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About the Instructor

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Minjia Zhang

• Now: Assistant Professor at UIUC (2024-Present)
• Affiliated with ECE and NCSA, UIUC 

• https://siebelschool.illinois.edu/about/people/faculty/minjiaz

• Principal researcher at MSR and Microsoft AI 
(2016-2023)
• Training and serving LLM at scale, DeepSpeed, Megatron-

DeepSpeed
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https://siebelschool.illinois.edu/about/people/faculty/minjiaz
https://siebelschool.illinois.edu/about/people/faculty/minjiaz


My Lab: Supercomputing System and AI Lab (SSAIL)
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Research area: Systems + Machine Learning

Topics:

• Efficient machine learning systems (training/inference on 
parallel/distributed/heterogeneous hardware)

• Effective efficiency algorithms (post-training, reasoning model, model 
compression, etc.)

• Large-scale DL/AI applications (Agentic AI, VLM, Image/Video 
Generation, DLRM, Vector DB, etc)



SuperOffload: Superchip--style LLM Training System (ASPLOS’26)
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• Emerging hardware: Tightly coupled 

CPU--GPU architectures (e.g., NVIDIA 

GH200) fundamentally change the 

cost model of offloading.

• Rethink offloading under high-

bandwidth chip-to-chip 

interconnects for maximal LLM 

trainability and speed on Superchips 

• Up to 25B model training on a single 

GH200, and 1 million sequence 

length training on 8 GH200 while 

achieving high MFUs



X-MoE: Expert-Specialized MoEs (SC’25 Best Student Paper Award)

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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• Fine-grained MoEs amplify communication and memory overhead, 
breaking standard parallelism strategies

• Designed special features to enable DeepSeek-style MoEs training 
with up to 545 billion parameters across thousand-GPU scale



Universal Checkpointing: Reconfigurable and Resilient training (ATC’ 25) 

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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• At scale, failures and reconfiguration are normal, but existing distributed 
checkpointing assumes static parallelism.

• Reconfigurable parallelism:  Correctness-preserving transformation pipeline across 
different parallel training strategies.

• Failure-tolerant and resilient training at massive scale under flexible 3D parallel, 
ZeRO/FSDP, and expert/sequence parallelism



Supercomputing System and AI Lab (SSAIL)
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Outline

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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• Why study ML Systems?

• Course overview

• Logistics
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The Large Language Model Revolution
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ChatGPT: Optimizing Language Models for Dialogue

ChatGPT/Search

https://openai.com/blog/chatgpt/
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Continuation and Generation

Suggest code and entire function in your editor – Github/OpenAI Codex

https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
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Image/Video Generation from Text

DALL·E: Creating Images from Text - OpenAI

https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
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Agentic AI

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation

https://arxiv.org/pdf/2308.08155
https://arxiv.org/pdf/2308.08155
https://arxiv.org/pdf/2308.08155
https://arxiv.org/pdf/2308.08155
https://arxiv.org/pdf/2308.08155
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Robotics

Using Generative AI to Enable Robots to Reason and Act

https://developer.nvidia.com/blog/using-generative-ai-to-enable-robots-to-reason-and-act-with-remembr/
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How does this Happen?

A key ingredient: ML Systems



1958 – 2000: ML Research
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



2000 – 2010: Arrival of Big Data

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



2006 – Now: Compute and Scaling

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



When three things come together and ready
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



Evolution of DL Models
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Success of Machine Learning Today

Larger models → better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger 
models than smaller ones to same 
accuracy



Transformers for Language Modeling
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BERT GPT

Attention Is All You Need, NeurIPS 2017
BERT: Pre-training of Deep Bidirectional Transformers for 

Language Understanding, ACL 2019

Language Models are Few-Shot Learners, NeurIPS 2020



LLMs are Impressively Scaling!
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Scaling Laws for Neural Language Models, OpenAI, 2020



ML System Challenges
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• Too slow to train high-quality models on massive data

• More hardware ≠ higher throughput, bigger model

• Higher throughput ≠ better accuracy, faster 
convergence, lower cost

• Better techniques ≠ handy to use

• Slow and expensive to deploy the models



ML System Desired Capabilities

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Efficiency: Efficient use of hardware for high scalability and 
throughput

Effectiveness: High accuracy and fast convergence, lowering cost

Easy to use: Improve development productivity of model 
scientists 



DNN Training Hits the Memory Wall

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


ML System Research Reshape the Large Model Training Landscape 

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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DeepSpeed Powered Massive Models: 
o Z-code MoE 10B
o Microsoft-Turing NLG 17B
o GPT Neo-X 20B
o Jurrasic-1 178B
o Big Science 176B
o Megatron-Turing NLG 530B

Key training technologies:
❑ ZeRO redundancy optimizer
❑ 3D parallelism
❑ Optimized CUDA/ROCm/CPU kernels
❑ Optimized communication libraries
❑ Mixed precision training 
❑ Communication efficient Adam
❑ Sparse Attention
❑ Mixture of quantization
❑ Curriculum learning
❑ …



Another Example: AlexNet 2012

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



Without ML Systems
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



With ML Systems
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Success of Machine Learning Today

Source: https://mlsyscourse.org/slides/01-course-introduction.pdf



ML Systems
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• Enable new system capabilities to break the memory wall 

• Accelerate ML research

• Reduce deployment cost

• Democratize AI to everyone

• ML → System codesign

• …

• In summary: ML System is becoming an essential skill



Today
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• Why study ML Systems?

• Course overview

• Logistics



ML System at Scale
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ML System at Scale
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Course organization
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• Distributed ML, ML parallelization

• Efficient model adaption 

• ML inference optimizations

• Compression algorithms

• AI applications 



Part 1: Basics
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Machine learning system basic
• Deep Learning workloads
• Computation graph
• ML frameworks



Part 2: Distributed ML, ML parallelization

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Distributed training strategies to break the memory wall 
• Data parallelism
• Tensor parallelism
• Pipeline parallelism 
• Sequence parallelism 
• Gradient checkpointing
• Auto parallelism



Part 3: Inference optimizations 
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Ultra-fast inference optimizations
• CUDA kernels
• Kernel fusion
• Flash attention
• Paged attention



Part 4: Model compression
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38

Compression algorithms to make model smaller, faster, 
and cheaper
• Quantization
• Sparsification
• Low rank decomposition
• Distillation



Part 5: LLM-specific optimizations

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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•   Mixture-of-Experts
•   Speculative decoding  
•   LoRA
• RAG
• Agents 
• …



Learning outcomes of this course
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By the end of this course, you will
• Understand the basic functioning of modern DL libraries, including 

concepts like compute operators, automatic differentiation, etc.
• Understand the full pipeline of modern ML systems, starting from pre-

training all the way to serving…
• Understand scaling-up, why and how? All sorts of machine learning 

parallelization techniques, and latest research in the area … 
• Understand hardware acceleration/CUDA/GPUs, and can 

program/debug a little accelerator programs … 
• Ground all you learning in the context of LLMs, understand the L of 

LLM, how it is optimized, scaled, trained, served… 
• Have fun! 



Questions?

41



Course Website

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
42https://minjiazhang.github.io/courses/cs-mlsys-498-2026spring.html



Components and Grading
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• Attendance and class participation 20%

• Lab assignments 21% (3 lab assignments, 7% each)

• Reading summary 20% (10 readings, 2% each)

• Final research project presentation 15%

• Project report 25% (5% + 5% + 14%)



Grading Scheme (grade is the better of the two)

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Grade Absolte Cutoff (>=) Relative Bin
A+ 95 Highest 5%
A 90 Next 10%
A- 85 Next 15%
B+ 80 Next 15%
B 75 Next 15%
B- 70 Next 15%
C+ 65 Next 5%
C+ 60 Next 5%
C- 55 Next 5%
D 50 Next 5%
F <50 Lowest 5%



Grading Scheme (grade is the better of the two)

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Grade Absolte Cutoff (>=) Relative Bin
A+ 95 Highest 5%
A 90 Next 10%
A- 85 Next 15%
B+ 80 Next 15%
B 75 Next 15%
B- 70 Next 15%
C+ 65 Next 5%
C+ 60 Next 5%
C- 55 Next 5%
D 50 Next 5%
F <50 Lowest 5%

Example, 82 
and 33%, 
Abs: B+; Rel: B-;
Final: B+



Structure of the Course (Tentative)
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Week Part 1: Basics
1 Course intro DL Workloads
2 DL frameworks AutoDiff

Part 2: Distributed ML
3 Overview of training Communication collectives

4 Data parallelism, tensor parallelism Pipeline parallelism
5 Zero-style data parallelism Heterogeneous GPU-CPU 
6 3D parallelism Auto parallelism
7 Mixed precision training Communication compression

Part 3: Inference optimizations
8 CUDA basics
9 FlashAttention PagedAttention

10 Continusou batching Efficient scaling of transformer inference
11 TVM and DL compiler

Part 4: Compression
11 Quantization 1 Quantization 2
12 Sparsification 1 Sparsification 2
13 Distillation Low-rank decomposition
14 KV cache compression 1 KV cache compression 2

Part 5: Misc
15 MoE 1 MoE2
16 Vector db RAG



Lab Assignments
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• 3 lab assignments
• Likely will use NCSA clusters for GPUs

• The instructor needs to figure out some details

• Topics
• AutoDiff

• Inference optimizations

• Compress ML models 



Reading Summary
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• Required reading:

• The instruction will select 10 highly relevant papers in MLSys. 

• One paper per week (starting from Jan 27), submit your reading by the end of day of each 
Friday.

• The reading summary should be done independently and include the following content:

• The problem the paper is trying to tackle.

• What's the impact of the work, e.g., why is it an important problem to solve?

• The main proposed idea(s).

• A summary of your understanding of different components of the proposed technique, 
e.g., the purpose of critical design choices.

• Your perceived strengths and weaknesses of the work, e.g., novelty, significance of 
improvements, quality of the evaluation, easy-to-use.

• Is there room for improvement? If so, what idea do you have for improving the 
techniques?

• The reading summary length should be around 4-5 paragraphs. 



Reading Summary
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Grading criteria, each summary has 12 points in total. For each review item above, 
you get: 

• 2: The summary item demonstrates a clear understanding of the paper. 

• 1: The summary item misses the point of the paper.

• 0: The summary item is missing.



Reading List

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
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Course Project
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• The course also includes proposing and completing a course project. The project can involve, but is 
not limited to, any of the following tasks:

• Benchmark and analyze important DL workloads to understand their performance gap and identify important angles 
to optimize their performance.

• Apply and evaluate how existing solutions work in the context of emerging AI/DL workloads.

• Design and implement new algorithms that are both theoretically and practically efficient.

• Design and implement system optimizations, e.g., parallelism, cache-locality, IO-efficiency, to improve the 
compute/memory/communication efficiency of AI/DL workloads.

• Offer customized optimization for critical DL workloads where latency is extremely tight.

• Build library/tool/framework to improve the efficiency of a class of problems.

• Integrate important optimizations into existing frameworks (e.g., DeepSpeed), providing fast and agile inference.

• Combine system optimization with modeling optimizations.

• Combine and leverage hardware resources (e.g., GPU/CPU, on-device memory/DRAM/NVMe/SSD) in a principled 
way.

• ...

• The project will be done in groups of 2-3 people, which consists of a proposal, mid-term report, 
final presentation, and final report. The tentative timeline for the project is as follows.



Final Presentation
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• 15%

• Please spend a significant amount of time on working your project and making 
this presentation nice and clear.

• Graded by instruction team (50%) and your classmates (50%) 

• Instructor: based on format, correctness, depth, clarity, insights 

• Peers: make sure your classmates feel they indeed learn something after 
listening to your presentation

• Happening in the end of the semester



Final Report
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• Final report: The final report will be in the style of a research paper 
describing your project. The recommended length is about 6-8 
pages long (excluding references) and a potential division can be: An 
abstract, which summarizes the project (0.25 pages).

• An introduction, which describes and motivates the problem and 
summarizes the main results of the work (0.5 pages).

• A brief discussion of related work (0.25 pages).

• A brief overview of preliminary and background knowledge needed 
to understand the paper (0.25 pages).

• Analysis and characterization to show the existence and severity of 
the problem (1 page).

• Main design and implementation (1 pages).

• Evaluation methodology and experiment results (1 page).

• Concluding remarks, which can include a discussion of open 
questions or directions for future work (0.25 pages).



Late Submissions

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
54

• All assignments are due on the respective due date. Only on-time assignments will 
be accepted.



Questions?

55
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