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Example: TensorRT Inference Server
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Example: TensorRT Inference Server

o Separates implementation of serving layer
and execution layer
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Example: TensorRT Inference Server
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Example: TensorRT Inference Server

o Separates implementation of serving layer
and execution layer
o Implements scheduling and batching
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Example: TensorRT Inference Server

C10 [

o Separates implementation of serving layer
and execution layer
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DL Inference

* Continuous Batching
* Sequence batching
e Continuous batching
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DL Inference

* Continuous Batching
* Sequence batching
e Continuous batching

Question: Can we use the batching scheme (sequence batching)
during training for inference?
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Problem 1: Request Level Scheduling

Execution Engine X2 generation done

/ this

1S great/r
you <EOS> \ o -

——

. | 1
( iter 1 (iter 3 (iter 4)

A X A 4
211 T | think ]\j this [ is |Y great|

ka I | love you - - /

18



Problem 1: Request Level Scheduling
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Problem 1: Request Level Scheduling
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Problem 1: Request Level Scheduling
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Problem 1: Request Level Scheduling
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Question: How can we avoid redundant computation and ensure

late-arriving requests to be processed more promptly? -



Solution 1: Iteration Level Scheduling
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Solution 1: Iteration Level Scheduling
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Problem 2: How to Batch Requests?
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Problem 2: How to Batch Requests?

Let’s assume Batch SizeB=1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT :[LxH] x [HxL] = [L x L]

2. P =softmax(QKT") : [L x L]

3. O=PV:[LxL] x [LxH] = [L x H]

With Batch Size B, QK™ will be [B x L x L]

\
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Solution 2: Selective Batching 1
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Solution 2: Selective Batching 1

Split, process each
request and merge
tensors

Only Attention operation does not work
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LLM Inference Scheduler 1
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LLM Inference Scheduler 10

o Enforces iteration-level first-come-first-served (FCFS) property
o Maximum batch size - Throughput vs. Latency control knob

o Reserves max_tokens memory slots per request



Throughput Experiments 1

e Question: When would continuous batching provide more benefits than
sequence batching?



Throughput Experiments i}

o Hypothesis
o Continuous batching performs better the more variance there is in sequence

lengths

e Frameworks

e Setup —hardware/model
e Setup—data

e Results



Throughput Experiments: Frameworks

o Static batching

o HuggingFace
o NVIDIA FasterTransformer

e Continuous batching
o HuggingFace text-generation-inference (TGl)

o Ray Serve
o VLLM

https://www.anyscale.com/blog/continuous-batching-llm-inference



Throughput Experiments: Hardware/model

« NVIDIA A100-40GB

e Meta’s OPT-13B
o dtype = floatl6 > 26GB for parameters

e No tensor parallelism



Throughput Experiments: Data

o Hypothesis
o Continuous batching performs better the more variance there is in sequence
lengths

e How to test?
o Generate 1000 prompts each with 512 input tokens
o Generate predetermined output length for each prompt, following an
exponential distribution
o Configure model to ignore EOS token

Exponential Distribution (PDF)
A =0.5(mean = 2.0)
1.0)

(mean = 1.
—— k= 2.0 (mean = 0.5)




Throughput Improvement from Continuous Batching

Throughput improvement over naive static batching vs. generated sequence length variance

B Static batching (FasterTransformer) B Continuous batching (text-generation-inference)

20x

10x
8x

6X

4x

2X

1x

Improvement in throughput over HF Pipelines

@ Continuous batching (vLLM)

9.49

3.31 L)
2.61

2.05
1.50
ags 083 B
— 1.03
32 128

Maximum number of generated tokens

512

Continuous batching (Ray Serve)

1536



How does vLLM beat TGl 1|

o VLLM uses PagedAttention — extra batch size space

Contiguous Memory

Non-Contiguous Memory



E2E Latency Experiments: Results

Request latency CDF, QPS=4

——Continuous batching (text-generation-inference) —-Static batching (HF Pipelines)
Continuous batching (vLLM) Continuous batching (Ray Serve)

——Static batching (FasterTransformer)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

0 50 100 150 200
Request latency (seconds)
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Summary: Continuous Batching

e Continuous batching handles early-finished and late-arrived requests more
efficiently

* Fills GPU capacity after each token generation

* As variance in sequence length increases, continuous batching increases
GPU utilization

50



LLM Inference Scheduler: Chunked Prefill

W/0 TensorRT-LLM Chunked Prefill

Query1 , Query 1
First Token : Completed
1
]
: Query 2 : Query 2
H First Token | ! Completed}
H I - Query 3 : P | Query 3
: 1 First Token 1 Completed

W/ TensorRT-LLM Chunked Prefill

Query 1 Query 1
First Token I Completed :
1 1
1 ]
| 1
: : Query 2 Query 2
: : First Token | Completed |
i i ' i
1 ] 1 1
i i
Prefill Prefill Prefill | 1
Chunk 1 Chunk 2 Chunk 3 Decode Decode S ! ' ~ Query3. Query3.
1 1 First Token! Completed'

Prefill Prefill Prefill
el chunk chunks
Prefill Prefill

Time >

HQuery#1 MQuery#2 MQuery#3



Questions?

52
COMPUTER SCIENCE GRAINGER ENGINEERING



Sequence Batching (Static Batching)

e Batching multiple sequences on GPU, aka “static batching”
e Problem: GPU utilization drops as sequences complete

(

Lo, s

S fg‘ S % S S Si

Sa |6, [BE Sx |6, 8% G003
S'j S'j S'J % Slj 5'3 S}

Syl sylsy|sy/%8 | | Sy | Sy 154 54

Legend:
e Yellow: prompt token
e Blue: generated token
e Red: end-of-sequence token
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Continuous Batching 1

) : . Legend:
Topcstalic ba}tchlng . ) Yellow: prompt token
Bottom: continuous batching Blue: generated token]

Red: end-of-sequence token
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Throughput Experiments: Results

Generation limit

(higher limit implies higher variance in output sequence lengths)
Throughput (token/s) vs. variance in generated

sequence lengths

max 32 tokens max 128 tokens max 512 tokens max 1536 tokens

Static batching (HF Pipelines) 2988 972 214 81
Static batching (FasterTransformer) 2869 1441 558 346
Continuous batching (Ray Serve) 3090 1460 703 650
Continuous batching (text-generation-inference) 2948 1442 707 665

Continuous batching (vLLM) 6121 3592 2029 1898
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