1L ILLINOIS

AAAAAAAAAAAAAAAA

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering

DL Inference
* LLM Serving System
* Continuous Batching

LLM Inference 1

Execution Engine

requests
| %
response
Model

LLM Serving System

Inference Server

Execution Engine

requests

I
»

Scheduler

A

\ 4

A

response y

<

Model

Request Queue

Maximum Batch Size = 3

LLM Serving System

Inference Server

Execution Engine

requests Scheduler ,

response .)

< [x1: | think] [x2: | love] Model
Request Queue

Maximum Batch Size = 3

LLM Serving System

requests

Inference Server

response

I
»

<

Scheduler

Execution Engine

A

\ 4

Request Queue

Maximum Batch Size = 3

A

O

E | x1: I think |
t] [x2:1love |

Model

LLM Serving System

requests

Inference Server

response

I
»

<

Scheduler

A

Execution Engine

\ 4

Request Queue

A

O

E | x1: I think |
t] [x2:1love |

Model

Maximum Batch Size = 3

[x1: this is great]

[X2: you]

LLM Serving System

Inference Server

Execution Engine

requests _ Scheduler .
response v <
1‘| — = Model
[Xt 2 Iin« Hil } Request Queue

is great

| X2: Ilove you | Maximum Batch Size = 3

Example: TensorRT Inference Server

MODEL REPOSITORY

gRPC .) |Persistent Volume)

d
Request/Response Handling Marg,;eﬁrtent

Dog (i_’

Cat

Inference Request Inference Response

NVIDIA TensorRT Per-model Framework
Inference Server Scheduler Queues Backends
N -
K]
‘ T[a[e 2
3
=
@
STATUS/HEALTH METRICS EXPORT II HTTP

| |

GPU GPU GPU GPU

Example: TensorRT Inference Server

o Separates implementation of serving layer
and execution layer

C10 [

MODEL REPOSITORY
gRPC " [Persistent Volume)
d
Request/Response Handling Marg,;eﬁrtent
Dog (i_’
Cat
Inf Request Inference Response
Per-model Framework
NVIDIA TensorRT
Inference Server Scheduler Queues ‘ Backends
: ‘ T 3
: 2
@
STATUS/HEALTH METRICS EXPORT I I HTTP
]
GPU GPU

10

Example: TensorRT Inference Server

C10 [
o Separates implementation of serving layer
and execution layer

i i RPC (Persistent Votume)
o Implements scheduling and batching 3 “l =)

algorithms]
. Request/Response Handling Marg';iﬁrtent
» Sequence Batching — 3
« Continuous Batching . —
NVIDIA TensorRT Schoduler Gueues "Backends.
|
1E
o 45 I HTTP

11

Example: TensorRT Inference Server

o Separates implementation of serving layer
and execution layer
o Implements scheduling and batching

m MODEL REPOSITORY
9 " [Persistent Volume)

algorithms .
. Request/Response Handling M .;u#
« Sequence Batching | 3
« Continuous Batching R e
o Allows multiple models to concurrently
exe C u te Inference Server Scheduler Queues Backends
owr)l HTTP

12

Example: TensorRT Inference Server

C10 [

o Separates implementation of serving layer
and execution layer

| - EE B3 SRy
o Implements scheduling and batching =)

algorithms v
= Sequence Batching e
« Continuous Batching) u =] -
o Allows multiple models to concurrently
execute Inference Server Scheduler Queues Backends
o Supports multiple frameworks
s PyTorch
s TensorFlow _
x ONNX — T o
= VLLM backend

13

DL Inference

* Continuous Batching
* Sequence batching
e Continuous batching

14

DL Inference

* Continuous Batching
* Sequence batching
e Continuous batching

Question: Can we use the batching scheme (sequence batching)
during training for inference?

15

Problem 1: Request Level Scheduling

Execution Engine

/ this

1S great
you \ <EOS>\ - \

. | 1
(iter 1 (iter 3) (iter 4)
A X

2
i1 thinkq this | { is |Y great

ka I | love

——

16

Problem 1: Request Level Scheduling

Execution Engine

this 1S great
you h <EOS> - -
A A
(iter 1 (iter 3 (iter 4)
A X A A
think J{ this 1S great
love M you |-

Do you see any problem?

17

Problem 1: Request Level Scheduling

Execution Engine X2 generation done

/ this

1S great/r
you <EOS> \ o -

——

. | 1
(iter 1 (iter 3 (iter 4)

A X A 4
211 T | think]\j this [is |Y great|

ka I | love you - - /

18

Problem 1: Request Level Scheduling

Execution Engine X2 generation done
/ - - Early finished requests
this 1S reat </E£<
\ \ g ,/r cannot return to the
you ||| <EOS> - - Inference Server -
+ Latency increase

A A
(iter 1 (iter 3 (iter 4)
A X

O\ %
L1 T thinkq this 1S

ka I | love

you - - /

19

Problem 1: Request Level Scheduling

Inference Server

Execution Engine

requests Scheduler

* E x1: Ithlnk

x2: | love

response v «

P
<

Model

Request Queue

Started processing x1
and x2

Maximum Batch Size = 3

20

Problem 1: Request Level Scheduling

Inference Server

Execution Engine
requests
i . Scheduler .
1 E x1: Ithlnk
|

response ! New! . t] x2: | love

- [x3: Aman] Model

Request Queue

Maximum Batch Size = 3

21

Problem 1: Request Level Scheduling

Inference Server

Execution Engine

iy
requests Scheduler (‘J

! E [x1: I think |
response v New! t] [x2: | love]

- [x3: Aman] Model
Request Queue \

\ 4
\ 4

A

Late join requests need to wait until engine
finishes execution
- Latency Increase

Maximum Batch Size = 3

22

Problem 1: Request Level Scheduling

Inference Server

Execution Engine

iy
requests Scheduler (‘J

f E | xL:1think |
)

New! [x2: | love]

\ 4
\ 4

response 4
- [x3: A man]

A

Model

Request Queue

Maximum Batch Size = 3

Question: How can we avoid redundant computation and ensure

late-arriving requests to be processed more promptly? -

Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

schedule one

iter

return

select requests

Execution Engine

—
.

Request Pool

Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

select requests

Execution Engine

—
.

| x1:Ithink |

[x2: | love]

Request Pool

Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

Execution Engine
schedule one

iter "
.
.

| xl:Ithink |

[x2: | love]

~—

iter 1

Request Pool

Solution 1: Iteration Level Scheduling

requests

response

ORCA
Execution Engine
Scheduler I
.
return
] | x1: I think this |

[x2: | love you]

Request Pool

[x3: A man]

Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

select requests

Execution Engine

—
.

[x1: | think this] [x3: A man]

[x2: | love you]

Request Pool

Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

schedule one

iter

Execution Engine

]| x1: 1 think this

1

.

~—

iter 2

[x2: | love you

[x3: A man]

Request Pool

Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

return

Execution Engine

—
.

[x1: | think this is

_

~—

[x2: | love you <EOS>

]

[x3: Amanis]

Request Pool

Solution 1: Iteration Level Scheduling

requests

ORCA

response

:

x2: | love you
<EOS>

|

Scheduler

select requests

Execution Engine

—
.

Request Pool

[x1: | think this is] [x4: How are]

[x3: Amanis] [x5: When will]

Solution 1: Iteration Level Scheduling

ORCA

Execution Engine
schedule one

iter 1 \ x1: | think this is]
requests Scheduler .
i I x3: Amanis]
) x4: How are]
iter 3
response !

Request Pool

[x5: When will]

Solution 1: Iteration Level Scheduling

requests

ORCA

response

schedule one

Execution Engine

iter > E[x1: | think this is]
Scheduler)

-~

A

Iteration Level Scheduling handles early finished
requests and late joining requests

s
re |

/—

Request Pool

[x5: When will]

Problem 2: How to Batch Requests?

Output
Let’s assume Batch Size B=1 4
—> Add > Add
Input Dimension: [L x H] (L=sequence length, H=hidden dim.) i 2
MLP
Attention Operation: Attn Out Linear
1. QKT:[LxH] x [HxL] = [L x L] i Linear
2. P =softmax(QK") : [L x L] Attention !
GeLU
3. 0=PV:[LxL] x [LxH] > [Lx H] Q“m\ TKC}/VE”‘“’ 5
QKYV Linear Linear
t 4
LayerNorm LayerNorm
! .

Input

Problem 2: How to Batch Requests?

Output
Let’s assume Batch Size B=1 4
—> Add > Add
Input Dimension: [L x H] (L=sequence length, H=hidden dim.) i 2
MLP
Attention Operation: Attn Out Linear
1. QKT:[LxH] x [HxL] = [L x L] i Linear
2. P =softmax(QK"): [Lx L] Attention !
GeLU
3. O=PV:[LxL] x [LxH] = [L x H] Quer}\ TKG:}/‘V&MG)
QKV Linear Linear
With Batch Size B, QKT will be [B x L x L] A X
LayerNorm LayerNorm
! .

Input

Problem 2: How to Batch Requests?

Let’s assume Batch SizeB=1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT :[LxH] x [HxL] = [L x L]

2. P =softmax(QKT") : [L x L]

3. O=PV:[LxL] x [LxH] = [L x H]

With Batch Size B, QK™ will be [B x L x L]

\

With different sequence lengths, QK"
cannot be easily computed

Output
*
—> Add Add
* A
_ MLP
Attn Out Linear
i Linear
Attention 4
GeLU
Quer}\ TK&:}/4 Value
+
QKYV Linear Linear
4 3
LayerNorm LayerNorm
! .
Input

Solution 2: Selective Batching 1

Only Attention operation does not work
with batching tensors with diff. L,

Batch for other ops. (Layer Norm, GelLU,
etc.)

Split }Ml Attn x3 ﬁ 2, H]
T[T= 3H] 13, 3H] 3, H|
[1,3H] 1, H]
(QKV Linear) @
[1,3H] 4 1, H]
ou [[7, H) [
L22 Attention K/V Manager
L31| L32 1 @ (11,212, Z13) T2t (T21)
L41|Ta2|L43 Key EEE u
Layer Input Value [L1] U

Solution 2: Selective Batching 1

Only Attention operation does not work

with batching tensors with diff. L, (split } [2,3H] (- } 2, H]

Batch for other ops. (Layer Norm, GelU, £7 3m] 3,3H] Attnz4 |[3, H]

etc.)
(QKV Linear) @
Attn z2
Coalesce [L;, H] tensor to [2L, H] I [1, 3H] A [1:H]
7, H]

_ T14 |’
for batching

L22 Attention K/V Manager

x1: 1 H] / \ Ty : (T11,T12,%13) T2t (T21)
PR Use flattened2D Y (L] L]

X2: :1'H: ‘ [7,H] tensor without batch pe [T 1]]

x3: (2,H] tensor dimension

x4: [3,H] _)

Solution 2: Selective Batching 1

Split, process each
request and merge
tensors

Only Attention operation does not work

with batching tensors with diff. L, (split) 2,3H] _(Attn 23) 2, H]
Batch for other ops. (Layer Norm, GelLU, T[T 3H] [3,3H] 3, H]
etc.) [1,3H] 1, H]
(QKV Linear) Attn 21
Coalesce [L, H] tensor to [2L, H] 1a ’ 3 ’
for batching [7, H]
L22 Attention K/V Manager
w1 T1H T31| T32 T1: (T11,T12,Z13) T2 : (Z21)
- :1’H: [7.H) Ta1| Taz| Zas Key CTT]]
- L4, ’ Val
x3: -Z,H- ‘ tensor Layer Input ue [L1] U
x4: [3,H]

LLM Inference Scheduler 1

/ \ ORCA

schedule one
iter

Scheduler .
I

Execution Engine

| xl:Ithink |

requests

select requests
response |

Request Pool

[x2: | love]

return result

~—

iter 1

LLM Inference Scheduler 10

o Enforces iteration-level first-come-first-served (FCFS) property
o Maximum batch size - Throughput vs. Latency control knob

o Reserves max_tokens memory slots per request

Throughput Experiments 1

e Question: When would continuous batching provide more benefits than
sequence batching?

Throughput Experiments i}

o Hypothesis
o Continuous batching performs better the more variance there is in sequence

lengths

e Frameworks

e Setup —hardware/model
e Setup—data

e Results

Throughput Experiments: Frameworks

o Static batching

o HuggingFace
o NVIDIA FasterTransformer

e Continuous batching
o HuggingFace text-generation-inference (TGl)

o Ray Serve
o VLLM

https://www.anyscale.com/blog/continuous-batching-llm-inference

Throughput Experiments: Hardware/model

« NVIDIA A100-40GB

e Meta’s OPT-13B
o dtype = floatl6 > 26GB for parameters

e No tensor parallelism

Throughput Experiments: Data

o Hypothesis
o Continuous batching performs better the more variance there is in sequence
lengths

e How to test?
o Generate 1000 prompts each with 512 input tokens
o Generate predetermined output length for each prompt, following an
exponential distribution
o Configure model to ignore EOS token

Exponential Distribution (PDF)
A =0.5(mean = 2.0)
1.0)

(mean = 1.
—— k= 2.0 (mean = 0.5)

Throughput Improvement from Continuous Batching

Throughput improvement over naive static batching vs. generated sequence length variance

B Static batching (FasterTransformer) B Continuous batching (text-generation-inference)

20x

10x
8x

6X

4x

2X

1x

Improvement in throughput over HF Pipelines

@ Continuous batching (vLLM)

9.49

3.31 L)
2.61

2.05
1.50
ags 083 B
— 1.03
32 128

Maximum number of generated tokens

512

Continuous batching (Ray Serve)

1536

How does vLLM beat TGl 1|

o VLLM uses PagedAttention — extra batch size space

Contiguous Memory

Non-Contiguous Memory

E2E Latency Experiments: Results

Request latency CDF, QPS=4

——Continuous batching (text-generation-inference) —-Static batching (HF Pipelines)
Continuous batching (vLLM) Continuous batching (Ray Serve)

——Static batching (FasterTransformer)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

0 50 100 150 200
Request latency (seconds)

250

Summary: Continuous Batching

e Continuous batching handles early-finished and late-arrived requests more
efficiently

* Fills GPU capacity after each token generation

* As variance in sequence length increases, continuous batching increases
GPU utilization

50

LLM Inference Scheduler: Chunked Prefill

W/0 TensorRT-LLM Chunked Prefill

Query1 , Query 1
First Token : Completed
1
]
: Query 2 : Query 2
H First Token | ! Completed}
H I - Query 3 : P | Query 3
: 1 First Token 1 Completed

W/ TensorRT-LLM Chunked Prefill

Query 1 Query 1
First Token I Completed :
1 1
1]
| 1
: : Query 2 Query 2
: : First Token | Completed |
i i ' i
1] 1 1
i i
Prefill Prefill Prefill | 1
Chunk 1 Chunk 2 Chunk 3 Decode Decode S ! ' ~ Query3. Query3.
1 1 First Token! Completed'

Prefill Prefill Prefill
el chunk chunks
Prefill Prefill

Time >

HQuery#1 MQuery#2 MQuery#3

Questions?

52
COMPUTER SCIENCE GRAINGER ENGINEERING

Sequence Batching (Static Batching)

e Batching multiple sequences on GPU, aka “static batching”
e Problem: GPU utilization drops as sequences complete

(

Lo, s

S fg‘ S % S S Si

Sa |6, [BE Sx |6, 8% G003
S'j S'j S'J % Slj 5'3 S}

Syl sylsy|sy/%8 | | Sy | Sy 154 54

Legend:
e Yellow: prompt token
e Blue: generated token
e Red: end-of-sequence token

53

Continuous Batching 1

) : . Legend:
Topcstalic ba}tchlng .) Yellow: prompt token
Bottom: continuous batching Blue: generated token]

Red: end-of-sequence token

54

Throughput Experiments: Results

Generation limit

(higher limit implies higher variance in output sequence lengths)
Throughput (token/s) vs. variance in generated

sequence lengths

max 32 tokens max 128 tokens max 512 tokens max 1536 tokens

Static batching (HF Pipelines) 2988 972 214 81
Static batching (FasterTransformer) 2869 1441 558 346
Continuous batching (Ray Serve) 3090 1460 703 650
Continuous batching (text-generation-inference) 2948 1442 707 665

Continuous batching (vLLM) 6121 3592 2029 1898

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

