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* Transformers Deep Dive

* Learning Objectives
* Explain the core computation and dataflow of Transformers
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Transformers
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Machine Translation
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Tokenization
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Tokenization

One-hot encoding
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Input Embeddings
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Position Matters

ate an apple <eos>

 {

apple ate an <eos>

* The position of words in a sentence carries information!

* Idea: Add some information to the representation at the
beginning that indicates where it is in the sentence
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Position Encodings

Absolute positional encoding (original Transformer): The token embeddings and the absolute position
embedding are added together element-wise.
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Position Encodings

* The original position embedding in Transformer is not ideal, because
absolute position is less important than relative position

| walk my dog every day every single day | walk my dog  The fact that “my dog” is right after “I walk” is

u '\_/‘ the important part, not its absolute position
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Relative Position Encodings

* Translation invariance to position information

* Lead to performance improvements
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Rotary Position Embedding

* Most recent LLMs adopt RoPE

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
POSITION EMBEDDING

11 12
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Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Model MRPC SST-2 QNLI STS-B QQP MNLI(m/mm)
BERTDevlinetal. [2019] 889 935 905 858 712  84.6/83.4
RoFormer 89.5 907 880 87.0 864  80.2/79.8
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Encoder

COMPUTER SCIENCE
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Encoder
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Multi-Head Self-Attention

e Before “multi-head” attention, what is “single head”
attention?
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Multi-Head Self-Attention: Query, Key, & Value

e Database {key, value store}

{"oxder_100": {"items":"al", "delivery_date":"a2", J/’v’,i}.k
{"oxrder_101": {"items":"bl", "delivery_date":"b2", ...3}},
{"ordexr_102": {"items":"c1", "delivery_date":"c2", ...3%},
{Query: “Order details of order_104"} {"order_103": {"items":"d1", "delivery_date":"d2", ...},
{"order_104": {"items":"el", "delivery_date":"e2", ...}},
OR {"order_105": {"items":"f1", "delivexry_date":"f2", ...%},
{Query: “Order details of -'} {"ordexr_106": {"items":"gl", "delivery_date":"g2", ...}},
Y {"oxrder_107": {"items":"h1", "delivexy_date":"h2", ...}},
{"order_108": {"items":"il", "delivery_date":"i2", ...%}},
{"oxrder_109": {"items":"j1", "delivery_date":"j2", ...%},
{"ordexr_110": {"items":"k1l", "delivery_date":"k2", ...3}}
Query Key Value
1. Search for info 1. Interacts directly with Queries 1. Actual details of the object
2. Distinguishes one object from another 2. More fine grained

3. Identify which object is the most relevant
and by how much
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Self-Attention

e Step 1: compute “key, value, query” embedding for each input token

Input
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The Illustrated Transformer — Jay Alammar — Visualizing machine learning one concept at a time. caaincER ENGINTERING



https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention

e Step 1: compute “key, value, query” embedding for each input token
* Step 2: compute scores between pairs of tokens
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Self-Attention

e Step 1: compute “key, value, query” embedding for each input token

* Step 2: compute scores between pairs of tokens
e Step 3: compute normalized attention scores
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Self-Attention

Step 1: compute “key, value, query” embedding for each input token

Step 2: compute scores between pairs of tokens

Step 3: compute normalized attention scores
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Multi-head Attention

* Do many attention head calculation in parallel, and combine
* Each head has its own set of parameters
» Different heads can learn different “interactions” between inputs
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The Residuals and LayerNorm
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The Decoder Side
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The Final Linear and Softmax Layer

Which word in our vocabulary
Is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

COMPUTER SCIENCE
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