1L ILLINOIS

AAAAAAAAAAAAAAAA

CS 498: Machine Learning System
Spring 2026

Minjia Zhang

The Grainger College of Engineering

Tensor Slicing Model Parallelism

Learning Objectives

* Explain why data parallelism alone is insufficient for training LLMs
* Understand the difference between tensor vs. pipeline parallelism

2
COMPUTER SCIENCE GRAINGER ENGINEERING

Data Parallelism

Date parallel troin ing with 2 compute nodes

-
LR
* Partitions a training minibatch across L (el ._m/ N ’

: : [et
multiple devices N e TR)

Minibatch P'“‘C half S model loaded on both &PUs

- P . 1_‘.
El— - —*D — \—‘r_ﬁ\ O;'tplu‘t |
st bl 1 L= |

* Linearly scalable
* Slicing activation only

* Does not help with excessive model N e S e
Size

waitQ)
|

R IR)
paraml - B e 3
%

(baciad] (AlReduce |

paramd-T= { MWMI ' A“Re,olqce,'
param3 -) (o) AlRedee]

3
COMPUTER SCIENCE GRAINGER ENGINEERING

Recall: Data Parallelism

Parameter Server AllIReduce

Model Aggregation

[O
7

JUJ
|

8 8 8

Data allocation

—

Synchronization
mechanism

' Sequential machine

] learning algorithms on
single machine

U0~

Distributed Systems
e
(I O

Data parallelism does not help with excessive model size

4
COMPUTER SCIENCE GRAINGER ENGINEERING

Large Models Require Large Memory

GPU VRAM Usage Estimation for training

¢ Training >> |nference different models
* Adam >> SGD (due to optimizer
state)
* Larger minibatch
e Scaling law => More parameters

Question: How do we speed up
training or simply enable training?

5
COMPUTER SCIENCE GRAINGER ENGINEERING

Megatron-LM 1

e Paper: https://arxiv.org/abs/1909.08053

* Repo:
https://github.com/NVIDIA/Megatron-LM

* NVIDIA’s framework, released in 2019, for
efficiently training large-scale language
models

6
COMPUTER SCIENCE GRAINGER ENGINEERING

https://arxiv.org/abs/1909.08053
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM

Motivation

Computational Needs of NLP

of # of .
. Ai2 . . Model parameters Iterations % ©f GPUs Training Time
Ai2 OpenaAl ’ e 0 e
. y y ; e T-NLG (MS + NV) 17.2 B 300 K 400 60 days
o Megatron-GPT2 (NV) 8.3B 300 K 512 10 days
Megatron-BERT (NV) 3.98B ZM 512 25 days
RoBERTa (FB) 345M 4M 1024 1 day

7
COMPUTER SCIENCE GRAINGER ENGINEERING

Motivation: Why Megatron?

Training larger transformer-based
language models became an important
way to advance SoTA NLP applications.

DGX

: SuperPOD
Unsupervised language models such as R

GPT-2, BERT, and XLNet demonstrate
the power of scaling language models
trained on a huge corpus.

Large ; .
Transformer | \Unsupervised

Nvidia DGX boxes optimized for deep
learning provides a unique opportunity
for training very large models.

8
COMPUTER SCIENCE GRAINGER ENGINEERING

Model Parallelism

ZANTAN

N AN,
é’A% a""‘\f\w‘gﬁf‘\\\? “Q}'/
B ey ./'\%’ ‘\é’

Inter-layer (Pipeline) parallelism

- Split sets of layers across multiple
devices

- Layer O, 1, 2 and layer 3, 4, 5 are on
different devices

'\.. eli
%‘\QA"/ @‘ c", /,\ .:v,. ;‘Q;%’p

X
g"\ /1) ‘,oo M‘ v,v s
ege ";,;;uww». e w
‘\\.. /4 \'.': "
20 “\“‘\\'// 5‘&‘\& /,"’ IR \\
/ \
VAT AN \V 2 BNY ,/

%

Intra-layer (Tensor) parallelism

_ Sp!lt individual layers across multiple \\'//A\'/A\

devices ‘qf‘ SOAN ,JA\\‘ ‘
. . : & .. \} ’lf ‘\“9-1 ‘\

- Both devices compute different parts .};:;:g,o:‘:f.’z,o,,, 4,“: ,‘3‘1 ,,.:,

of layerO, 1, 2,3,4,5

g\ ’M;‘-"sv\ ’:0:;" 'I‘,re\ /'9 ‘\'
s o

,%Qow%w é
177 \\\ I K\
\{V%\\ AN

— \//\v

9
COMPUTER SCIENCE GRAINGER ENGINEERING

Model Parallelism

Inter-layer (Pipeline) parallelism A /A\\o//Ax ZAN
. . ,A 'l \QN
- Split sets of layers across multiple ;0\3‘{@3‘»:,{9\:\‘?:9 Ai\\‘}g//
' \. ‘-“‘°‘ VTR)3. Woe
devices ?.3!::%(Zw,“ .\»':..,.3:' ‘ ?’,,“

5 “ " //' W,

‘?‘\‘%“\0. 7 (.)\\‘:,'.,,'i % "

78\ \ // \‘\\'//(‘n /,";‘\ / \\
// /

%

- Layer O, 1, 2 and layer 3, 4, 5 are on
different devices

. Intra-layer (Tensor) parallelism

- Sp!lt individual layers across multiple \\'//A\'/A\

. devices "!f’ Ry JA\\‘

:] . 3 a..\} l[,' .‘\‘:"‘M ‘
. - Both devices compute different parts WVQMI{.’ RN A

g\ ’M;‘-"sv\ ’:0:;" 'I‘,re\ /'9 ‘\'
s o

,%Qow%w é
177 \\\ I K\
\{V%\\ AN

— \//\v

o@"o’w "o" e m‘ "" fwr
of layerO, 1, 2,3,4,5

10
COMPUTER SCIENCE GRAINGER ENGINEERING

Complementary Types of Model Parallelism

COMPUTER SCIENCE

(//A\\\\ AN
SRR "'/‘-‘\\}"//

v \‘\ /‘(1 ¢\ Y XA
o //A« o
t\‘, ,,0. o‘wﬂ /. Y, .'.

4\?# v;'/ N S c‘:\ RKY \0‘ 3%
‘Q’A)) 0 Q,‘ ‘H. % 0’ % 00 0 ‘
.'V '\./"9001 ‘(\Y’;,«‘» " ”\\\\.,‘ ’0

"‘»,"’ W\ 'fcff‘ N "’;“A\\' “"‘\
.1"‘ \\',, N0 \\Q.',;, \f“\\Q /5 ‘1»"// ‘A‘.

AN \\\' N A\\ ® 410\\
e oY

Inter + Intra Parallelism

11
GRAINGER ENGINEERING

Goals and Approach 1

mbz.“mu
e Tailored for transformer networks ""'"MT e | &

— Add

* Transformer layer i sl]

* Self-attention block [1 o JI

* Two-layer MLP | e |
)

* Targets: _._‘: e :
* Reduce synchronization cost)

* Simple to implement with a few highly S

optimized collectives NCCL provides [— |
—

Input Embeddings (tokens,
positions, ..) & Dropout

12
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism: MLP 1

> MLP:
Y = GeLU(X A)
Z = Dropout(Y B)

MLP

MLP 4H—>H

| GelU]

MLP H->4H

I |

forow = Jh Dropout (YB):

? : Randomly drop a
certain percentage of
values to prevent
overfitting

13
COMPUTER SCIENCE Input IGINEERING

Tensor Parallel: Parallel GeMM (General Matrix Multiplications) 11

K N
. , BN

A
X = [X1, Xo] A= [A;]

Y=Y1+Y

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Tensor Parallel: Parallel GeMM (General Matrix Multiplications) 11

= [X1, Xo] A= {ﬁ;]

Y=Y1+Y,

15
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallel: Parallel GeMM (General Matrix Multiplications) 11

= [X1, Xo) A= [j;]

Y=Y1+Y

16
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallel: Parallel GeMM 1|

=—HE e

L T

DN EEEE

YN EEEE
= [X1, Xo] A= E;]

Y=Y1+Y>

17
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallel: Parallel GeMM 1|

== IIII
= [X1, X3] A= [ﬁ;]

Y=Y14+Ys

18
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallel: Parallel GeMM 1|

= [X1, X2]

Y=Y1+Y;

19
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallel: Parallel GeMM 1|

il
-

20
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallel: Parallel GeMM 1|

.-.. Y, Y,

X A= [Al,Ag] Y — [Yl,YQ]

il
=<

21
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism

Row Parallel Linear Layer

forward: Y= +Y>
(all-reduce)

H U | backward: g—f,‘l_ = 2L (identity)
Yl YQ
i i A — Ay
X14, XoAz A2 -
i} i __
Xl X2 X — [X]_? XZ]
[[
e e
H 7 backward: [3X1= R

(all gather)

COMPUTER SCIENCE

Column Parallel Linear Layer

Y | Y
T forward: Y = [Y;,Y5] U
ot
backward: g—}{; (split) H H
Yl Yﬂ
- { i}
XA — A = [Alj AQ} XA, XA,
~ i} i}
X X
I I

£ forward: X (identlty
backward: 9% = 9% |, + 9%
(all-reduce)

22
GRAINGER ENGINEERING

Tensor Parallelism

/ Normal \ / Parallel \\.
Operation: Yan = XanAan Operation: Ynx(n/p) — annAnx(n/p)
3
s o Flops: 2n3/P

I S
Bandwidth: 67 Bandwidth: 2n2(1 == 2/p)

: 1 1
 Intensity: —=n

\\ 3 / "Q'Eensity: 9 +pn | /

Ratio between serial and parallel

Flops: 1/pl(§ Bandwidth: 1+2/p ’I Intensity: i l

3 2+0p

23
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism: MLP 1

> MLP:
Y = GeLU(X A)
Z = Dropout(Y B)
> Approach 1: split X column-wise and A row-wise
Aq
X = [XlaXQ] A= [A2]) Y — GGLU(XlAl —|—X2A2) | M:e:,.,. |
- GelLU of sums != sum of GelLUs !
Xo: X1\ (4o, A1) _ (%o X
(0 1) Gt i) = () @0 40+ () 2 40
- XAAA + XBAB
.\
Summation ®

24
COMPUTER SCIENCE Input IGINEERING

Tensor Parallelism: MLP

> MLP:
Y = GeLU(XA)
Z = DropOUt(YB) Requires AllIReduce .
» Approach 1: split X column-wise and A row-wise before Gel U
X =[X1,Xs] A= A —) Y:GeLU([XlAl—ngAg]) e]
Az
- GeLU of sums != sum of GeLUs
....................... e,

A .
GELU (x) -

25
COMPUTER SCIENCE Input IGINEERING

Tensor Parallelism: MLP

> MLP:
Y — GQLU(XA) Transformer Layer
Z = Dropout(Y B)
~ Approach 1: split X column-wise and A row-wise Shape(Y) = [B, S, 4H]! &
A, N
X =[X1,X5] A= [AJ mm) Y = GeLU(X1A4; + XoA4)) Y M:e:lim |
- GeLU of sums != sum of GelLUs
....................... B s e e
GELU (x)

26
COMPUTER SCIENCE IGINEERING

Tensor Parallelism: MLP

> MLP:
Y = GeLU(X A)
Z = Dropout(Y B)
» Approach 1: split X column-wise and A row-wise

A
X = [Xl,Xg] A= [A;] m—) Y — GGLU(XlAl —|‘X2A2)

Requires synchronization before GelLU GelLU of sums != sum of GelLUs

> Approach 2: split A column-wise
A=[A1,A)] = [V1,Y5] = [GeLU(X A;), GeLU(X Ap)]

No synchronization necessary

Can run in parallel now!
(Xo Xl) (Ao Al) _ (XO Xl) (AO) (XO Xl) (Al)
XZ X3 AZ é A3 Xz X3 AZ X2 X3 A3

= (XA, XAp)

COMPU Concatenation

Add

MLP

MLP 4H—>H

GelU

l

MLP H->4H

i

N\
*)

27
IGINEERING

Tensor Parallelism: MLP

o o —_— o o ——— yeformer

/’/ Y = GeLU(XA) N ,,” Z = Dropout(Y B) N
\
[o —)| — — | MLP
i ' @ | :
: =|X = XA, @ﬁw}’i-}i‘» YiB;: 24| = ‘l l —
| 1 = I W) I __Ge:U
x| = f e 1 gl — S|z
1% - N - mE : N
l ® | = :
| =|X|=| X4, 2|2 =Y | 2B, =2 = !
| I = | _ﬂ |
i i o | o l
I
| / Bl '
\\\ A = Al) A2] // \\\ B - [Bz] //,
f and g are conjugate, f is identity operator in the forward pass and all-reduce
in the backward pass while g is all-reduce in forward and identity in backward.

28
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism: Self-Attention

Multi-Head Attention
{

Linear

1

Concat
AA

Scaled Dot-Product h
Attention

A;\ention i
_
, i [pl) L —

MLP H->4H

' J : J - Self Attention &
Linear Linear Linear : Atenionbropou
V K Q

COMPUTER SCIENCE GRAINGER ENGIKI:IJEERING

Tensor Parallelism: Self-Attention

Scaled Dot-Product Attention -

1

MatMul

Nonlinearity so
no Row-Parallel | SoftMax

Mask (opt.)

Scale

COMPUTER SCIENCE

A

Multi-Head Attention
{

Linear

1

Concat
AA

Scaled Dot-Product h
Attention

pl tl L

L

[g
Linear_] LinearJ Linear

MLP H->4H

Attention
Attention Output

Self Attention &
Attention Dropout
A

: (o AV}
GRAINGER ENGINEERING

Tensor Parallelism: Self-Attention

e DU |
il DU HE |
Aoy Ay

X A= [Al,AQ] Y = [YI,YQ]

Attention heads can be parallelized with Column Parallel GEMMs (ex. Query
head 1 (Q,) and Query head 2 (Q,))

Il
f®)

Q

31
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism: Self-Attention

IIII IIII |
Ag Ay

X A= [Al,AQ] Y = [YI,YQ]

Attention heads can be parallelized with Column Parallel GEMMs (ex. Query
head 1 (Q,) and Query head 2 (Q,))

Il
f®)

Q

Question: What if we have more GPUs than the number
of heads?

32
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism: Self-Attention

y Y = Self-Attention(X) B
,, \ P e D
r’) N w - &N
‘, :31 1 ‘:'/ Z = Dropout(Y B) y e
1 1
| o) (=) 1 : i - :
| = X=[a] |2 |9 I ! s
: =<§U§)-:o§n::>-8 =@z =2 | YaB1 =14 = 1 0
L} (R :
| | =K] 2| & I = :
' D = 1 1 L - :
! X = f & g —> 2] — Z] -
i e B e 1 = -§ 1 Attention
| - [g] e I 3 |
| o s N '
11 1 ention
| \x|-Famo 8| } . L | —
| — | ' 1 Self Attention &
t 11 1 Attention Dropout
| o | =[] i B [Bl] ; -~
I - - B B /
:\ (2 = [(Jl (2_)] | - 2 B>
A e
_ split attention heads — ¢ K = [K, K3] 4
R = ["1. Vgl 2 3

-

f and g are conjugate, f is identity operator in the forward pass and all-reduce
in the backward pass while g is all-reduce in forward and identity in backward.

33
COMPUTER SCIENCE GRAINGER ENGINEERING

Tensor Parallelism: Communication Cost

e 4 total communication operations in 1 forward + backward pass

ALL_REDUCE at backward ALL_REDUCE at backward
ALL_REDUCE at forward ALL_REDUCE at forward
Y = Self-Attention(X) l | P
= Ve Z = Dropout(Y B) I,’ Y = GeLU(XA) \' ’,' Z = Dropout(YRB)
o @ A § g :l_)’_{J‘ — YlBl g 'zl v] : - Xl QX‘A' i r@ %H:o YlBl i
| K J g [Q : ‘C, : S '
=B gl 18|z <8 i faz=~§=EE
| = BLE e o Al e
x| - va : g . :-: Hs == | YaB; yolZy| - i : r_bu-) XZAZVQ E %Bﬁ:&
8 | -[a] ‘ By} i aray i g =[P
Q Qy.Qs b 2= [BJJ N [e 2] _,’ \\‘__________f;f _____ o
~ split attention heads —+ ¢ K K. K, ot i
V=WV 7

34
COMPUTER SCIENCE GRAINGER ENGINEERING

Experiments 11

* 32 DGX-2H servers * GPT-2 & BERT Models
* 512 V100 SXM3 32GB GPUs * TP (+ DP)
* Intra-server connection * Mixture of datasets

* 300 GB/s NVSwitch

* Inter-server connection
* 100 GB/s InfiniBand (8 per server)

35
COMPUTER SCIENCE GRAINGER ENGINEERING

Experiments: Scalability

* GPT-2: 1B-8B
. . Hidden | Attention | Number Number of Model parallel Model+data
* Hidden size: 1536-3072 Co"| “ize | heads | oflayers | parameters (billions) | GPUs | parallel GPUs
1 1536 16 40 12 1 64
* Parameters/GPU: ~1.B 2 | om | 2 5 25 2 128
3 2304 24 64 42 4 256
4 3072 32 72 83 8 512
* Weak scaling@512 GPUs: 74%
model parallel model + data parallel
100% 100%
75% 75%
£ g
g 50% S 50%
g 25% g 25%
0% 0%
64 128 256 512
Number of GPUs Number of GPUs

Baseline (1.2B parameters on a single GPU) achieves 39 TeraFLOPs per -
COMPUTER SCIENCE second, i.e. 30% of the theoretical peak during the entire training process GRAINGER ENGINEERING

Experiments: GPT-2

Validation Set Perplexity

24
- 355M -25B - 8.3B
22

» Training data: 174 GB WebText/CC-
Stories/Wikipedia/RealNews

20

= 18
» 3 model sizes: 355 million, 2.5 billion, and 8.3 billion % 16

<5}

o 14
» Zero-shot evaluation results for Wikitext-103 perplexity and = .

Lambada cloze accuracy
10

30 100 150 200 250 200

Iterations (thousands)

ostse | Wbt 103 | tomant
355 M 19.22 46.26
2.5B 12.68 61.52
8.3B 10.81 66.51

Previous SOTA 16.43* 63.24™

37
COMPUTER SCIENCE GRAINGER ENGINEERING

Experiments: Megatron-BERT

output

. o : ft

* Scaling BERT to larger sizes is also possible 4
MLP
* Reordering residual connections to stabilize training

* Megatron-BERT 3.9B, 12x larger than BERT-Large, over 2 tr
million iterations @ batch size 1024

COMPUTER SCIENCE

Language model loss

0

N

= T52M using architecture (b}
= T5EM using architecture (a)
336M using architecture (a)

[T

100 200 300
Iterations (2 1000)

400 SO0

38
GRAINGER ENGINEERING

Experiments: SQUAD & RACE

RoBERTa
ALBERT
XLNet
Megatron-334M
Megatron-1.3B

Megatron-3.9B

COMPUTER SCIENCE

Median single model downstream results on DevT and Test sets.
State of the art results are bolded.

39
GRAINGER ENGINEERING

Questions?

40
COMPUTER SCIENCE GRAINGER ENGINEERING

Hardware: Delta 1|

* Home page:
https://www.ncsa.illinois.edu/res
earch/project-highlights/delta/

100 quad A100 GPU node, each
with 4 A100

100 quad A40 GPU node, each
with 4 A40

 58-way A100 GPU, each with 8
A100

e 1 MI100 node, 8 MI100

41
GRAINGER ENGINEERING

COMPUTER SCIENCE

Delta Onboarding

* https://docs.ncsa.illinois.edu/systems/delta/en/latest/user guide/acc
essing.html

Frequently Asked Questions
: @ / Delta Login Methods O Edit on GitHub
Support and Services

Getting Help

Delta Login Methods

System Architecture
Account Administration Direct Access Login Nodes

& Delta Login Methods

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
Open OnDemand NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

VS Code

Direct Access Login Nodes

Good Clister Cltizenship See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.
Data Management

Er(;tgvzammi”g Environment (Building For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
Gl and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

Job Accounting NCSA username, submit a support request (Getting Help) for assistance.

Running Jobs

Installed Software Login Node Hostnames
Visualization 5 z
Login Node Hostname Example Usage with SSH
Containers
Services ssh -Y username@dt-loginel.delta.ncsa.illinois.e

dt-login01.delta.ncsa.illinois.edu
Debugging and Performance Analysis

(-Y allows X11 forwarding from Linux hosts)

Acknowledging Delta

42
COMPUTER SCIENCE GRAINGER ENGINEERING

Step 1: Create ACCESS ID

ALLOCATIONS SUPPORT OPERATIONS METRICS L. Q = Login

* Register an ACCESS id at:
https://access-ci.org/ (top JACCESS

right-hand corner) 4 Allocations

Home Get Started Available Resources ACCESS Impact Policies & How-To About

* After you register, send
jche Instructor your ACCESS Need access to computing, data analysis, or storage resources?
|d. The Instru Ctor Wl” add You're in the right place! Read more below, or login to get started.
you to access to his GPU
allocation.

Whatis an allocation? Which resources?

Ready to get started?

To get started, you need an We've got modeling and analysis
ACCESS project and some systems, GPU-oriented systems,

It costs you nothing (really!), and you
don't need an NSF award. To begin,
you just need to

LOGIN

or

resource units you can spend. large-memory nodes, storage,
Your ACCESS project and and more. Resource providers
resource units are what we have designed their systems to
refer to as an Allocation. An serve a wide range of research
allocation is your project to use a and education needs — including

43
COMPUTER SCIENCE GRAINGER ENGINEERING

https://access-ci.org/
https://access-ci.org/
https://access-ci.org/

Step 2: Get Started

Delta uses Slurm to manage jobs/GPUs

Please watch this tutorial video: Getting Started on NCSA's Delta Supercomputer.

After that, you may want to check Delta User Documentation — UIUC NCSA
Delta User Guide (illinois.edu).

Please learn how to use slurm to get GPUs: Slurm Workload Manager - Quick
Start User Guide (schedmd.com).

44
COMPUTER SCIENCE GRAINGER ENGINEERING

https://urldefense.com/v3/__https:/www.youtube.com/watch?v=O9F-U775BG0&list=PLO8UWE9gZTlDul4FeWgZ3Kt-XNKzyyc5M&index=4__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAHuOXflZ$
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$

Step 3: SSH Login

* You shall use ssh to login to the
node: Delta Login Methods — UIUC
NCSA Delta User Guide (illinois.edu).

* For instance, you can use
commands such as “srun -A bcjw-
delta-gpu --time=00:30:00 --
nodes=1 --ntasks-per-node=16 --
partition=gpuA100x4,gpuAd40x4 --
gpus=1 --mem=32g --pty /bin/bash”

* Maintaining Persistent Sessions:
tmux

COMPUTER SCIENCE

Delta Login Methods

Direct Access Login Nodes

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.

For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

NCSA username, submit a support request (Getting Help) for assistance.

Login Node Hosthames

Login Node Hostname

dt-login01.delta.ncsa.illinois.edu

dt-login02.delta.ncsa.illinois.edu

login.delta.ncsa.illinois.edu
(round robin DNS name for the set of login nodes)

Example Usage with SSH

ssh -Y username@dt-loginel.delta.ncsa.illinois.e

(-Y allows X11 forwarding from Linux hosts)

ssh -1 username dt-login@2.delta.ncsa.illinois.e

(-l username alt. syntax for userghost)

ssh username@login.delta.ncsa.illinois.edu

45
GRAINGER ENGINEERING

https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html

Additional Info 1|

* Itis the instructor’s own research allocation, and it has a limit. So please be mindful
when using GPU resources.

* Avoid allocating too many GPUs at once
e Turn off the job when you are not using the GPUs

* The allocation has 500 GB of storage in total (shared by the class and other students in
the instructor’s lab)

* Please avoid downloading large data files and super large model checkpoints, e.g., one llama7b
checkpoint consumes roughly 14GB.

46
COMPUTER SCIENCE GRAINGER ENGINEERING

Course Project (Reproducibility Challenge)

4-credit undergraduate students, 3-credit graduate students
Some suggestions below, but it can be any machine learning system related papers that you are interested in

GPTCache: An Open-Source Semantic Cache for LLM
Applications Enabling Faster Answers and Cost Savings |https://github.com/zilliztech/GPTCache

RouteLLM: Learning to Route LLMs with Preference Datalhttps://github.com/Im-sys/RoutelLLM
LLM-QAT: Data-Free Quantization Aware Training

for Large Language Models https://github.com/facebookresearch/LLM-QAT
Speculative decoding in VLLM https://docs.vlim.ai/en/v0.5.5/models/spec_decode.html
REST: Retrieval-Based Speculative Decoding https://github.com/FasterDecoding/REST

MemGPT: Towards LLMs as Operating Systems https://github.com/letta-ai/letta

47
COMPUTER SCIENCE GRAINGER ENGINEERING

https://github.com/zilliztech/GPTCache
https://github.com/lm-sys/RouteLLM
https://github.com/lm-sys/RouteLLM
https://github.com/lm-sys/RouteLLM
https://github.com/facebookresearch/LLM-QAT
https://github.com/facebookresearch/LLM-QAT
https://github.com/facebookresearch/LLM-QAT
https://docs.vllm.ai/en/v0.5.5/models/spec_decode.html
https://github.com/FasterDecoding/REST
https://github.com/letta-ai/letta
https://github.com/letta-ai/letta
https://github.com/letta-ai/letta

Course Project (Open-End Research Project)

4-credit graduate students

*Benchmark and analyze important DL workloads to understand their performance gap and
1dentify important angles to optimize their performance.

*Apply and evaluate how existing solutions work in the context of emerging AI/DL workloads.
*Design and implement new algorithms that are both theoretically and practically efficient.
*Design and implement system optimizations, e.g., parallelism, cache-locality, I0-efficiency, to
improve the compute/memory/communication efficiency of AI/DL workloads.

*Offer customized optimization for critical DL workloads where latency 1s extremely tight.
*Build library/tool/framework to improve the efficiency of a class of problems.

Integrate important optimizations into existing frameworks (e.g., DeepSpeed), providing fast
and agile inference.

*Combine system optimization with modeling optimizations.

*Combine and leverage hardware resources (e.g., GPU/CPU, on-device
memory/DRAM/NVMe/SSD) in a principled way.

48
COMPUTER SCIENCE GRAINGER ENGINEERING

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

