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* Distributed Training

Problem

Challenge

History

Parameter Server based DP

« Communication terminologies

* Learning Objectives

* Understand how data parallelism is implemented using parameter servers
and all-reduce

* Understand the communication, consistency, and scalability trade-off in
distributed training systems

* First & Second paper summary due date: EOD Feb 6 (Friday)
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ML/DL Training Problem Definition Recap

» Given model f, data set {x,, y,}\,
* Minimize the loss between predicted labels and true labels:
.1
Min 2 51, loss(f Ce, 1)

e Common loss function
* Cross-entropy, MSE (mean squared error)

* Common way to solve the minimization problem
« Adaptive learning rates optimizers (e.g., Adam)
 Stochastic gradient descent (SGD)
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Gradient Descent 1|

* Model f, is parameterized by weight w

* n>0is the learning rate

Backward pass Forward pass

Fort=1toT / /

AW =n x % 2?’:1 \Y (loss(fw(xi, yi))D // compute derivative and update

w-=Aw // apply update
End
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Adaptive Learning Rates (Adam)

* Model f, is parameterized by weight w

* n>0is the learning rate

Fort=1toT vp = Brxve_1 — (1= B1) * g

. St:ﬁQ*St_l_(]-_/BQ)*gtz
AW = n x ~ 2?’:1 \Y (loss(fw(xi, yl-))) Aw, = —n

w-= Aw| // apply update VT e
End \ gt : Gradient at time t along W

vy« Exponential Average of gradients along w;

UVt

s¢ : Exponential Average of squares of gradients along w;

51, B2+ Hyperparameters

Adam: A Method for Stochastic Optimization, 2014
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Accelerating Gradient Descent

* Model f, is parameterized by weight w

* n>0is the learning rate

Can we accelerate it?
Fort=1toT

AW =n x % 2?’:1 \Y (loss(fw(xi, yi))) // compute derivative and update

w-=Aw // apply update
End
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Accelerating Gradient Descent

* Model f, is parameterized by weight w

* n>0is the learning rate

Increase the batch size increases Al but eventually
Fort=1toT bounded by single GPU compute

X
AW =n x % 2?’:1 \Y (loss(fw(xi, yi))) // compute derivative and update

w-=Aw // apply update
End
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Data Parallelism (DP)

dataset
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Data Parallelism (DP)

What happens when
model does not fit
on a single GPU?

dataset
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Data Parallelism (DP) vs. Model Parallelism

Data Parallel Model Parallel
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Distributed DL History

2012 o Reflections of DL parallelization in early DL papers
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I3\ L Figure from AlexNet
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. " honing 1 s [Krizhevsky et al., NeurlPS 2012],

pooling poolin .
: ’ [Krizhevsky et al., preprint, 2014]
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’™s remaining layers is given by 253, 440-186,624-64,896-64,896—43,264—
4060501000,
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Data Parallelism with Parameter Server

Focus: Data parallelism with Parameter Server

2012 ¢
Parameter Server W = W - "?AW
U U[_]UUU U Figure from DistBelief
[Dean et al., NeurlPS 2012]
o/ 1\
2016 ¢ Model DD U[_J [_J[_]
Replicas DD DD DD
=0 B8 O

Various implementations of parameter servers
DistBelief [Dean et al,, NeurlPS 201 2]
Parameter server [Li et al., NeurlPS 2012], [Li et al., OSDI 2014]

Bosen [Wei et al., SoCC 2015]
GeePS [Cui et al,, Eurosys 2016], Poseidon [Zhang et al., ATC 2017]
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Data Parallelism with Parameter Server (Async)

Focus: Data parallelism with Parameter Server

2012 ¢
Parameter Server W = W - "?AW
Figure from DistBelief
. UUUUUUU [Dean et al., NeurlPS 2012]
Asynchrony: update every N iters W / /Aw l X \\
instead of 1
2016 ¢ v (OO (OO OO
Replicas DD DD DD
Gt I s B o

Various implementations of parameter servers
DistBelief [Dean et al,, NeurlPS 201 2]
Parameter server [Li et al., NeurlPS 2012], [Li et al., OSDI 2014]

Bosen [Wei et al., SoCC 2015]
GeePS [Cui et al,, Eurosys 2016], Poseidon [Zhang et al., ATC 2017]
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Data Parallelism with AllReduce 1|

2012 ¢ Fast connections: NVLink, NVSwitch
Nvidia DGX
2016 o

Figure from PyTorch Tutorials

[T = t0+{1+12+t3] [T = t0+1+2+3] [T = t0O+11+12+3] [T = t0+1+{2+13]
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Distributed Data Parallel

2012 ¢
import torch.nn.parallel as dist
from torch.nn.parallel import DistributedDataParallel as DDP
2016 ¢
dist.init process group("nccl", rank=rank, world size=world size)
ddp_model =|DDP(Model(), device ids=[rank])

for batch in data loader:
loss = train_step(ddp_model, batch)
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Large Model Training Challenges

2016

2018

COMPUTER SCIENCE

Bert- Turing

Large | GPT-2 | 17.2 NLG GPT-3
Parameters 0.32B 1.5B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12288
Relative
Computation 1x 4.7x 54x 547x
Memory Footprint | 5.12GB | 24GB 275GB 2800GB

[ Dropout

[ mpansn

I GelU

[ Py

:

I Layer Norm

ﬁ

— Add

Attention 1

l Dropout

| Attention Output
1

Self Attention &
Attention Dropout

*

l Layer Norm

M

Positiona |
Embedding

[ Dropout

| —

S

Input Embedding

Input
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Large Model Training Challenges

Bert- Turing 1
large | GPT-2 | 17.2NLG | GPT-3 ——
Parameters 0.32B 1.5B 17.2B 175B l |
016 Layers 24 | 48 78 9% =
Hidden Dimension 1024 1600 4256 12288 >
oL Relative lt |
Computation 1x 4.7x 54x 547x | Am:.w |
Memory Footprint |5.12GB | 24GB | 275GB | 2800GB S
| uye,lm |
Out of Memory oo Dropoue ]

Positiona |
Embedding

Input Embedding

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Input

1/
COMPUTER SCIENCE GRAINGER ENGINEERING



Modern Distributed Training

1000
2012 ¢ g GPT-3(175B) , ..
2 100 r Turing -NLG (17.28)  ~ 4
o2 10 Megatron-LM (8.3B) g .
S S “T5(11B) i
o= Figure from Nvidia
08 1 b0 ——GPT-2(1.5B)
B 00 | s
.g 01 ke BERT-L (340M)
2016 o 3 “ELMo (94M)
0.01 . :
2018 2019 2020 2021
Year
2018 ¢
"~ Z=Dropout(YB) F.| B =
:, : i \‘I ' ,L.OSS._ . ¢ B. ==
i 5 i : Device 3 F, - B, F. B. Undate
| Lk QE|*$ o | i L [R Time B |we
g q .g o : Device2 | Fi - B:
: |2 l ; ®)
E YaB, -=>I=> i Device 1 F, g B Fur | Fas | Fos | Fus| Bus | B | Bus | B Voene
: a & L : 2 Fes | Fay | Faz | Fus Bes | Biz | Bay | Bus Urrme
i E Device 0 F‘ . - B ==1c .F.;'F,. e ,Bh . o
s B = l: 7 T Fas | Fas | Faa | Fos Bubble Bes | Bas | Bay | Bus | Upowe
——————————————————————— i Gradients
Matmul partitioning Pipeline parallelism
[Shoeyhbi et al., ICML 2020] [Huang et al.,, NeurlPS 2019]
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Big Model Era
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* Distributed Training

e Parameter Server based DP
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Accelerating Gradient Descent

* Model f, is parameterized by weight w

* n>0is the learning rate

Increase the batch size increases Al but eventually
Fort=1toT bounded by single GPU compute

X
AW =n x % 2?’:1 \Y (loss(fw(xi, yi))) // compute derivative and update

w-=Aw // apply update
End
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Two Solutions 1|

e Parameter Server
* AllIReduce

* Key assumption:

* The model can fit into a (GPU) worker memory so we can create many model
replica
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Parameter Server Naturally Emerges

ve, Ve,

0 6

0 0
Ve, Ve,

Assumptions (similar as MapReduce):
- Very heavy communication per iteration
- Compute : communication = 1:10 in the era of 2012
comeurer saience - IVlOodel is small enough to hold on single GPU iRterinG



How to Implement Parameter Server

* Key considerations:
* Server-Client: Communication bottleneck
* Fault tolerance
* Programming model
* Consistency
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Parameter Server Implementation

Model Aggregation

1. Partition the training data

2. Parallel training on different

Synchronization

mechanism maChineS

[
/1]
OO) 10 [OO) sequentiatmachine 3. Synchronize the local updates
00 OO 180

learning algorithms on

S mcrion 4. Refresh local model with new

@ ﬁ ﬁ parameters, then go to 2

Data allocation

Distributed Systems

Scaling Distributed Machine Learning with the Parameter Server, 2014
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Programming Model

e Client: [ worker 1)
) Pu”() (servers ’Q‘DUSh'—{xx > |g1
* Compute() 1. compute
* PUSh() [g1+"'+gml |xx X lx X |W7
I =
3. update \ X X X
e Server: | t 7, pu”/: O
* Update()
/ 2. push E
.. .. 4. pull \
* Very similar to the spirit of C o\ vorerm)
MapReduce B =T = 9,
training 1; coTpute
[xx xxx x|%"m

data

Flexible and can be used in various
ML algorithms, not just DL

X X
XX X X
X
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Bulk Synchronous Parallel: Consistency

Global Synchronization Barrier

- Y
¢ A QO ALO
\ v,
Device B
f* ) ALQ AL QO
¢ ) A0 ALO
1 FO 2 FO 3
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Stragglers 11

* BSP suffers from stragglers
* Slow devices (stragglers) force all devices to wait
®* More devices — higher chance of having a straggler

Device A

4 3

=

\_ A
Device B

&
-

"I

Time
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Asynchronous Communication (No Consistency)

* Asynchronous (Async): removes all communication barriers
®* Maximizes computing time
* Transient stragglers will cause messages to be extremely stale

* Ex:Device 2is att = 6, but Device 1 has only sent message fort =1

* Some Async software: messages can be applied while computing F (), A, ()

* Unpredictable behavior, can hurt statistical efficiency!

Device 1 | N
Device 2 ““-‘l’““

Device 3 -»“““.»“

Device 4 [’“‘»“““
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Bounded Consistency

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-banier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds
» Fastest & slowest device must not diiff > s iteratfions apart (in this example, s = 3)
* sis the maximum staleness

Delay = 3 - Stalenesss =3
Device A [a ]
Block
Device B [ ¢ ]
[Ho etal, 2013; Daiet al, 2015 Wei et dl, ] 2 3 4 5 | 6 Clock

2015]
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Impacts of Consistency/Staleness: Unbounded Staleness

Divergence under high delay

#-4--'—-_

— v sSSP s=0
\ ‘ — SSP s=2
x | —SSP s=3
| \ /] | ssps=s5
- —SSP s=10
- - ESSP s=0
- - ESSP s=10|

Square loss

10 20 30 40 50 60
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