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* Distributed Training Preliminary

* Data Parallelism
* Alireduce-based DP
« Communication terminologies

* Learning Objectives
* Understand the AllReduce-based data parallelism
* Understand how collective communication works in practice
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Data Parallelism: DDP

1 import torch
2 import torch.nn as nn
3 import torch.optim as optim

5 # initialize torch.distributed properly
6 # with init_process_group

8 # setup model and optimizer

9 mnet = nn.Linear (10, 10)

10 opt = optim.SGD(net.parameters(), 1lr=0.01)
11

12 # run forward pass

13 inp = torch.randn (20, 10)
14 exp = torch.randn (20, 10)
15 out = net(inp)

17 # run backward pass
15 nn.MSELoss () (out, exp).backward()

20 # update parameters
21 opt.step()

3
COMPUTER SCIENCE GRAINGER ENGINEERING



Data Parallelism: DDP

‘ 1 import torch

1 import torch > import torch.nn as nn

2 import torch.nn as nn 3 import torch.nn.parallel as par

3 import torch.optim as optim 1  import torch.optim as optim

4 5

5 # initialize torch.distributed properly 6 # initialize torch.distributed properly
6 # with init_process_group 7 # with init_process_group

- 8

8 # setup model and optimizer 9 # setup model and optimizer

9 net = nn.Linear (10, 10) 10 net = nn.Linear (10, 10)
10 opt = optim.SGD(net.parameters(), 1lr=0.01) !! net = par.DistributedDataParallel (net)
11 12  opt = optim.SGD(net.parameters(), 1lr=0.01)
12 # run forward pass o ; 4
13 inp = torch.randn (20, 10) l} # ruﬁ orw;r pZSiQO 10)
14 exp = torch.randn (20, 10) !5 imp = torch.randn ’
5 out = net(inp) 16 exp = torch.randn (20, 10)
1: P 17 out = net(inp)

‘ 18
17 # run backward pass 19 # run backward pass

15 nn.MSELoss () (out, exp).backward()

20 # update parameters
21 opt.step()
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20 nn.MSELoss () (out, exp).backward()

# update parameters
opt.step ()
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Data Parallelism: DDP

1 import torch
2 import torch.nn as nn

import torch.nn as nn 3 import torch.nn.parallel as par
1
5

1 import torch
2
3 import torch.optim as optim import torch.optim as optim
1
5

# initialize torch.distributed properly 6 # initialize torch.distributed properly
6 # with init_process_group 7 # with init_process_group
- 8
8 # setup model and optimizer 9 # setup model and optimizer
9 net = nn.Linear (10, 10) 10 net = nn.Linear (10, 10)
10 opt = optim.SGD(net.parameters(), 1lr=0.01) !! net = par .DistributedDataParallel (net)
11 12  opt = optim.SGD(net.parameters(), 1lr=0.01)
12 # run forward pass Lo

14 # run forward pass
15 inp = torch.randn (20, 10)
16 exp = torch.randn (20, 10)

13 inp = torch.randn (20, 10)
14 exp = torch.randn (20, 10)

i: out = net (inp) 17 out = net(inp)
' 18
17 # run backward pass 19 # run backward pass Gradient

18 nn.MSELoss () (out, exp).backward() 20 nn.MSELoss () (out, exp).backward()

synchronization
20 # update parameters
21 opt.step()

# update parameters
opt.step ()
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Data Parallelism: AllIReduce-based

Sequential tr‘odning
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Data Parallelism: AllIReduce-based

Sequential tr‘odning

>3,1,0,7 9,1
Ou‘tpu‘t

4, 1,0, 7, 8, 1
\ s

'T_od‘seu
Minibateh size: 6 \ \ \

Question: why do we have these data dependency edges?
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AllReduce based Data Parallelism

Data pam“e_l training with & compute nodes
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AllReduce based Data Parallelism

@H—-—» B

Nodel
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MPI. AllReduce(MPI.SUM)
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When Shall we Synchronize Gradients?

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
g = net.run(grad, in=data)
m) gsum = comm.allreduce(g, op=sum)

w -= 1lr * gsum / num_workers
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AlIReduce based Data Parallelism: Option 1

Communication

|
Computation I
(BMO‘MO"UA S ;O!hl‘lg) | (PPOC.E_SSOFS are io“lng)
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AllIReduce based Data Parallelism: Option 2

waitQ
I

[Backwarol]: TA“Re,oluce J
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* Distributed Training Preliminary

* Data Parallelism
* Allreduce-based DP
« Communication terminologies
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Terminologies: Point-to-Point Primitive Communication

~

matmul |- matml |

.

Sender Receiver
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Terminologies: Collectives

COMPUTER SCIENCE

[tO, t1, t2, t3]

Rank 0 } { Rank 1 ] [ Rank 2 } [ Rank 3 ]

[t0, ] [t1) [t2,] [t3, ]
Scatter

[t0. ] [t1.] (2] [t3,]

RankOJ [Rank1J [Rankz] [ Rank ]

/
Rank 0
[T=10+ 11+ 12 +13]
Reduce

[to, 1
Rank 0

Rank 0 l { Rank 1 ] [ Rank 2 Rank 3 J

1 [0] [t0, [0, ]
Broadcast

[t0, ] [t1.] [t2,] [3.1
Rank O J [ Rank 1 Rank 2 ] [ Rank 3 )

[tO, t1, t2, 3]

Gather
[0.] [1.] [2.] [13,]
Rank 0 J [ Rank 1 Rank 2 1 [ Rank 3
1\\?\\ ></ | > =
TIS7SHS
,%:’/ - 2 N k\‘\'}':‘-\t

Rank O J [ Rank 1 [ Rank 2 J [ Rank 3
b - J
[T =t0+11+2413] [T = tO+11+2+3] [T =t0+11+2+t3] [T = t0+1+12+3]

All-Reduce
[0, ] [, [t2.,] [t3,1 .
[ Rank 0 Rank 1 ] [ Rank 2 ] [ Rank 3 J
HK'E“\.“V / | —
o N “\Jrﬁ_\ >
= l T
| Rank0 Rank1 | [ Rank2 | | Rank3
[0, 11,2, 13] [t0, 11,12, t3] [t0, t1,12,t3] [tO, t1, 2, 3]
All-Gather
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Terminologies: Communication Collective

matmul matmul Process 1 Process 2 Process 3 Process 4
L
—_ |

matmul | matmul
e/ -

AllIReduce

ddp _model = DDP(Model(), device ids=[rank])
for batch in data loader:
loss = train step(ddp model, batch)

Process 1 Process 2 Process 3 Process 4

\ 28 ENENEr 12 s 4 EREEER

Implicit allreduce here

Different from PS, no centralized server
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How is AllIReduce Implemented?

Receive Send

Receive

3 (5] [0 (4 {8 P2 (@Y B (1) (5] () (3 (7 BY 25 @9

Receive

[1]3[5[7]0 [11[13[i5[17[10]21[23[25R7[20]31 [0]2 468 [L0[i2[14[16]1820[22[24]26]28]30)]

Receive

= ::::::'

1

Receive Send

Tree-based Ring-based
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Ring-based AllReduce 1|

- GPUs arranged in a
logical ring

Send

Receive

Two phases:
Scatter-reduce
Send Receive All-gather
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Phase 1: Reduce-Scatter

Arrays Being Summed

ag by Cy dy €
a4 b, c; d, e,
a, b, Cy d, .
a, by C3 dy B
a, b, C4 d, €y

Partitioning of an array into N chunks
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Phase 1: Reduce-Scatter

Arrays Being Summed

=l bo Cq dy €y

a b, €y d €
4
a, b, C, d, €
4
ag by C3 d, €q
4
a, b, Cy d, =N

Data transfers in the 1st iteration of
scatter-reduce
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Phase 1: Reduce-Scatter

COMPUTER SCIENCE

Arrays Being Summedi

i by (o dy eg+e,
b, [oF d, e
a, b,+b, T dy €y
U
ay by Ca+Cy d; 8y
U
2 b, C, dg+d, ey

\

Intermediate sums after the first
iteration of scatter-reduce is complete
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Phase 1: Reduce-Scatter

COMPUTER SCIENCE

a, by Cy d,+dg+d, e,+e,
4
a;+a, b, (o8 d, ey+e,+e,

i
a,+agta, b,+b, (o d, e,
a by+b,+by Cy+Cy dy e,

i

a b, C3+Co+Cy dg+dy ey

\

Reduce-scatter data transfer (iteration 3)
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Phase 1: Reduce-Scatter

a, C3+Co+Cy+Cy dy+dg+dy Ep+ey
U
a,+a, b, Cy d,+da+dy+d, ey+e,+e,
U
a +ag+a, b,+b;, [ d, Egte e +ey
U
a,+agta,+a, by+b,+by Cy+Cy dy e,
U
a, bo+b+by+hy, C3+Cy+Cy d,+d; ey
L

Reduce-scatter data transfer (iteration 4)
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Phase 1: Reduce-Scatter

COMPUTER SCIENCE

a, by+b+bgtby+by | C3+C+C+Cy d,+d;+d, ey+ey
a,+ag b, Ca+Cy+C,+Cy+Cy | dy+dg+dy+d, egt+e,+e,
a,+ayt+a, b,+b, Co dytdy+dg+di+d; | €pte,te,+8,
a,+ag+a,+a, by+b,+by Ca+Co dy eg+e,+e,+ey+e,
a,+agtaytagta, | bo+bi+ba+b, C3+Co+Cy d,+ds ey

Reduce-scatter data transfer (after iteration 4)
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Phase 2: Allgather

i
ay bp+by+bgtby+by | C3+Cs+Cy+Cy dy+da+dy €pt+€,
4
a;+ap b, C3+Cy+Cy+Co+Cy | dy+da+dy+d, epte, +e,
U
a,;+a +a, b,+b, [ dy+dg+dg+dy+d; | egteyte,+e,
{
a,+agtas+as by+by+b, C3+Cp dy Egte e +es+es
4
a,+ag+as+as+a, | by+b +bytb, Ca+Co+Cy d,+dg ey
£

All processes can obtain the complete array by sharing the
partial results from them. This can be done by circulating
again without reduction operations.
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Phase 2: Allgather

COMPUTER SCIENCE

a, by+by+bg+b+by | C3+Cy+C4+Cy d,+dq+d, egtey
i
a,+ag b, Ca+Ca+Cy+Cy+Cy | dy+dg+dy+d, egte, e
U
a,+ag+a, b,+b, [+ dy+dgedy+d+d; | epte e t+e;
U
a;+agtas+a, bo+b+by C3+Cy d; Egte e e, +e,
4
a+agtay+ag+a, | by+bi+bytb, Ca+Cy+Cy dg+dg ey

5

Allgather data transfer (iteration 1)
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Phase 2: Allgather

COMPUTER SCIENCE

a,+agtay+ag+a, | bo+b+bytb+by | Cy+Ca+e+Cy dy+dg+d, eg+e,
i
a,+ay by+by+bgtby+by | Ca+Co+Cy+Cy+Cy | dy+da+dy+d, ept+e,+e,

U
a,+ayt+a, by+b, Cqt+CotCy+Co+Cy | dytdatdy+dy+d, | Epte,+e +e,
U
a,+agt+a,+a, b,+b,+bs Cy+Cy dy+dy+dy+di+d, |Epte te +e+e,
4
a,+ag+ay+az+a, | by+by+by+by Ca+Co4Cy dy+dy egte,+e +8y+ey

Allgather data transfer (iteration 2)
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Phase 2: Allgather

COMPUTER SCIENCE

a,+ag+ay+as+a, | bytby+bg+by+by | Ca+Co+C4+Cy d,z+dy+dy  |egte e +e,tey
d
a+agtay+agt+a,| by+by+bytb,+by | C3+Co+C+Cy+Cy | dy+da+dy+d, epte, e,

U
a +apt+a, bo+bi+batbg+by | Ca+CatCytCy+Cy | dytdatdy+d +d, | €gteyte,+e,
4
a,+ag+a,+a, b,+b +b;  |C3+Co+Cy+CG+Cy | dy+dgtdy+d+d, [epte e +e,+e,
U
a,+ag+a,+az+a, | by+by+by+b, C3+Cy+Cy d +dg+dy+di+d; [egte e e+

Allgather data transfer (iteration 3)
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Phase 2: Allgather

COMPUTER SCIENCE

a;+ag+ay+az+a, | by+by+bgby+by | Ca#CH+Cy+Cy | dy+dyrdy+d+d; |egte +e +e,4ey
U
a,+ag+as+az+a, | botb +bytb,+by | C3+Co+C+Co+Cy | dy+da+dy+d, |egte,+e +e,te;
1
atagtas+ag+ay | by+by+ba+b+by | Ca+Co+C+Co+Cy | dytdgtdy+d+ds | Egte,+E+ES
4
a;+apgtayta; | bytb +bgtb+bg | Ca+Co+Cy+Co+Cy | dy+da+dg+d,+d, |egte +e +e,tes

g

a +ag+a,+agtay

by+by+b+by

Ca+Co+C4+Cy+C, I dy+dg+dg+dy+d,

egte,te+ey+e;

Allgather data transfer (iteration 4)
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Phase 2: Allgather

COMPUTER SCIENCE

a,+ag+ay+az+a,

bo+b+by+b+bg

C3+Co+C4+Co+C,

dy+da+dy+d,+d,

egte,+e,+e,+e;

aj+ag+a,+ag+a,

bs+b,+by+b,y+by

C3+Cy+C4+Cy+C;

dy+dy+dy+d +ds

egte, +8,+8,+e;

aj+ag+a,+ag+a,

ba+by+bgy+bat+by

C3+Co+C4+Cq+C,

dy+dg+dy+d,+d,

Bgte,+8,+8y+e;

a,+ag+a,+ay+a,

ba+by+by+b+bg

C3+Cy+C4+Co+Cy

d,+dy+dy+dy+ds

eg+e +e +e,+e,

ay+ag+ay+az+a,

b2+b1+b3+b4+buIca+32+c4+cg+c1Id4+d3+dn+d1+d2

egte, +8,+8,+e;

Final state after allgather transfer
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Two AllReduce Paradigms

Receive Send

Receive

Receive

Receive

Receive Send

Ring-based

COMPUTER SCIENCE

R

4 [ ;@ 28
NN\

2] ] 2= = g [2) |35 )

113157 [9 11]1315[1719121[23[25[27]29]31

Tree-based
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Two AllReduce Paradigms

NCCL bandwidth 0
Allreduce, 64MB '-‘—_-h-"“-----___
25000 -““'“----16
e MCCL 2.4 — Trees e
20000 = NCCL 2.3 — Rings _
8 | 24
15000 N N
., Z N\ 4 N
2 4 12 20| 28|
10000
# \ / 1 , ’ \\ \
5000 Py 6 10\ 14\ 18 ‘22\ 26 }30
095 192 384 768 1536 3072 6144 12288 24576 113[5|7]9|11|13(15/17|19|21|23|25|27|29|31
GPUs
Tree-based
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Terminologies: Communication Collective

irank0 | rank1 { rank 2 | rank 3 ! frank0 i rank1 | rank 2 | rank 3

inl

all-gather | |

out[Y*count+i] = inYT[i]

Processor

1

H e O -
He O

all-to-all

message

o

oo

He O -
Heé O -

dh AR 4

00 e

dldldle

irank0 i rank1 i rank 2 | rank 3 |

e
~in3-- %*} o l
| ] P | out2

Reduce-scatter

outhﬂ - sum(i.nX[Y'count+i])

COMPUTER SCIENCE

‘rank0 i rank 1 | rank 2 | rank 3 :

Figures from NCCL documentation
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Some Transformations 1|

Reduce-scatter

(p—1) af+%? n(p+y)

Reduce(-to-one)

Scatter
fog(p)a+p?_fnﬁ
Allreduce
Gather
fog(p)a+%nﬁ
Broadcaost
Allgather

(p— I)a-{-Enﬁ
p

34
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Some Transformations 1|

Reduce-scatter
(p-1) a+%jﬂ(ﬁ+ v)

Reduce(-to-one)

g
(p—1+Iog(p))a +% n(28+7y)

Scatter
fﬂgfp)ﬂ’+p?_jnﬁ
Allreduce
GOTher 2(p— I)a+p_?jn(gﬁ+},)
fﬂgfp)ﬂ’+p?_jnﬁ
Broadcast
Allgather

{’p—f)rx+Eﬂﬁ
P
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Some Transformations E

Reduce-scatter

(p- 1)a+%ﬂ(ﬁ+y)

Reduce(-to-one)

SCOH-er (p—1+1Ilog(p)a +p? n(2B+7v)
I”E(P)ﬂ+pjjnﬁ
Allreduce
GOTher 2(p- 1)ﬂ+p_?1n(2,8+ v)
fﬂg(ﬁ)ﬁ+p?_lﬂﬁ
Broodcos’rf
P
A”_C]thel’ (log(p)+p—1a +2‘7 np

{"p— UQ’+E‘H}‘3
P
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Some Transformations E

Reduce-scatter

(p-1) ﬂ+%fnf’,8+ ¥)
Reduce(-to-one)
Scatter (p=1+log(p)a+ 22 n(zp+ 1)
Iﬂgtfp)ﬂ+%?nﬁ
Alreduce
Gather
fﬂgfp)&+p?4nﬁ
Broadcaost
Allgather

(p— 1) a’—i—Enﬁ
p
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Some Transformations 1

Reduce-scatter

(p- f)ﬂ+$nf’ﬁ+y)
Reduce(-to-one)
Scatter (p—1+log(p)a +%?n(2ﬁ+y)
jﬂgfp)ﬂ+%rnﬁ
Allreduce
Gather
fﬂg(p)a+p?_1nﬁ
Broadcast
Allgather

. . ¢ ffgafﬂrgf . o . . -
Centauri: Enabling Efficient cheduling for Communication-Computation Overlap in Large Model Training
via Communication Partitioning” ---ASPLOS’24 (Best Paper)
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Communication Basics 1|

* Collectives are implemented using many P2P
* Collectives are much more expensive than P2P

* Collectives are highly optimized throughout the past 20 years
e Look for “X”CCL libraries
* NCCL, RCCL, MSCCL,...

e Collectives are not fault-tolerant

* Collectives can be implemented differently
* Ring
 Minimum Spanning Tree (MST)

39
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NCCL: Nvidia’s Efficient Multi-GPU Collective

e Use unified GPU direct memory accessing

* Each GPU launches a working kernel, cooperate with each other to do
ring-based reduction

A common backend for popular DL frameworks such as PyTorch
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* Distributed Training Preliminary

* Data Parallelism
* Allreduce-based DP
« Communication terminologies

e Hardware
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Hardware: Delta 1|

* Home page:
https://www.ncsa.illinois.edu/res
earch/project-highlights/delta/

100 quad A100 GPU node, each
with 4 A100

100 quad A40 GPU node, each
with 4 A40

 58-way A100 GPU, each with 8
A100

e 1 MI100 node, 8 MI100

42
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Delta Onboarding

* https://docs.ncsa.illinois.edu/systems/delta/en/latest/user guide/acc
essing.html

Frequently Asked Questions
: @ / Delta Login Methods O Edit on GitHub
Support and Services

Getting Help

Delta Login Methods

System Architecture
Account Administration Direct Access Login Nodes

& Delta Login Methods

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
Open OnDemand NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

VS Code

Direct Access Login Nodes

Good Clister Cltizenship See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.
Data Management

Er(;tgvzammi”g Environment (Building For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
Gl and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

Job Accounting NCSA username, submit a support request (Getting Help) for assistance.

Running Jobs

Installed Software Login Node Hostnames
Visualization 5 z
Login Node Hostname Example Usage with SSH
Containers
Services ssh -Y username@dt-loginel.delta.ncsa.illinois.e

dt-login01.delta.ncsa.illinois.edu
Debugging and Performance Analysis

(-Y allows X11 forwarding from Linux hosts )

Acknowledging Delta
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Step 1: Create ACCESS ID

ALLOCATIONS SUPPORT OPERATIONS METRICS L. Q = Login

* Register an ACCESS id at:
https://access-ci.org/ (top JACCESS

right-hand corner) 4 Allocations

Home Get Started Available Resources ACCESS Impact Policies & How-To About

* After you register, send
jche Instructor your ACCESS Need access to computing, data analysis, or storage resources?
|d. The Instru Ctor Wl” add You're in the right place! Read more below, or login to get started.
you to access to his GPU
allocation.

Whatis an allocation? Which resources?

Ready to get started?

To get started, you need an We've got modeling and analysis
ACCESS project and some systems, GPU-oriented systems,

It costs you nothing (really!), and you
don't need an NSF award. To begin,
you just need to

LOGIN

or

resource units you can spend. large-memory nodes, storage,
Your ACCESS project and and more. Resource providers
resource units are what we have designed their systems to
refer to as an Allocation. An serve a wide range of research
allocation is your project to use a and education needs — including

44
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https://access-ci.org/
https://access-ci.org/
https://access-ci.org/

Step 2: Get Started

Delta uses Slurm to manage jobs/GPUs

Please watch this tutorial video: Getting Started on NCSA's Delta Supercomputer.

After that, you may want to check Delta User Documentation — UIUC NCSA
Delta User Guide (illinois.edu).

Please learn how to use slurm to get GPUs: Slurm Workload Manager - Quick
Start User Guide (schedmd.com).
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https://urldefense.com/v3/__https:/www.youtube.com/watch?v=O9F-U775BG0&list=PLO8UWE9gZTlDul4FeWgZ3Kt-XNKzyyc5M&index=4__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAHuOXflZ$
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
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Step 3: SSH Login

* You shall use ssh to login to the
node: Delta Login Methods — UIUC
NCSA Delta User Guide (illinois.edu).

* For instance, you can use
commands such as “srun -A bcjw-
delta-gpu --time=00:30:00 --
nodes=1 --ntasks-per-node=16 --
partition=gpuA100x4,gpuAd40x4 --
gpus=1 --mem=32g --pty /bin/bash”

* Maintaining Persistent Sessions:
tmux

COMPUTER SCIENCE

Delta Login Methods

Direct Access Login Nodes

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.

For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

NCSA username, submit a support request (Getting Help) for assistance.

Login Node Hosthames

Login Node Hostname

dt-login01.delta.ncsa.illinois.edu

dt-login02.delta.ncsa.illinois.edu

login.delta.ncsa.illinois.edu
(round robin DNS name for the set of login nodes)

Example Usage with SSH

ssh -Y username@dt-loginel.delta.ncsa.illinois.e

(-Y allows X11 forwarding from Linux hosts )

ssh -1 username dt-login@2.delta.ncsa.illinois.e

(-l username alt. syntax for userghost )

ssh username@login.delta.ncsa.illinois.edu
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Additional Info 1|

* Itis the instructor’s own research allocation, and it has a limit. So please be mindful
when using GPU resources.

* Avoid allocating too many GPUs at once
e Turn off the job when you are not using the GPUs

* The allocation has 500 GB of storage in total (shared by the class and other students in
the instructor’s lab)

* Please avoid downloading large data files and super large model checkpoints, e.g., one llama7b
checkpoint consumes roughly 14GB.
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Course Project (Reproducibility Challenge)

4-credit undergraduate students, 3-credit graduate students
Some suggestions below, but it can be any machine learning system related papers that you are interested in

GPTCache: An Open-Source Semantic Cache for LLM
Applications Enabling Faster Answers and Cost Savings |https://github.com/zilliztech/GPTCache

RouteLLM: Learning to Route LLMs with Preference Datalhttps://github.com/Im-sys/RoutelLLM
LLM-QAT: Data-Free Quantization Aware Training

for Large Language Models https://github.com/facebookresearch/LLM-QAT
Speculative decoding in VLLM https://docs.vlim.ai/en/v0.5.5/models/spec_decode.html
REST: Retrieval-Based Speculative Decoding https://github.com/FasterDecoding/REST

MemGPT: Towards LLMs as Operating Systems https://github.com/letta-ai/letta
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Course Project (Open-End Research Project)

4-credit graduate students

*Benchmark and analyze important DL workloads to understand their performance gap and
1dentify important angles to optimize their performance.

*Apply and evaluate how existing solutions work in the context of emerging AI/DL workloads.
*Design and implement new algorithms that are both theoretically and practically efficient.
*Design and implement system optimizations, e.g., parallelism, cache-locality, I0-efficiency, to
improve the compute/memory/communication efficiency of AI/DL workloads.

*Offer customized optimization for critical DL workloads where latency 1s extremely tight.
*Build library/tool/framework to improve the efficiency of a class of problems.

Integrate important optimizations into existing frameworks (e.g., DeepSpeed), providing fast
and agile inference.

*Combine system optimization with modeling optimizations.

*Combine and leverage hardware resources (e.g., GPU/CPU, on-device
memory/DRAM/NVMe/SSD) in a principled way.
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Questions?
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