
Deepspeed - Alphafold3
–Minjia Zhang, Hoa La–

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering

1

DL Inference

• LLM Serving System

• Continuous Batching

Today

2

LLM Inference

3

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

LLM Serving System

4

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

LLM Serving System

5

requests

response

Inference Server

Scheduler

Request Queue

x1: I think x2: I love

Maximum Batch Size = 3

Execution Engine

Model

LLM Serving System

6

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

LLM Serving System

7

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: this is great

x2: you

x1: I think

x2: I love

LLM Serving System

8

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model
x1: I think this

is great

X2: I love you

Example: TensorRT Inference Server

9

○ Separates implementation of serving layer
and execution layer

○ Implements scheduling and batching
algorithms
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX

Example: TensorRT Inference Server

10

○ Separates implementation of serving layer
and execution layer

○ Implements scheduling and batching
algorithms
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX

Example: TensorRT Inference Server

11

○ Separates implementation of serving layer
and execution layer

○ Implements scheduling and batching
algorithms
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX

Example: TensorRT Inference Server

12

○ Separates implementation of serving layer
and execution layer

○ Implements scheduling and batching
algorithms
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX

Example: TensorRT Inference Server

13

○ Separates implementation of serving layer
and execution layer

○ Implements scheduling and batching
algorithms
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently
execute

○ Supports multiple frameworks
■ PyTorch
■ TensorFlow
■ ONNX
■ vLLM backend

DL Inference

• LLM Serving System

• Continuous Batching
• Sequence batching

• Continuous batching

Today

14

DL Inference

• LLM Serving System

• Continuous Batching
• Sequence batching

• Continuous batching

Today

15

Question: Can we use the batching scheme (sequence batching)
during training for inference?

Problem 1: Request Level Scheduling

16

Execution Engine

Problem 1: Request Level Scheduling

17

Execution Engine

Do you see any problem?

Problem 1: Request Level Scheduling

18

Execution Engine x2 generation done

Problem 1: Request Level Scheduling

19

Execution Engine

Early finished requests
cannot return to the
Inference Server →
Latency increase

x2 generation done

Problem 1: Request Level Scheduling

20

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

Started processing x1
and x2

Problem 1: Request Level Scheduling

21

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Problem 1: Request Level Scheduling

22

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Late join requests need to wait until engine
finishes execution
→ Latency Increase

Problem 1: Request Level Scheduling

23

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Question: How can we avoid redundant computation and ensure
late-arriving requests to be processed more promptly?

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one
iter

return

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think

x2: I love

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one
iter x1: I think

x2: I love

iter 1

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

return

x1: I think this

x2: I love you

x3: A man

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this

x2: I love you

x3: A man

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this

x2: I love you

x3: A man

schedule one
iter

iter 2

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

return

x1: I think this is

x2: I love you <EOS>

x3: A man is

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is
x2: I love you

<EOS>

x3: A man is

x4: How are

x5: When will

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is

x3: A man is

x4: How are

x5: When will

schedule one
iter

iter 3

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is

x3: A man is

x4: How are

x5: When will

schedule one
iter

iter 3Iteration Level Scheduling handles early finished
requests and late joining requests

Solution 1: Iteration Level Scheduling

Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

Problem 2: How to Batch Requests?

Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

Problem 2: How to Batch Requests?

Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

With different sequence lengths, QKT
cannot be easily computed

Problem 2: How to Batch Requests?

Only Attention operation does not work
with batching tensors with diff. Li

Batch for other ops. (Layer Norm, GeLU,
etc.)

Coalesce [Li, H] tensor to [ΣLi, H]
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]
x4: [3,H]

[7,H]
tensor

Solution 2: Selective Batching

Only Attention operation does not work
with batching tensors with diff. Li

Batch for other ops. (Layer Norm, GeLU,
etc.)

Coalesce [Li, H] tensor to [ΣLi, H]
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]
x4: [3,H]

[7,H]
tensor

Use flattened 2D
tensor without batch

dimension

Solution 2: Selective Batching

Only Attention operation does not work
with batching tensors with diff. Li

Batch for other ops. (Layer Norm, GeLU,
etc.)

Coalesce [Li, H] tensor to [ΣLi, H]
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]
x4: [3,H]

[7,H]
tensor

Solution 2: Selective Batching

Split, process each
request and merge

tensors

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one
iter x1: I think

x2: I love

iter 1

return result

select requests

LLM Inference Scheduler

● Enforces iteration-level first-come-first-served (FCFS) property

● Maximum batch size → Throughput vs. Latency control knob

● Reserves max_tokens memory slots per request

● …

LLM Inference Scheduler

Throughput Experiments

● Question: When would continuous batching provide more benefits than
sequence batching?

Throughput Experiments

● Hypothesis
○ Continuous batching performs better the more variance there is in sequence

lengths

● Frameworks
● Setup – hardware/model
● Setup – data
● Results

Throughput Experiments: Frameworks

https://www.anyscale.com/blog/continuous-batching-llm-inference

● Static batching
○ HuggingFace
○ NVIDIA FasterTransformer

● Continuous batching
○ HuggingFace text-generation-inference (TGI)
○ Ray Serve
○ vLLM

Throughput Experiments: Hardware/model

https://www.anyscale.com/blog/continuous-batching-llm-inference

● NVIDIA A100-40GB

● Meta’s OPT-13B
○ dtype = float16 → 26GB for parameters

● No tensor parallelism

Throughput Experiments: Data

● Hypothesis
○ Continuous batching performs better the more variance there is in sequence

lengths

● How to test?
○ Generate 1000 prompts each with 512 input tokens
○ Generate predetermined output length for each prompt, following an

exponential distribution
○ Configure model to ignore EOS token

https://www.anyscale.com/blog/continuous-batching-llm-inference

Throughput Improvement from Continuous Batching

https://www.anyscale.com/blog/continuous-batching-llm-inference

How does vLLM beat TGI

● vLLM uses PagedAttention – extra batch size space

E2E Latency Experiments: Results

https://www.anyscale.com/blog/continuous-batching-llm-inference

Summary: Continuous Batching

50

• Continuous batching handles early-finished and late-arrived requests more
efficiently

• Fills GPU capacity after each token generation

• As variance in sequence length increases, continuous batching increases
GPU utilization

LLM Inference Scheduler: Chunked Prefill

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E

Questions?

52

Sequence Batching (Static Batching)

53

Continuous Batching

54

Throughput Experiments: Results

https://www.anyscale.com/blog/continuous-batching-llm-inference

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

