1L ILLINOIS

AAAAAAAAAAAAAAAA

CS 498: Machine Learning System
Spring 2026

Minjia Zhang

The Grainger College of Engineering

Arithmetic Intensity 1|

Al = #ops / #bytes

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Arithmetic Intensity 1|

Al= #ops / #bytes

Used to evaluate the efficiency of computational

GPU/CPU
algorithms /

(compute, FLOPS/s)

System performance is bound by ?GRQZ/)I Bandwidth

1) The peak compute TFLOPS
2) The memory bandwidth

3
COMPUTER SCIENCE GRAINGER ENGINEERING

Roofline Model

A

Peak GFLOP/s

AN

The Roofline model provides a relatively simple way @ /3
for performance estimates based on the computation © o !
.. TH I

of workload and hardware characteristics O 8‘\0 |
. — N /L I

* High Al: Compute-bound = @@ o |
* Low Al: Memory bandwidth bound S Qf_;;,,—- :

< y#Bandwidth-bound| Compute-bound
<T>

Arithmetic Intensity (FLOP;Byte)

Roofline: An Insightful Visual Performance Model for Floating-Point ,
COMPUTER SCIENCE Programs and Multicore Architectures, 2008 GRAINGER ENGINEERING

Why Roofline Model?

Helps identify the bottlenecks A /
|
e Peak GFLOP/s
Program performance depends on how well it fits the 3 I
hardware architecture S w &
™ o2/ !
O X !
.. . Qo 3\6 |
Create optimizations to exhaust both compute and = RS/ |
bandwidth at the same time (many times it is 5 4 o
impossible) < _‘,::-"jj,"_/'"}/??/ Bandwidth-bound | Compute-bound
|
;;‘_,’ I
The mode also tells you when to stop Arithmetic Intensity (FLOP:Byte)

Roofline: An Insightful Visual Performance Model for Floating-Point :
COMPUTER SCIENCE Programs and Multicore Architectures, 2008 GRAINGER ENGINEERING

Arithmetic Intensity: A Toy Example

void add(intn, float* A, float* B, float* C){ Two loads. one store per math op
for (int i=0;i<n; i++) ’
Cil = Al + BT 1. Read A[i]
} .
2. Read BJi]
3. Add A[i] + BJi]
4. Store Cl[i]

Arithmetic intensity = 1/3

6
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers

Input Tokens

Embedding
Transformer
Layer1

!

Transformer
Layer 2

Transformer
Layer L

|

Prediction Head

|

Next Token

COMPUTER SCIENCE

Transformer Layer (LLaMA)
r—_ a —
8]

e :
Hidden g_ 1 : \ 5
States ” g W J 5 * §'

g Kcache m g

2 \J
e L
Attention 5 R e s ST |V, | [- SR a—— -

@ Batched Matrix Matmul @ Elementwise Multiply @ Elementwise Add

7
GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

8
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.

4: Return O.
Notations: Compute Flops:
* h: Hidden dimension of QKV (often « Step 1: Q matrix -y x KT matrix 4, «

4096)
* N: Input length (e.g., 4096 tokens)

9
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

: : KT
Let us start with the attention block: Attention(Q, K, V) = softmax(Q

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.

2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Compute Flops:

« Step 1: Q matrix -y x KT matrix 4, «

A
112 |3 | 4

CiJ.:A(i)xB(j)=1x + 2x5 4 3x9 + 4x
51678 ’ ’ , \ > 4
9 |10|11 12 h-element mul & add -> 2 * h Flops
1314|1516 (= AXB

CoMm

10
GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.

4: Return O.
Notations: Compute Flops:
* h: Hidden dimension of QKV (often « Step 1. Q matrix -y x KT matrix 4, «

4096) R
« N: Input length (e.g., 4096 tokens) Flops:2*h*N*N

11
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Notations: Compute Flops:
* h: Hidden dimension of QKV (often * 2"h*N*N+3"N*N+2*N*N"*h
4096) Step 1(matrix mul) Step 2 (softmax) Ste; 3

* N: Input length (e.g., 4096 tokens)

12
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(Vi %
k

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4

: Return O.
Notations: Compute Flops:
* h: Hidden dimension of QKV (often * 2"h*N*N+3"N*N+2*N*N"*h
4096) Step 1(matrix mul) Step 2 (softmax) Ste; 3

* N: Input length (e.g., 4096 tokens)

Loads/stores\: (2*h*N + N*N) * 2 (2 bytes per element due to half precision)
Step 1

13
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(Vi %
k

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4

: Return O.
Notations: Compute Flops:
* h: Hidden dimension of QKV (often * 2"h*N*N+3"N*N+2*N*N"*h
4096) Step 1(matrix mul) Step 2 (softmax) Ste; 3

* N: Input length (e.g., 4096 tokens)
Loads/stores\: 272**N + 2"N*N + 2*N*N + 2*N*N + 2(N*N + N*h) + 2*N*h
Step 1

14
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Let us start with the attention block: Attention(Q, K, V') = softmax(

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.

4: Return O.
Notations: Compute Flops:
* h: Hidden dimension of QKV (often * 2"h*N*N+3"N*N+2*N*N"*h

4096)
* N: Input length (e.g., 4096 tokens)

Attention Compute: (4*h + 3) * N*2; Memory [O: 8 * N*2 + 8 * N * h

Step 1(matrix mul) Step 2 (softmax) Step 3

15
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (Attention)

Attention Compute: (4*h + 3) * N*2; Memory [O: 8 * N*2+ 8 * N * h

!

Arithmetic Intensity = {(4*h + 3) * N*2}/{8 * N*2 + 8 * N * h}

!

Arithmetic intensity increases as the input length N grows.

16
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers (MLP)

uonezjew.oN

R s SV T - e —————
Next#oken @ Batched Matrix Matmul @ Elementwise Multiply @ Elementwise Add
Linear layer, essentially a GEMM: X * Compute: 2*N*K*M
W Memory: 2*N*K + 2*K*M + 2*N*M

. Shape: X (N, K), W(K, M)

COMPUTER SCIENCE

17
GRAINGER ENGINEERING

Arithmetic Intensity: Transformers

MLP FLOPs/Memory ops = 1365 ops/byte
« N=K=M=4096

A10 GPU Analysis:

« Compute capability: 125TF, Memory bandwidth:
600GB/s
 Ops/byte = 125TF / 600GB/s = 208.3 ops/byte

18
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers

MLP FLOPs/Memory ops = 1365 ops/byte

« N=K=M=4096 lel4 Linear
1.25 p=========- ,
A10 GPU Analysis: 5 . |
» Compute capability: 125TF, Memory bandwic 2 i :
600GB/s | |
» Ops/byte = 125TF / 600GB/s = 208.3 ops/by! £ At i |
g 03} i ;
MLP’s Al is much higher than ~200 ops/byt fndmory-bound | compute-bound |

| 1
 Compute bound ey 62160 . 1350

Arithmetic Intensity (OPs/byte)

Short input length (N)

How to handle the discrepancy of these two transformer components to maximize efficiency?

19
COMPUTER SCIENCE GRAINGER ENGINEERING

Arithmetic Intensity: Transformers

Attention Compute: (4*h + 3) * N*2; Memory [O: 8 * N*2+ 8 * N * h

leld Linear
I
1,25 [| ’
E : turning point I
) : |
: | : How to
- |
= I
s | At i : speed up?
2 0.3 ! :
mémory-bound i compute-bound :
0.00 L |
0 62100 200 1350

Arithmetic Intensity (OPs/byte)

Attention can become compute-bound as N grows

20
COMPUTER SCIENCE GRAINGER ENGINEERING

Multi-head Attention 1|

* Do many attention head calculation in parallel, and combine
* Each head has its own set of parameters
» Different heads can learn different “interactions” between inputs

Parallel execution is good, but memory footprint is still large

21
COMPUTER SCIENCE GRAINGER ENGINEERING

Multi-Query Attention 11

Multi-head Multi-Query Grouped-Query
Attention Attention Attention

Values

-gooooen 0 DOOE
00000000 0000000 pom0oDgE:

-

Each head digests QKV Share single key and value Share single key and value
separately heads across query heads heads for each group of query
heads

Better compute, smaller memory footprint, but quality may drop

22
COMPUTER SCIENCE GRAINGER ENGINEERING

Native Sparse Attention x¢\'»s from peepseek)

» Key insight: we can summarize long-context input, identify and focus on key words

Attention Score

Query Token

Activated Token - ' Evicted Token

Ignored Token

[1] Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention, ACL, 2025

COMPUTER SCIENCE

23
GRAINGER ENGINEERING

Native Sparse Attention x¢\'»s from peepseek)

» Key insight: we can summarize long-context input, identify and focus on key words

Attention Score Query Token Activated Token E:]Evicted Token Ignored Token
k:t: ‘U:t Split to Continuous Blocks
HESEEEEN SN EEEEEEEEgEEEE NN
| | |
Ve I ‘\‘I Ve I N g . ‘ -\\.
\ Compress / L '
% Compression 3 . B
[_l
L[[| |/..: ® sliding |
I) -

[1] Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention, ACL, 2025

24
COMPUTER SCIENCE GRAINGER ENGINEERING

Native Sparse Attention x¢\'»s from peepseek)

» Key insight: we can summarize long-context input, identify and focus on key words

Attention Score Query Token Activated Token E:]Evicted Token Ignored Token
k:t: V.t Split to Continuous Blocks
HNSESSSSgEEEEEEEEgEEEEEEEEgEEEEEEE.
I |
)] L - 5 L
~ | N4 N/ .- _‘ Y
\ Compress / v
3% Compression J) e
:']
L | [| |- ® Sliding
i ~
qt Compressed Attention : Selected Attention Sliding Attention
[T T} | OO LI 1]
[: Output E] Output [: Output
e
[Gatedl Output I : DAttention Score
- - - - - - -

[1] Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention, ACL, 2025

25
COMPUTER SCIENCE GRAINGER ENGINEERING

Native Sparse Attention Performance

« Better quality, compute, and memory footprint

Performance on Benchmarks Forward Time Comparison Backward Time Comparison
Full Attention 1000 | mmm FlashAttention-2 2500 -
0.5 - NSA Sparse Attention Kernel
' Compression and
800 4 ™ window Attention 2000 4
0.4 Speedup Ratio
o £ 600 - 1500 A
S 0.3 - %
“ S
0.2 - =400 A 1000
0.1 A 200 A 500 A L
0.0 . . — 0 Lz HES ppa— =
General LongBench Reasoning 3k 16k 30k 64Kk 3k 16k 30k 64Kk

Input length
[1] Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention, ACL, 2025

26
COMPUTER SCIENCE GRAINGER ENGINEERING

* Transformers Deep Dive

* Transformer architecture
* Tokenization, position embedding, MHSA mechanism

* Multi-head & Multi-query Attention
* Parallel execution of heads

* Native Sparse Attention (ACL' 25 Best Paper Award)
* Summarize, focus on key tokens and neighboring tokens

27
COMPUTER SCIENCE GRAINGER ENGINEERING

Hardware: Delta 1|

* Home page:
https://www.ncsa.illinois.edu/res
earch/project-highlights/delta/

100 quad A100 GPU node, each
with 4 A100

100 quad A40 GPU node, each
with 4 A40

 58-way A100 GPU, each with 8
A100

e 1 MI100 node, 8 MI100

28
GRAINGER ENGINEERING

COMPUTER SCIENCE

Delta Onboarding

* https://docs.ncsa.illinois.edu/systems/delta/en/latest/user guide/acc
essing.html

Frequently Asked Questions
: @ / Delta Login Methods O Edit on GitHub
Support and Services

Getting Help

Delta Login Methods

System Architecture
Account Administration Direct Access Login Nodes

& Delta Login Methods

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
Open OnDemand NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

VS Code

Direct Access Login Nodes

Good Clister Cltizenship See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.
Data Management

Er(;tgvzammi”g Environment (Building For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
Gl and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

Job Accounting NCSA username, submit a support request (Getting Help) for assistance.

Running Jobs

Installed Software Login Node Hostnames
Visualization 5 z
Login Node Hostname Example Usage with SSH
Containers
Services ssh -Y username@dt-loginel.delta.ncsa.illinois.e

dt-login01.delta.ncsa.illinois.edu
Debugging and Performance Analysis

(-Y allows X11 forwarding from Linux hosts)

Acknowledging Delta

29
COMPUTER SCIENCE GRAINGER ENGINEERING

Step 1: Create ACCESS ID

ALLOCATIONS SUPPORT OPERATIONS METRICS L. Q = Login

* Register an ACCESS id at:
https://access-ci.org/ (top JACCESS

right-hand corner) 4 Allocations

Home Get Started Available Resources ACCESS Impact Policies & How-To About

* After you register, send
jche Instructor your ACCESS Need access to computing, data analysis, or storage resources?
|d. The Instru Ctor Wl” add You're in the right place! Read more below, or login to get started.
you to access to his GPU
allocation.

Whatis an allocation? Which resources?

Ready to get started?

To get started, you need an We've got modeling and analysis
ACCESS project and some systems, GPU-oriented systems,

It costs you nothing (really!), and you
don't need an NSF award. To begin,
you just need to

LOGIN

or

resource units you can spend. large-memory nodes, storage,
Your ACCESS project and and more. Resource providers
resource units are what we have designed their systems to
refer to as an Allocation. An serve a wide range of research
allocation is your project to use a and education needs — including

30
COMPUTER SCIENCE GRAINGER ENGINEERING

https://access-ci.org/
https://access-ci.org/
https://access-ci.org/

Step 2: Get Started

Delta uses Slurm to manage jobs/GPUs

Please watch this tutorial video: Getting Started on NCSA's Delta Supercomputer.

After that, you may want to check Delta User Documentation — UIUC NCSA
Delta User Guide (illinois.edu).

Please learn how to use slurm to get GPUs: Slurm Workload Manager - Quick
Start User Guide (schedmd.com).

31
COMPUTER SCIENCE GRAINGER ENGINEERING

https://urldefense.com/v3/__https:/www.youtube.com/watch?v=O9F-U775BG0&list=PLO8UWE9gZTlDul4FeWgZ3Kt-XNKzyyc5M&index=4__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAHuOXflZ$
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://docs.ncsa.illinois.edu/systems/delta/en/latest/
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$
https://urldefense.com/v3/__https:/slurm.schedmd.com/quickstart.html__;!!DZ3fjg!__-NgS34L07HAhIpLbaCvbMkedPiqbVuoMLdKDSh4ZlLjRf-o-HZQDhrP4nZsUHASvfbj5kLXaWGArzuAET1YTc6$

Step 3: SSH Login

* You shall use ssh to login to the
node: Delta Login Methods — UIUC
NCSA Delta User Guide (illinois.edu).

* For instance, you can use
commands such as “srun -A bcjw-
delta-gpu --time=00:30:00 --
nodes=1 --ntasks-per-node=16 --
partition=gpuA100x4,gpuAd40x4 --
gpus=1 --mem=32g --pty /bin/bash”

* Maintaining Persistent Sessions:
tmux

COMPUTER SCIENCE

Delta Login Methods

Direct Access Login Nodes

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA
Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and
NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

See NCSA Allocation and Account Management for the steps to change your NCSA password for

direct access and set up NCSA Duo.

For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page
and scroll to the bottom for the Resource Provider Site Usernames table. If you do not know your

NCSA username, submit a support request (Getting Help) for assistance.

Login Node Hosthames

Login Node Hostname

dt-login01.delta.ncsa.illinois.edu

dt-login02.delta.ncsa.illinois.edu

login.delta.ncsa.illinois.edu
(round robin DNS name for the set of login nodes)

Example Usage with SSH

ssh -Y username@dt-loginel.delta.ncsa.illinois.e

(-Y allows X11 forwarding from Linux hosts)

ssh -1 username dt-login@2.delta.ncsa.illinois.e

(-l username alt. syntax for userghost)

ssh username@login.delta.ncsa.illinois.edu

32
GRAINGER ENGINEERING

https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html
https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/accessing.html

Additional Info 1|

* Itis the instructor’s own research allocation, and it has a limit. So please be mindful
when using GPU resources.

* Avoid allocating too many GPUs at once
e Turn off the job when you are not using the GPUs

* The allocation has 500 GB of storage in total (shared by the class and other students in
the instructor’s lab)

* Please avoid downloading large data files and super large model checkpoints, e.g., one llama7b
checkpoint consumes roughly 14GB.

33
COMPUTER SCIENCE GRAINGER ENGINEERING

 After class:
* Walk through the Al calculation of Transformers
 How many floating-point operations in total for a 7B decoder-only model?

Questions?

Transformer Performance: Varying Batch Sizes

h=4096 s=50 h=4096 s=1000
Initial Stage Initial Stage
10 M 4 =-dense init 10 M ~
< g M4 gk init 2 gM-

E 6 M - E 6M{ ———
S 4M- S 4 M - < dense init
2 M- 2 M- qk init

0 1 r 0 |

0 1 23 45¢6 7 8 01 23 4656 7 8
Batch Size Batch Size

36
COMPUTER SCIENCE GRAINGER ENGINEERING

Transformer Performance: Batching of Dense Layer

Initial Stage: Dense Layer

h=768

100 M+ . h=1024
{ » h=2048
: .h=4[].96 wmtﬂ
| «h=5120 e
10M7 . h=7168 P —
{ ©h=9216 o Al -

: ™]‘[:12288 :"'.. -" -"f M‘“—_—ﬂ——-ﬂ

Throughput (Tokens/s)

. o of .# P el
1 M - . -I‘t.i" 'i'.'- . p——
] . et ..f. "'-'ﬁlm"
] N] ‘ ---l- -l..
100 k- R

10M 100M 1G 10G 100G 1T 10T 100T
FLOPs

37
COMPUTER SCIENCE GRAINGER ENGINEERING

Transformer Performance: Batching of Self-Attention

Initial Stage: Self Attention (h=4096)

5:1 '..pl"'.-.::;‘..-lﬂ
_ s=10 rh _,-':.*""
uT‘f_ 5=2ﬂ _l' ." o* R p—
E * 5=00 -.. '.. o ™ '-M#“mmmm
ﬁ].D M" -5=1.DD ..- .! . ; s -'l
ﬁ | +s5=200 e g & SOSE S0 LIS BRI SO0
= | =500 : ¢« oo
= | = s=1000 * .
.-E:-I | * 5s=2000 R T
o * 5=5000 °
-
= 1M;
F J

1M 10M 100M 1G 10G 100G 1T 10T
FLOPs

38
COMPUTER SCIENCE GRAINGER ENGINEERING

Transformer Performance: Roofline

Roofline (h=4096 s=100)

100 T

E].DT l"..“__;-.";'.-. a® r

e .

=~ 1 TH. h;"

3 w3

: ' . =10

100G * b=10

g « b=40

B « b=80
08 e b=128

..1.935TB/s
16 ..312 TFLOP/s
1 10 100 1 k
FLOP : 1/O

39
COMPUTER SCIENCE GRAINGER ENGINEERING

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

