ol

-

Q

>

(qV)
—]

L

Q
)
=
@

Q.
£
V)

.

—

= 4

7
K

/K

__
-
b

Worker 3

T (Q\|
— o0
O)
- N
S o
= 2

Time

Worker 4

Y dle

Backward
Pass

Forward
Pass

loss

Question: What is the limitation of this execution?

17
INE

Issues with Simple Inter-Layer Parallelism

Worker 1 N N
Worker 2 \
Worker 3
Worker 4

ime
Backward
Pass

NNy Idle

e Under-utilization of compute resources
* Only one device is computing at a time and others are idling

18
COMPUTER SCIENCE GRAINGER ENGINEERING

Issues with Simple Inter-Layer Parallelism

Worker 1 Bsjek NN
11
Worker 1 w w%
Worker 2 [sJey Worker:2 . N \
Worker 3 111
Worker 3 [eJek] < N Idle
Worker 4
Worker 4 Time
Forward Backward X
— Pass Pass NN Hdle

loss

Question: How to improve the utilization and let multiple
workers work simultaneously?

19
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Model Parallelism 11

Model Parallelism
nsss n
. M ._b h h b f | Worker 1 §§§§§ 1)1 \§
ini-batch: the number of samples e NN N
. . . orker
processed in each iteration %%k N S
Worker 3 N\ 1\ 1\&\\
Worker 4 Sl M §§\\
* Divide a mini-batch into multiple — >
smaller micro-batches Forward Backward
- T S

COMPUTER SCIENCE GRAINGER ENGIKILIIEERING

Pipeline Model Parallelism

* Mini-batch: the number of samples
processed in each iteration

* Divide a mini-batch into multiple
smaller micro-batches

* Pipeline execution:

* Micro-batches flow through the pipeline
from one stage to the next.

* As soon as a stage completes its work, it
passes the micro-batch to the next stage

and starts working on the next micro-
batch

COMPUTER SCIENCE

Worker 1
Worker 2
Worker 3

Worker 4

%

—

2/

Forward
.

L L
GRAINGER ENGINEERING

Pipeline Model Parallelism

* Mini-batch: the number of samples
processed in each iteration

* Divide a mini-batch into multiple
smaller micro-batches

* Pipeline execution:

* Micro-batches flow through the pipeline
from one stage to the next.

* As soon as a stage completes its work, it
passes the micro-batch to the next stage

and starts working on the next micro-
batch

COMPUTER SCIENCE

Worker 1
Worker 2
Worker 3

Worker 4

Model Parallelism
__—< < NN
w§§§§§§l “§
%
1 NN
>
Time
Forward Backward
— Pass [Pass NN e
Pipeline Model Parallelism
All inputs use weights from last flush Tg: ';'::‘:::::‘s
1(2|2(3|3]|4]4
2(3|3|4]|4
3|44
4
>

Time

I Forward Pass [| Backward Pass NN 1dle

22
GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

Pipeline flush
Device 1 RPEREREE 11213 |a|5|6|7 |8 ERIIEAPRERIEERL:
Device 2 ERPEREEER 2|3]|als|el7]s 9 10111213141516
Device 3 12345678 3|als]|6]|7 9 10111213141516 E
Device 4 12345673k 4|ls5|el7]s 910111213141516“@
Time Devices idle
I Forward Pass Backward Pass

Still have bubbles in the pipeline

Question: How do we quantify bubbles?

23
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

("Device 1
Device 2
P < Device 3
Device 4
-

Time

123456738

12345678
123456738

1234567 8

m = #microbatches (8)
p = pipeline stages (4)
t; = time of forward

t, = time of backward

Pipeline flush

6 | 7 | 8 ERUEREPARNEYEN

|58 910111213141516

910111213141516 a

112|345
2 (3[4 |56
3 |4|5]|6 |7
4 | 5|6 (7|8

9 10111213141516“@

COMPUTER SCIENCE

Forward Pass

Devices idle

Backward Pass

24
GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

("Device 1
Device 2
P < Device 3
Device 4
-

Time

123456738
12345678
123456738

1234567 8

m = #microbatches (8)
p = pipeline stages (4)
t; = time of forward

t, = time of backward

Pipeline flush

6 | 7 | 8 ERUEREPARNEYEN

|58 910111213141516

910111213141516 a

112|345
2 (3[4 |56
3 |4|5]|6 |7
4 | 5|6 (7|8

9 10111213141516“@

COMPUTER SCIENCE

Forward Pass

Devices idle

Backward Pass

25
GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t; = time of forward

t, = time of backward

m* t, (p-1) * (t; +t,)

AL AL Pipeline flush
e N7 A\

Device1 EPEREELEX: 112345678 ERNRRARIIGL
Device 2 ERERELEA: 2|3|4|s5|6|7]s 910111213141516
P < Device 3 12345678 3(4|5|6|7 910111213141516 E
\Device4 12345678 4|5|6|7]s 910111213141516“@
Time Devices idle
I Forward Pass Backward Pass

26
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t; = time of forward

t, = time of backward

m*t (p-1)*(t +ty,) m*t, o
N AL Pipeline flush
4 N7 N7 A
Device1 EPEREELEX: 112345678 ERNRRARIIGL
Device 2 ERERELEA: 2(3|a|s5|6|7]|8 910111213141516

P < Device 3 12345678 3(4|5|6|7 910111213141516 E

\Device4 12345678 4|5|6|7]s 910111213141516“@

Time Devices idle
I Forward Pass Backward Pass

27
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t; = time of forward

t, = time of backward

m*t (p-1)*(t +t,) m* ¢
AL / foh N Pipeline flush
e N7 N7 N\
Device1 BPERELERA: 11213 |4a|5]|6]| 7|38 ERMEEPAEILSERL
Device 2 12345678 23 |a|5]6|7]|8 9 10111213141516
P < Device 3 12345678 3/4|5|6]|7 910111213141516 H
Device 4 12345678l ilsls|7 s 910111213141516
t 9 o
Time Devices idle
I Forward Pass Backward Pass
. (p— 1) *(tg+ty) p-—1
BubbleFraction = =

mxty +mxt m

28
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t; = time of forward

t, = time of backward

m*t (p-1)*(t +ty,) m*t, o
N AL Pipeline flush
e Y4 N7 A
Device 1 EFEEEIEA: 1123|456 |7 |8 ERMIRFAIZIERT]
Device 2 12345678 2|3 |4|5|6 |7 |8 9 10111213141516

P < Device 3 123456738 3(4|5]|6]|7 910111213141516 E

\Device4 12345678 4|5 |6|7]8 910111213141516“@

Time Devices idle
I Forward Pass Backward Pass

(p—l)*(tf+tb) _p—l
mxty +mxt, m

BubbleFraction =

Question: How do we reduce the bubble fraction?

29
COMPUTER SCIENCE GRAINGER ENGINEERING

Improving Pipeline Parallelism Efficiency

* m : number of micro-batches in a mini-batch
* |Increase mini-batch size or reduce micro-batch size

« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes

reduce GPU utilization

* p: number of pipeline stages
* Decrease pipeline depth
« Caveat: increase stage size

mxty (P—1)*(tr+tp) mxt,

Device 1 REEEENICIE
Device 2 12345678 9 10111213141516

b Device 3 12345678 910111213141516 E
Device 4 12345678 9 1u11121314151anﬂ

Time

Devices idle

B rorward Pass [| Backward Pass
(p — 1) * (tf+th) B p— 1
mxt; +mxt, m

BubbleFraction =

COMPUTER SCIENCE

30
GRAINGER ENGINEERING

Desigh More Advanced Pipeline Schedule

Question: How to further optimize pipeline parallelism?

* Each machine makes a choice between two options:

* Perform the forward pass for a micro-batch, pushing the micro-batch
to downstream workers

* Perform the backward pass for a different micro-batch, ensuring
forward progress in learning

31
COMPUTER SCIENCE GRAINGER ENGINEERING

Improving Pipeline Parallelism Efficiency

* An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

Pipeline flush

Device 1 12345678
Device 2 12345678
Device 3 12345678

6 | 7 | 8 RERIGERFAENENED]]

910111213141516

910111213141516 H

9 1n111213141515nﬁ
Time ——— Devices idle

- Forward Pass Backward Pass

= | oo | | s
@ |~ | & | th
~J
o

Device 4 123456781

Question: Can we improve the pipeline schedule to reduce memory
requirements?

32
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

in-flight mciro-batches = 8 Pipeline flush

Device 1 12345678 1 2 3 4 3] F) - 910111213141576
Davice? PREELELEL 2|3 (4|58 |6 |78 9 10111213141516 Deuice‘l . n H . n n . n‘“f'“ﬁ n E
Device 3 12345678 3[a|s|[s]|7 9 1011213141516 9| DE""IQEE K K n n ﬂ n H D NEEE n
Device 4 1234567 8RR] 3|45 6|78 9 1011121314156 [0, Device 3
Device 4
Time Devices idle —
B Forward Pass [] Backward Pass
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training

33
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

in-flight mciro-batches = 8 Pipeline flush

in-flight mciro-batches = 4
Device 1 12345678 T N 9 10111213141516 . T n : n . TTT
Device 2 12345678 910111213141516 DE".I'!DE‘| < 'nbﬂ‘ n n n" i :
Device 3 12345678 9 10111213141516 DE""'IQEE 1 . .;n'nﬂ“n ﬂ ﬂ NERE
Device 4 1234567 z]: 9 1011213141516 JCOLL Device 3 gt ¢ 1 s fl s B 7 ¢ |

Device 4 2 3 5 A - _
Time Devices idle —
B Forward Pass [] Backward Pass
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule
PipeDream: Fast and Efficient Pipeline Parallel DNN Training

COMPUTER SCIENCE

34
GRAINGER ENGINEERING

Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

in-flight mciro-batches = 8 Pipeline flush

Device 1 123456748

T [9 10111213141516

Device 2 12345678 910111213141516
Device 3 12345678 % 10111213141518
Device 4 12345678 REE] 3 g 10111213141516 JERNT

Time

Devices idle

B Forward Pass [] Backward Pass

Pipeline parallelism with GPipe’s schedule

COMPUTER SCIENCE

in-flight mciro-batches = 4

Device 1 2134 5‘15“?5“ n n-}n:--nm n m
Device 2 21 n niluan?nan n n 2 101112
vewce s R+ I > M B B B M+

2 3 5 &

Device 4

Pipeline parallelism with 1F1B schedule
PipeDream: Fast and Efficient Pipeline Parallel DNN Training

35
GRAINGER ENGINEERING

Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

in-flight mciro-batches = 8 Pipeline flush

Device 1 123456748

T [9 10111213141516

Device 2 12345678 910111213141516
Device 3 12345678 % 10111213141518
Device 4 12345678 REE] 3 g 10111213141516 JERNT

Time

Devices idle

B Forward Pass [] Backward Pass

Pipeline parallelism with GPipe’s schedule

COMPUTER SCIENCE

PipeDream: Fast and Efficient Pipeline Parallel DNN Training

in-flight mciro-batches = 4

vevice 1 R (00 B O MY I - s - -
Device 2 23 n ninan?nan n n 2 101112

Device 3 2 B B:0:BB:E D

Device 4 2 3 3 s« 7 1}

Pipeline parallelism with 1F1B schedule

36
GRAINGER ENGINEERING

Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

in-flight mciro-batches = & Pipeline flush

in-flight mciro-batches = 4

Device 1 12345678 3 4 T [9 10111213141516
Device? BEEERELER 4|s 9 1011213141516 Device 1 gl B:E:ER-BEBE K- o [T
Device 3 12345678 5| & % 10111213141518 DeviIQEE 12 n n n n n n . n 9 101112 n
Device 4 12345678 RN] 3 68 (7 9 10111213141516 LR T Device 3

Device 4
Time Devices idle —

B Forward Pass [] Backward Pass e he
Warmup state Steady state
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule
PipeDream: Fast and Efficient Pipeline Parallel DNN Training

COMPUTER SCIENCE

37
GRAINGER ENGINEERING

Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

« Reduce memory footprint of pipeline parallelism
* Doesn’t reduce pipeline bubble

Can we reduce pipeline bubble?

in-flight mciro-batches = 8 Pipeline flush

Deﬂ']ce‘l 12345678 1 x 3 4 5 -] 91071712713141576

Device? RREERELEL 2(3fals|e]7 910111213141516 Device 1 REEiE nn"n"HT
Device 2 1224 5 & 7

Device 3 12345678 3 (4|5 |86 |7 % 10111213141516 H . .

Device 4 1234567 ¢ REBE] 345 |6|7 |8 9 1011213141516 KL Device 3 23« RNV ERN BN -
Device 4 6 [

Time Devices idle — w VN)

Forward Pass Backward Pass Y A4
] L] Warmup state Steady state
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training 38
COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

[1-4] Device 1 9 101112

[5-8] Device 2 - n H n ﬂ n n n 9 101112
EH:-B'0:H B 9

[9-12] Device 3
[13-16] Device 4

Each device is assigned two chunks (subset of noncontiguous
layers). Dark colors: First chunk. Light colors: Second chunk.

111G 1 1
6 7 8 3542e P34

4
1'I1
EHE 4 B 6 /i B 111
]

ﬂ12
i

1 1
125 5 11

E g EmInEu
1 1
&m 11H12
1 1 1 1
5 3 4

13

'II 3 (6| 4 [TRNER

[112]1 [9110] DE'fiCE 1 123‘1E]
[3,41,[11,12] Device 2 1:34|H=
[5,61,(13,14] Device 3 muua

[7,8],[15,16] Device 4 12344

TimE ?’

9 10 n

1
718 19' 5
1

3“4

1

111
D12

1
1

z Kl 5 5 7 g

3l 3 4] 4 FRNEr 5 g9 | |10 11 14

"t

ﬁ\m

B Forward Pass Backward Pass

COMPUTER SCIENCE Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21) GRAINGER ENGINEERING

Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

-1

BubbleFraction = v

Device 1 [E&hiza«CE 41 Q253 |el« PRl-EAE 6 7 8 307 cHHHCY sl s EMRIHEIH o Mo
evice2 |l 1ok 0 - o Bk Bl e
: _ | g111 1 1 1
Device 3 lzanua a 4 n?1 8 EEE I4 5|8 7 8 AaRE HE IIJ 4H5 § 10 11H12
i 111 1 1 1 1 1 1 1 'I 1
Device 4 123:1!-511:.2 8 4 9941(:-111 ik 9 410 511 ¢ 12 MEEIES

Time ———

COMPUTER SCIENCE

m*tf +mx*{,

Forward Pass

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21)

1
= — %
v

p—1
m

Backward Pass

40
GRAINGER ENGINEERING

Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

(t +tb)
It Ve
BubbleFraction = = _ %
mx*ty +mxg, v m

Question: Increasing v improves pipeline efficiency?

Device 1 [EER 2a«CBN NN 1 {12 513 o/« 7RNoK o 7 8 301 g00ba a0 101 s Kl bt o ol
evice2 |l 0 T L o Bk Bl e
. : g111 1 1 1
Device 3 manua 1 H E n 7 8 HE H m 4E5 5 10 11H12
i : | 111N 1101 o
DE‘U'CEd‘ 1231!.51“‘3?3 ‘ il i !94"}111 12 ‘ 5 ﬁ 3 414

Time ———

B Forward Pass Backward Pass

COMPUTER SCIENCE Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21) GRAINGER ENGINEERING

Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

(t +tb)
It Ve
BubbleFraction = = _ %
mx*ty +mxg, v m

Reduce bubble time at the cost of increased communication

Device 1 (K& 2a«CBN IR 1 {12 53 o « 7R o 7 8 301 g00ba a0 101 s Kl bt o ol
evice2 |l 0 T L 7 o oo e ok
. _ g1 1 1 1
Device 3 manua 1 H E n : 7 8 RERE H m 4E5 5 10 11H1:
i ; . 1111 o 10111 7 12 HEESS
Device 4 12315- 2 ‘ 788§ 9941(:-111 ik 9 410 511 ¢ 12 MEEIES

Time ———

COMPUTER SCIENCE

Forward Pass

Backward Pass

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21)

42
GRAINGER ENGINEERING

Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with

1F1B Schedul Device 1

cheduie Device 2 9 101112
'] 1 .

BubbleFraction = '; Device 3 n 9 101112
m Device 4

Assign multiple stages
to each device

Pipeline parallelism with

. Device 1 T ; 18 2(s|3fsls 56| 7| ORI ¥ o BvolT [z I I
interleaved 1F1B Schedule _ - e —
1 p 1 Device 2 - 10zEz3 e 6 s 'H EEEL 5 & : 9 - 9 W1oM11 Mz|C0L R
BubbleFraction = ; m Device 3 : 1142 B30+ BELs 0 Kbl s s 7 ¢ 9.1 2EM HERHLIZ BRI EF1E o 10 M 11 12 BIE
Device 4 1 23‘3 s 1 6 W 5 (o[6 7] 7 [s : 951 2 CANRIHRRIMEEL: o 4 10 ¢ 11 3 12 HEEIHER

Time ——

- Forward Pass Backward Pass

43
COMPUTER SCIENCE GRAINGER ENGINEERING

Questions?

44
COMPUTER SCIENCE GRAINGER ENGINEERING

Hardware: Delta 1|

* Home page:
https://www.ncsa.illinois.edu/res
earch/project-highlights/delta/

100 quad A100 GPU node, each
with 4 A100

100 quad A40 GPU node, each
with 4 A40

 58-way A100 GPU, each with 8
A100

e 1 MI100 node, 8 MI100

45
GRAINGER ENGINEERING

COMPUTER SCIENCE

Delta Onboarding

* https://docs.ncsa.illinois.edu/systems/delta/en/latest/user guide/acc
essing.html

Frequently Asked Questions
: @ / Delta Login Methods O Edit on GitHub
Support and Services

Getting Help

Delta Login Methods

System Architecture
Account Administration Direct Access Login Nodes

& Delta Login Methods

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
Open OnDemand NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

VS Code

Direct Access Login Nodes

Good Clister Cltizenship See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.
Data Management

Er(;tgvzammi”g Environment (Building For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
Gl and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

Job Accounting NCSA username, submit a support request (Getting Help) for assistance.

Running Jobs

Installed Software Login Node Hostnames
Visualization 5 z
Login Node Hostname Example Usage with SSH
Containers
Services ssh -Y username@dt-loginel.delta.ncsa.illinois.e

dt-login01.delta.ncsa.illinois.edu
Debugging and Performance Analysis

(-Y allows X11 forwarding from Linux hosts)

Acknowledging Delta

46
COMPUTER SCIENCE GRAINGER ENGINEERING

Step 1: Create ACCESS ID

ALLOCATIONS SUPPORT OPERATIONS METRICS L. Q = Login

* Register an ACCESS id at:
https://access-ci.org/ (top JACCESS

right-hand corner) 4 Allocations

Home Get Started Available Resources ACCESS Impact Policies & How-To About

* After you register, send
jche Instructor your ACCESS Need access to computing, data analysis, or storage resources?
|d. The Instru Ctor Wl” add You're in the right place! Read more below, or login to get started.
you to access to his GPU
allocation.

Whatis an allocation? Which resources?

Ready to get started?

To get started, you need an We've got modeling and analysis
ACCESS project and some systems, GPU-oriented systems,

It costs you nothing (really!), and you
don't need an NSF award. To begin,
you just need to

LOGIN

or

resource units you can spend. large-memory nodes, storage,
Your ACCESS project and and more. Resource providers
resource units are what we have designed their systems to
refer to as an Allocation. An serve a wide range of research
allocation is your project to use a and education needs — including

47
COMPUTER SCIENCE GRAINGER ENGINEERING

https://access-ci.org/
https://access-ci.org/
https://access-ci.org/

Step 2: Get Started

Delta uses Slurm to manage jobs/GPUs

Please watch this tutorial video: Getting Started on NCSA's Delta Supercomputer.

After that, you may want to check Delta User Documentation — UIUC NCSA
Delta User Guide (illinois.edu).

Please learn how to use slurm to get GPUs: Slurm Workload Manager - Quick
Start User Guide (schedmd.com).

48
COMPUTER SCIENCE GRAINGER ENGINEERING

https://urldefense.com/v3/__https:/www.youtube.com/watch?v=O9F-U775BG0&list=PLO8UWE9gZTlDul4FeWgZ3Kt-XNKzyyc5M&index=4__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAHuOXflZ$
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$

Step 3: SSH Login

* You shall use ssh to login to the
node: Delta Login Methods — UIUC
NCSA Delta User Guide (illinois.edu).

* For instance, you can use
commands such as “srun -A bcjw-
delta-gpu --time=00:30:00 --
nodes=1 --ntasks-per-node=16 --
partition=gpuA100x4,gpuAd40x4 --
gpus=1 --mem=32g --pty /bin/bash”

* Maintaining Persistent Sessions:
tmux

COMPUTER SCIENCE

Delta Login Methods

Direct Access Login Nodes

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.

For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

NCSA username, submit a support request (Getting Help) for assistance.

Login Node Hosthames

Login Node Hostname

dt-login01.delta.ncsa.illinois.edu

dt-login02.delta.ncsa.illinois.edu

login.delta.ncsa.illinois.edu
(round robin DNS name for the set of login nodes)

Example Usage with SSH

ssh -Y username@dt-loginel.delta.ncsa.illinois.e

(-Y allows X11 forwarding from Linux hosts)

ssh -1 username dt-login@2.delta.ncsa.illinois.e

(-l username alt. syntax for userghost)

ssh username@login.delta.ncsa.illinois.edu

49
GRAINGER ENGINEERING

https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html

Additional Info 1|

* Itis the instructor’s own research allocation, and it has a limit. So please be mindful
when using GPU resources.

* Avoid allocating too many GPUs at once
e Turn off the job when you are not using the GPUs

* The allocation has 500 GB of storage in total (shared by the class and other students in
the instructor’s lab)

* Please avoid downloading large data files and super large model checkpoints, e.g., one llama7b
checkpoint consumes roughly 14GB.

50
COMPUTER SCIENCE GRAINGER ENGINEERING

Course Project (Reproducibility Challenge)

4-credit undergraduate students, 3-credit graduate students
Some suggestions below, but it can be any machine learning system related papers that you are interested in

GPTCache: An Open-Source Semantic Cache for LLM
Applications Enabling Faster Answers and Cost Savings |https://github.com/zilliztech/GPTCache

RouteLLM: Learning to Route LLMs with Preference Datalhttps://github.com/Im-sys/RoutelLLM
LLM-QAT: Data-Free Quantization Aware Training

for Large Language Models https://github.com/facebookresearch/LLM-QAT
Speculative decoding in VLLM https://docs.vlim.ai/en/v0.5.5/models/spec_decode.html
REST: Retrieval-Based Speculative Decoding https://github.com/FasterDecoding/REST

MemGPT: Towards LLMs as Operating Systems https://github.com/letta-ai/letta

51
COMPUTER SCIENCE GRAINGER ENGINEERING

https://github.com/zilliztech/GPTCache
https://github.com/lm-sys/RouteLLM
https://github.com/lm-sys/RouteLLM
https://github.com/lm-sys/RouteLLM
https://github.com/facebookresearch/LLM-QAT
https://github.com/facebookresearch/LLM-QAT
https://github.com/facebookresearch/LLM-QAT
https://docs.vllm.ai/en/v0.5.5/models/spec_decode.html
https://github.com/FasterDecoding/REST
https://github.com/letta-ai/letta
https://github.com/letta-ai/letta
https://github.com/letta-ai/letta

Course Project (Open-End Research Project)

4-credit graduate students

*Benchmark and analyze important DL workloads to understand their performance gap and
1dentify important angles to optimize their performance.

*Apply and evaluate how existing solutions work in the context of emerging AI/DL workloads.
*Design and implement new algorithms that are both theoretically and practically efficient.
*Design and implement system optimizations, e.g., parallelism, cache-locality, I0-efficiency, to
improve the compute/memory/communication efficiency of AI/DL workloads.

*Offer customized optimization for critical DL workloads where latency 1s extremely tight.
*Build library/tool/framework to improve the efficiency of a class of problems.

Integrate important optimizations into existing frameworks (e.g., DeepSpeed), providing fast
and agile inference.

*Combine system optimization with modeling optimizations.

*Combine and leverage hardware resources (e.g., GPU/CPU, on-device
memory/DRAM/NVMe/SSD) in a principled way.

52
COMPUTER SCIENCE GRAINGER ENGINEERING

Combining Multiple Parallelism

53
COMPUTER SCIENCE GRAINGER ENGINEERING

Combining Multiple Parallelism

* Model_Parallelism = Tensor_Parallelism X Pipeline_Parallelism

PP Rank
TP Rank

o] a— 'l* ——

(GPU[O0] [0]
Y oo So Attesthond X) k SR —

¥ = GelU(XA)

,
|

'—.‘ l:‘_—.
%

; (S —— C— g —

COMPUTER SCIENCE

r -_#~A

GPU[1] [O]

GPU[1] [1]

¥ ’*-ﬁ/

54
GRAINGER ENGINEERING

Performance Analysis of Combined Parallelism

e (p t,d): Parallelization dimensions, where p is the pipeline-model-parallel

e TE nsor and PlpEImE MDdEl Paral |E| ISIT'I size, t is the tensor-model-parallel size, and d is the data-parallel size.
t{}, pipeline bubble [

n: Number of GPUs, satisfying p-£-d = n.
B: Global batch size.

B Microbatch size.

p—1 nft—1

m = %: Number of microbatches per pipeline.

m mn

e (Communication overhead

All-reduce communication for tensor model parallelism is expensive!
Especially when cross servers

Takeaway #1: Use tensor model parallelism within a server and pipeline model
parallelism to scale to multiple servers.

55
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT
o Peak performance achieved whent=p =28
Need a conjunction of both types of model parallelisms

200 -

o °© o
o o o
\
\‘
\
\
\K

| == Batch size = 32
- Batch size = 128

Achieved teraFLOP/s
per GPU

: (2,32) (4,16) (8, 8) (16,4) (32,2)

(Pipeline-parallel size, Tensor-parallel size)

COMPUTER SCIENCE

56
GRAINGER ENGINEERING

Performance Analysis of Combined Parallelism

—&— n=32, b'=32 - n=128,b'=128

e Data versus Pipeline Parallelism —@— n=32,b'=128 —@— n=128, b'=512
[F]
N 1.001
p—-1 n/d-1 n-d :
— — g 0.751
/ / =R a]
m b /d b’=B/b Som
m=B/(d*b)=b"/d g 025 Sy —
e Data versus Tensor Parallelism a 0.00

, T 1 2 4 8 16 32 64
DP is less communication heavy than TP Data-parallel size (d)
m All-reduce once per batch vs. All-reduce once per microbatch

Tensor parallelism can lead to hardware underutilization

Takeaway #2: Decide tensor-parallel size and pipeline-parallel size based on the
GPU memory size; data parallelism can be used to scale to more GPUs.

57
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism e Tensor-parallelism vs. Data-parallelism

5.9-billion param. GPT > 5.9-billion param. GPT
Throughput decreases as > Throughput decreases as
pipeline-parallel size increases tensor-parallel size increases
@ 200
& 200- o -
% —&— Batch size = 32 E 150 - - BEtCE S!EE : -
Z o 1501 —4— Batch size = 512 S 7 PRSI N 1S
® 7 3O 1004 —a&— Batch size = 512
291001 g =T
=) LA =
% =1 50- >— * - _—— & E 504 @ &
S < 0
< 01— . . . - ' | ' ' '
(2.32) (4, 16) (8, 8) (16, 4) (32, 2) (2,32) (4,16) (8. 8) (16, 4) (32,2)

(Pipeline-parallel size, Data-parallel size) e pwTatees, Alee, EAsrt fumme i)

Limitations of data-parallelism:

1. Memory capacity
2. Scaling limitation proportional to the batch size

58
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation - Pipeline Parallelism 11

e Weak Scaling - increase the #layers while increasing PP size
e Higher batch size scales better (p-1)/m

-&— Batch size =8
- Batch size = 128

Achieved teraFLOP/s
per GPU
o
o

O T L 1 L
1 2 4 8

Pipeline-parallel size

59
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation - Pipeline Parallelism

e |Interleaved schedule with scatter/gather optimization has higher throughput

o The gap closes as the batch size increases
m Bubble size decreases when batch size increases (i.e., more micro-batches)
m Interleaved schedule features more communication cost per sample

1507

——t
N
o
I
\
\

-&— Non-interleaved
-&— |Interleaved

Achieved teraFLOP/s
per GPU
.
({1 e]

o))
o

12 24 36 48 60
Batch size

60
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation - Selection of Microbatch size

e Optimal microbatch size is model dependent

Arithmetic intensity
Pipeline bubble size

3 1.25- — |

3 .

= -"’_,_,),c-'-’—'_ \—"@’
O

£ 075"

=)

®© 0.501

N -—@— Batch size = 128

c 0.251 —¢— Batch size = 512

S 0.001— ; ' : ;
2z 1 2 4 8 16

Microbatch size

COMPUTER SCIENCE

61
GRAINGER ENGINEERING

Evaluation - Scatter-gather optimization

e GPT model with 175 billion parameters using 96 A100 GPUs
e Upto 11% in throughput

Large batch size with interleaved schedules
Reduce cross-node communication cost

&
¢ ¢

| —@&— Unoptimized
—@— Scatter/gather optimization

Achieved teraFLOP/s
per GPU
=
i

12 24 36 48 60
Batch size

62
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation - End-to-end Performance

e Superlinear scaling of throughput
o Per-GPU utilization improves as the model get larger
o Communication overhead is not significant

32 512 137 44% 44

1.7 24 2304 24 1 1

3.6 32 3072 30 2 1 64 512 138 44% 8.8

7.5 32 4096 36 4 1 128 512 142 46% 18.2
18.4 48 6144 40 8 1 256 1024 135 43% 34.6
39.1 64 8192 48 8 2 512 1536 138 44% 70.8
76.1 80 10240 60 8 Bl 1024 1792 140 45% 143.8
145.6 96 12288 80 8 8 1536 2304 148 47% 2271
310.1 128 16384 96 8 16 1920 2160 155 50% 2974
529.6 128 20480 105 8 35 2520 2520 163 52% 410.2
1008.0 160 25600 128 8 64 3072 3072 163 52% 502.0

63
COMPUTER SCIENCE GRAINGER ENGINEERING

Evaluation - End-to-end Performance

e Estimated Training Time

o T: number of tokens
P: number of parameters 8T P

2 . . .
o n number of GPUs End-to-end training time ~ —
' nX
o X:throughput
o E.g. GPT3
T (billion) P (billion) n X (teraFLOPs/s per GPU) @ #Days
300 175 1024 140 34 288 years with

a single V100
1000 450 3072 163 84 NVIDIA GPU

64
COMPUTER SCIENCE GRAINGER ENGINEERING

Scatter/gather Communication Optimization

e Scatter/gather optimization as an extension to the Megatron-LM
o This reduced pipeline bubble size does not come for free
The output of each transformer layer is replicated (after g in MLP block)

O
o They are sending and receiving the exact same set of tensors
o Split the sending message to equal size of chunk and perform an all-gather on receivers

Y =GelU(XA) ™ / Z=Dropout(YB)
B[] o ! ! Wi
wx | = |X |o| XAy |=(& ||| B .JE_-. ;
Infiniband Scatterof All-gather of | IN=N ey g |
q = — X =B - | NS E
=P =P " Lilaia NE L
NVLink IH.-_ : | =X 1| Xty |8 | = | vap, [— |
gl gl | §EEEEEEE L

(a) MLP.

65
COMPUTER SCIENCE GRAINGER ENGINEERING

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

