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Today

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

• Distributed Training
• Problem

• Challenge

• History

• Parameter Server based DP

• Communication terminologies

• Learning Objectives
• Understand how data parallelism is implemented using parameter servers 

and all-reduce

• Understand the communication, consistency, and scalability trade-off in 
distributed training systems

• First & Second paper summary due date: EOD Feb 6 (Friday)
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ML/DL Training Problem Definition Recap
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• Given model f, data set {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁

• Minimize the loss between predicted labels and true labels:
Min 

1

𝑁
 σ𝑖=1

𝑁 𝑙𝑜𝑠𝑠(𝑓 𝑥𝑖, 𝑦𝑖 )

• Common loss function
• Cross-entropy, MSE (mean squared error) 

• Common way to solve the minimization problem
• Adaptive learning rates optimizers (e.g., Adam)
• Stochastic gradient descent (SGD)



Gradient Descent
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• Model fw is parameterized by weight w

• η > 0 is the learning rate

 

For t = 1 to T

    ∆w = η x 
1

𝑁
 σ𝑖=1

𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  
// compute derivative and update

     w -= ∆w   // apply update

End

Forward passBackward pass



Adaptive Learning Rates (Adam)
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• Model fw is parameterized by weight w

• η > 0 is the learning rate

 

For t = 1 to T

    ∆w = η x 
1

𝑁
 σ𝑖=1

𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  

     w -= ∆w   // apply update

End
[1]

Adam: A Method for Stochastic Optimization, 2014



Accelerating Gradient Descent
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• Model fw is parameterized by weight w

• η > 0 is the learning rate

 

For t = 1 to T

    ∆w = η x 
1

𝑁
 σ𝑖=1

𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  
// compute derivative and update

     w -= ∆w   // apply update

End

Can we accelerate it?



Accelerating Gradient Descent
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• Model fw is parameterized by weight w

• η > 0 is the learning rate

 

For t = 1 to T

    ∆w = η x 
1

𝑁
 σ𝑖=1

𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  
// compute derivative and update

     w -= ∆w   // apply update

End

Increase the batch size increases AI but eventually 
bounded by single GPU compute



Data Parallelism (DP)
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Data Parallelism (DP)
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What happens when 
model does not fit 
on a single GPU?



Data Parallelism (DP) vs. Model Parallelism
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Distributed DL History
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Data Parallelism with Parameter Server
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Data Parallelism with Parameter Server (Async)
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Data Parallelism with AllReduce
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Fast connections: NVLink, NVSwitch



Distributed Data Parallel
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Large Model Training Challenges
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Bert-
Large GPT-2

Turing 
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288
Relative 
Computation 1x 4.7x 54x 547x 

Memory Footprint 5.12GB 24GB 275GB 2800GB 



Large Model Training Challenges
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Bert-
Large GPT-2

Turing 
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288
Relative 
Computation 1x 4.7x 54x 547x 

Memory Footprint 5.12GB 24GB 275GB 2800GB 

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory



Modern Distributed Training
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Big Model Era
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Today

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

• Distributed Training
• Problem

• Challenge

• History

• Parameter Server based DP
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Accelerating Gradient Descent
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• Model fw is parameterized by weight w

• η > 0 is the learning rate

 

For t = 1 to T

    ∆w = η x 
1

𝑁
 σ𝑖=1

𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  
// compute derivative and update

     w -= ∆w   // apply update

End

Increase the batch size increases AI but eventually 
bounded by single GPU compute



Two Solutions
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• Parameter Server 

• AllReduce

• Key assumption:
• The model can fit into a (GPU) worker memory so we can create many model 

replica



Parameter Server Naturally Emerges
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Assumptions (similar as MapReduce):
- Very heavy communication per iteration
- Compute : communication = 1:10 in the era of 2012
- Model is small enough to hold on single GPU



How to Implement Parameter Server
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• Key considerations:
• Server-Client: Communication bottleneck

• Fault tolerance

• Programming model

• Consistency



Parameter Server Implementation
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1. Partition the training data

2. Parallel training on different 
machines

3. Synchronize the local updates

4. Refresh local model with new 
parameters, then go to 2

Scaling Distributed Machine Learning with the Parameter Server, 2014



Programming Model
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• Client:
• Pull()
• Compute()
• Push()

• Server:
• Update()

• Very similar to the spirit of 
MapReduce

• Flexible and can be used in various 
ML algorithms, not just DL



Bulk Synchronous Parallel: Consistency
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Stragglers
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Asynchronous Communication (No Consistency)
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Bounded Consistency
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Impacts of Consistency/Staleness: Unbounded Staleness
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