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Example: TensorRT Inference Server
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○ Separates implementation of serving layer 
and execution layer

○ Implements scheduling and batching 
algorithms
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently 
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX
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Question: Can we use the batching scheme (sequence batching) 
during training for inference?



Problem 1: Request Level Scheduling

16

Execution Engine



Problem 1: Request Level Scheduling

17

Execution Engine

Do you see any problem?



Problem 1: Request Level Scheduling

18

Execution Engine x2 generation done



Problem 1: Request Level Scheduling

19

Execution Engine

Early finished requests 
cannot return to the 
Inference Server → 
Latency increase

x2 generation done



Problem 1: Request Level Scheduling

20

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

Started processing x1 
and x2



Problem 1: Request Level Scheduling

21

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!



Problem 1: Request Level Scheduling

22

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Late join requests need to wait until engine 
finishes execution
→  Latency Increase



Problem 1: Request Level Scheduling

23

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Question: How can we avoid redundant computation and ensure 
late-arriving requests to be processed more promptly?
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Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

Problem 2: How to Batch Requests?
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Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

With different sequence lengths, QKT 
cannot be easily computed

Problem 2: How to Batch Requests?



Only Attention operation does not work 
with batching tensors with diff. Li 

Batch for other ops. (Layer Norm, GeLU, 
etc.)

 
Coalesce [Li, H] tensor to [ΣLi, H] 
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]          
x4: [3,H]

[7,H] 
tensor

Solution 2: Selective Batching
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Only Attention operation does not work 
with batching tensors with diff. Li 

Batch for other ops. (Layer Norm, GeLU, 
etc.)

 
Coalesce [Li, H] tensor to [ΣLi, H] 
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]          
x4: [3,H]

[7,H] 
tensor

Solution 2: Selective Batching

Split, process each 
request and merge 

tensors
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● Enforces iteration-level first-come-first-served (FCFS) property

● Maximum batch size → Throughput vs. Latency control knob

● Reserves max_tokens memory slots per request

● …

LLM Inference Scheduler



Throughput Experiments

● Question: When would continuous batching provide more benefits than 
sequence batching?



Throughput Experiments

● Hypothesis
○ Continuous batching performs better the more variance there is in sequence 

lengths

● Frameworks 
● Setup – hardware/model
● Setup – data
● Results



Throughput Experiments: Frameworks

https://www.anyscale.com/blog/continuous-batching-llm-inference

● Static batching
○ HuggingFace
○ NVIDIA FasterTransformer

● Continuous batching
○ HuggingFace text-generation-inference (TGI)
○ Ray Serve
○ vLLM



Throughput Experiments: Hardware/model

https://www.anyscale.com/blog/continuous-batching-llm-inference

● NVIDIA A100-40GB 

● Meta’s OPT-13B
○ dtype = float16 → 26GB for parameters

● No tensor parallelism



Throughput Experiments: Data

● Hypothesis 
○ Continuous batching performs better the more variance there is in sequence 

lengths

● How to test? 
○ Generate 1000 prompts each with 512 input tokens
○ Generate predetermined output length for each prompt, following an 

exponential distribution
○ Configure model to ignore EOS token

https://www.anyscale.com/blog/continuous-batching-llm-inference



Throughput Improvement from Continuous Batching

https://www.anyscale.com/blog/continuous-batching-llm-inference



How does vLLM beat TGI

● vLLM uses PagedAttention – extra batch size space



E2E Latency Experiments: Results

https://www.anyscale.com/blog/continuous-batching-llm-inference



Summary: Continuous Batching

50

• Continuous batching handles early-finished and late-arrived requests more 
efficiently

• Fills GPU capacity after each token generation

• As variance in sequence length increases, continuous batching increases 
GPU utilization



LLM Inference Scheduler: Chunked Prefill



G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Questions?

52



Sequence Batching (Static Batching)
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Continuous Batching 
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Throughput Experiments: Results

https://www.anyscale.com/blog/continuous-batching-llm-inference
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