

CS 498: Machine Learning System Spring 2025

Minjia Zhang

The Grainger College of Engineering

Today

DL Inference

- LLM Serving System
- Continuous Batching

LLM Inference

Maximum Batch Size = 3

Maximum Batch Size = 3

Maximum Batch Size = 3

_ _

 Separates implementation of serving layer and execution layer

- Separates implementation of serving layer and execution layer
- Implements scheduling and batching algorithms
 - Sequence Batching
 - Continuous Batching

- Separates implementation of serving layer and execution layer
- Implements scheduling and batching algorithms
 - Sequence Batching
 - Continuous Batching
- Allows multiple models to concurrently execute

- Separates implementation of serving layer and execution layer
- Implements scheduling and batching algorithms
 - Sequence Batching
 - Continuous Batching
- Allows multiple models to concurrently execute
- Supports multiple frameworks
 - PyTorch
 - TensorFlow
 - ONNX
 - vLLM backend

Today

DL Inference

- LLM Serving System
- Continuous Batching
 - Sequence batching
 - Continuous batching

Today

DL Inference

- LLM Serving System
- Continuous Batching
 - Sequence batching
 - Continuous batching

Question: Can we use the batching scheme (sequence batching) during training for inference?

Do you see any problem?

Maximum Batch Size = 3

Maximum Batch Size = 3

Question: How can we avoid redundant computation and ensure late-arriving requests to be processed more promptly?

Problem 2: How to Batch Requests?

Let's assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:

- 1. $QK^T : [LxH] \times [HxL] \rightarrow [L \times L]$
- 2. $P = softmax(QK^T) : [L \times L]$
- 3. $O = PV : [LxL] \times [LxH] \rightarrow [LxH]$

Problem 2: How to Batch Requests?

Let's assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:

- 1. $QK^T : [LxH] \times [HxL] \rightarrow [L \times L]$
- 2. $P = softmax(QK^T) : [L \times L]$
- 3. $O = PV : [LxL] \times [LxH] \rightarrow [LxH]$

With Batch Size B, QK^T will be $[B \times L \times L]$

Problem 2: How to Batch Requests?

Let's assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:

- 1. $QK^T : [LxH] \times [HxL] \rightarrow [L \times L]$
- 2. $P = softmax(QK^T) : [L \times L]$
- 3. $O = PV : [LxL] \times [LxH] \rightarrow [LxH]$

With Batch Size B, QK^T will be [B x L x L]

With different sequence lengths, QK^T cannot be easily computed

Solution 2: Selective Batching

Only **Attention operation** does not work with batching tensors with diff. L_i

Batch for other ops. (Layer Norm, GeLU, etc.)

Solution 2: Selective Batching

Only **Attention operation** does not work with batching tensors with diff. L_i

Batch for other ops. (Layer Norm, GeLU, etc.)

Coalesce $[L_i, H]$ tensor to $[\Sigma L_i, H]$ for batching

x1: [1,H] x2: [1,H] x3: [2,H] [7,H] tensor

x4: [3,H]

Solution 2: Selective Batching

I

Split, process each request and merge tensors

Only **Attention operation** does not work with batching tensors with diff. L_i

Batch for other ops. (Layer Norm, GeLU, etc.)

Coalesce $[L_i, H]$ tensor to $[\Sigma L_i, H]$ for batching

x1: [1,H] x2: [1,H] x3: [2,H] **[7,H]** tensor x4: [3,H]

Value

Layer Input

LLM Inference Scheduler

LLM Inference Scheduler

Enforces iteration-level first-come-first-served (FCFS) property

Maximum batch size → Throughput vs. Latency control knob

Reserves max_tokens memory slots per request

• ...

Throughput Experiments

 Question: When would continuous batching provide more benefits than sequence batching?

Throughput Experiments

- Hypothesis
 - Continuous batching performs better the more variance there is in sequence lengths
- Frameworks
- Setup hardware/model
- Setup data
- Results

Throughput Experiments: Frameworks

- Static batching
 - HuggingFace
 - NVIDIA FasterTransformer
- Continuous batching
 - HuggingFace text-generation-inference (TGI)
 - Ray Serve
 - o vLLM

Throughput Experiments: Hardware/model

- NVIDIA A100-40GB
- Meta's OPT-13B
- No tensor parallelism

Throughput Experiments: Data

Hypothesis

 Continuous batching performs better the more variance there is in sequence lengths

How to test?

- Generate 1000 prompts each with 512 input tokens
- Generate predetermined output length for each prompt, following an exponential distribution
- Configure model to ignore EOS token

Throughput Improvement from Continuous Batching

Throughput improvement over naive static batching vs. generated sequence length variance

Maximum number of generated tokens

How does vLLM beat TGI

vLLM uses PagedAttention – extra batch size space

Non-Contiguous Memory

E2E Latency Experiments: Results

https://www.anyscale.com/blog/continuous-batching-llm-inference

Summary: Continuous Batching

- Continuous batching handles early-finished and late-arrived requests more efficiently
- Fills GPU capacity after each token generation
- As variance in sequence length increases, continuous batching increases
 GPU utilization

LLM Inference Scheduler: Chunked Prefill

W/O TensorRT-LLM Chunked Prefill

W/ TensorRT-LLM Chunked Prefill

Questions?

Sequence Batching (Static Batching)

- Batching multiple sequences on GPU, aka "static batching"
- Problem: GPU utilization drops as sequences complete

T,	Tz	T3	Ty	Ts	16	To	Tg
Sil	Si	S.	\$1/4				
Sa	Sz	SX					
Si	S	Sz	S ₃				
Sy	Sy	Sy	Sy	Sy			

T,	Tz	T3	Ty	Ts	16	To	Tg
Sil	Si	Si	SNI	8,	END		
Sa	Sz	SHI	Sx	Sall	Si	SH	END
Sz	S	Si	S	END	,		
Sy	Sy	Sy	Sy	Sy	Sy	END	

Legend:

- Yellow: prompt token
- Blue: generated token
- Red: end-of-sequence token

Continuous Batching

Top: static batching Bottom: continuous batching

Legend:

Yellow: prompt tokenBlue: generated token

Red: end-of-sequence token

T, T2 T3 T4 T5 T6 T7 T8	T, T2 T3 T4 T5 T6 T7 T8
Si Si Si	Si Si Si Si Si
Sa Sa Sa	SI SI SI SI SI SI SI END
Sy Sy Sy	Sy Sy Sy END
Sy Sy Sy Sy	Sy Sy Sy Sy END
_	-
T, T2 T3 T4 T5 T6 T7 T8	T, T2 T3 T4 T5 T6 T7 T8
S. S. S. S.	S. S. S. S. S. S. S. S.
Si S	and the second second week with the second
S ₁ S ₂ S ₃ S ₃ S ₃ S ₃	and the second second week with the second

Throughput Experiments: Results

Throughput (token/s) vs. variance in generated	Generation limit (higher limit implies higher variance in output sequence lengths)					
sequence lengths	max 32 tokens	max 128 tokens	max 512 tokens	max 1536 tokens		
Static batching (HF Pipelines)	2988	972	214	81		
Static batching (FasterTransformer)	2869	1441	558	346		
Continuous batching (Ray Serve)	3090	1460	703	650		
Continuous batching (text-generation-inference)	2948	1442	707	665		
Continuous batching (vLLM)	6121	3592	2029	1898		