
Deepspeed - Alphafold3
–Minjia Zhang, Hoa La–

CS 498: Machine Learning System
Spring 2026

Minjia Zhang

The Grainger College of Engineering



Today
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• Transformers Deep Dive

• Learning Objectives
• Explain the core computation and dataflow of Transformers



Transformers
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• Tokenization

• Input embeddings

• Position encodings

• Query, Key, Value

• Attention

• Self-attention

• Multi-head attention

• Feed forward

• Add & norm

• Residual

• Masked attention

• Causal attention

• Linear

• Softmax

• Encoders

• Decoder

• Encoder-decoder



Machine Translation

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
4



Tokenization
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One hot vector



Tokenization
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One hot vector



Input Embeddings
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Position Matters
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• The position of words in a sentence carries information! 
• Idea: Add some information to the representation at the 

beginning that indicates where it is in the sentence 



Position Encodings
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Absolute positional encoding (original Transformer): The token embeddings and the absolute position 
embedding are added together element-wise. 



Position Encodings
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• The original position embedding in Transformer is not ideal, because 
absolute position is less important than relative position



Relative Position Encodings
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• Translation invariance to position information

• Lead to performance improvements 



Rotary Position Embedding
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• Most recent LLMs adopt RoPE 



Encoder
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Encoder
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Encoder
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a[i, j]?



Multi-Head Self-Attention
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a[i, j]?

• Before “multi-head” attention, what is “single head” 
attention?



Multi-Head Self-Attention: Query, Key, & Value
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a[i, j]?

• Database {key, value store}



Self-Attention
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a[i, j]?

• Step 1: compute “key, value, query” embedding for each input token

• Step 2 (just for x1): compute scores between pairs of tokens

• Step 3: get new representation z1 by weighted sum of v1, v2 (normalized scores are weights)

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Self-Attention
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a[i, j]?

• Step 1: compute “key, value, query” embedding for each input token

• Step 2: compute scores between pairs of tokens

• Step 3: get new representation z1 by weighted sum of v1, v2 (normalized scores are weights)



Self-Attention
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a[i, j]?

• Step 1: compute “key, value, query” embedding for each input token

• Step 2: compute scores between pairs of tokens

• Step 3: compute normalized attention scores



Self-Attention
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a[i, j]?

• Step 1: compute “key, value, query” embedding for each input token

• Step 2: compute scores between pairs of tokens

• Step 3: compute normalized attention scores

• Step 4: get new representation by weighted sum of values



Multi-head Attention
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• Do many attention head calculation in parallel, and combine

• Each head has its own set of parameters

• Different heads can learn different “interactions” between inputs



The Residuals and LayerNorm
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The Decoder Side
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The Final Linear and Softmax Layer
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