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Deep Learning Inference Optimizations

• LLM Inference Basic

• Flash Attention 

• Continuous Batching

Today
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LLMs are Slow and Expensive to Serve
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• At least ten A100-40GB GPUs to serve 175B GPT-3 in half-precision

• Generating 256 tokens takes ~20 seconds

• Cannot process requests in parallel 
• Per-request key-value cache takes 3GB GPU memory



Generative LLM Inference: Autoregressive Decoding
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Generative LLM Inference: Autoregressive Decoding
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• Pre-filling phase (0-th iteration):
• Process all input tokens at once



Generative LLM Inference: Autoregressive Decoding
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Repeat until the sequence 
• Reaches the pre-defined maximum length (e.g., 2048 tokens)
• Generates the stop tokens (e.g., “<|end of sequence|>”) 

• Decoding phase (all other iterations):
• Process a single token generated 

from previous iteration
• Use attention keys & values of all 

previous tokens



Generative LLM Inference: Important Metrics
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• Time to First Token (TTFT): Measures how quickly users begin to see the model 
output token after submitting a query.
• Critical for real-time interactions
• Driven by prompt processing time and the generation of the first token

• Time per Output Token (TPOT): Time taken to generate each output token.
• Impacts user perception of speed (e.g., 100ms/token = 10 tokens/second)

• E2E Latency  = TTFT + (TPOT * the number of generated tokens)
• Total time to generate the complete response

• Throughput: Number of tokens generated per second across all requests by the 
inference server

LLM Inference Performance Engineering: Best Practices | Databricks

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices


Optimizing LLM Inference: Goals and Tradeoffs
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• Goal: Minimize TTFT, maximize throughput, and reduce TPOT
• Throughput vs. TPOP Tradeoff: Processing multiple queries 

concurrently increases throughput extends TPOT for each user. 



DL Inference

• LLM Inference 

• FlashAttention (cont.)

• Continuous Batching

Today
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LLM Inference: Bottleneck from Attention Calculation
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FlashAttention

11

• First introduced at HAET workshop @ICML July 2022

• Published @ NeurIPS Dec 2022

• Very useful even though many people probably don’t even know they 
are using it!



FlashAttention
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• First introduced at HAET workshop @ICML July 2022

• Published @ NeurIPS Dec 2022

• Very useful even though many people probably don’t even know they 
are using it! Massive adoption (5 months)



Revisit: GPU Memory Hierarchy
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Memory is arranged hierarchically 
• GPU SRAM is small, and supports the 

fastest access
• GPU HBM is larger but with much 

slower access
• CPU DRAM is huge, but the slowest of 

all



Standard Attention
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S S = mask(S) P=softmax(S): N x N O = PV: N x d



Standard Attention
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S S = mask(S) P=softmax(S): N x N O = PV: N x d

Question: What are 
limitations of standard 
attention implementation?



Standard Attention
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S S = mask(S) P=softmax(S): N x N O = PV: N x d

Challenges:
• Repeated reads/writes from GPU HBM
• Large intermediate results
• Cannot scale to long sequences due to O(N2) intermediate results



FlashAttention
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• Three key ideas are combined to obtain FlashAttention
• Operator fusion: Use a single kernel that includes all operators 

during attention computation to avoid kernel launching overhead 
and intermediate data movement

• Tiling: compute the attention block by block so that we don’t have 
to load everything into SRAM at once

• Recomputation: don’t store the full attention matrix in forward, 
but just recompute during the backward pass



Operator Fusion
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Version A: Usually, we compute a neural network 
one operator at a time by moving operation input 
to GPU SRAM (fast/small), doing some 
computation, then returning the output to GPU 
HBM (slow/large)

Version B: Operator fusion instead moves the 
original input to GPU SRAM (fast/small), does a 
whole sequence of layer computations without 
ever touching HBM, and then returns the final 
layer output to GPU HBM (slow/large)

Figure from https://horace.io/brrr_intro.html
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Operator Fusion
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Version A: Usually, we compute a neural network 
one operator at a time by moving operation input 
to GPU SRAM (fast/small), doing some 
computation, then returning the output to GPU 
HBM (slow/large)

Version B: Operator fusion instead moves the 
original input to GPU SRAM (fast/small), does a 
whole sequence of layer computations without 
ever touching HBM, and then returns the final 
layer output to GPU HBM (slow/large)

Version A is how standard attention is implemented



Operator Fusion
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Version A: Usually, we compute a neural network 
one operator at a time by moving operation input 
to GPU SRAM (fast/small), doing some 
computation, then returning the output to GPU 
HBM (slow/large)

Version B: Operator fusion instead moves the 
original input to GPU SRAM (fast/small), does a 
whole sequence of layer computations without 
ever touching HBM, and then returns the final 
layer output to GPU HBM (slow/large)

Version B improves performance but requires CUDA code rewriting (or through DL compilers)



Tiling: Decompose Large Attention Calculation into Smaller Blocks

22

1. Load inputs by blocks from global HBM to 
SRAM

2. On chip, compute attention output wrt 
the block

3. Update output in HBM by scaling 
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Tiling: Decompose Large Attention Calculation into Smaller Blocks
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the block
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Tiling: Decompose Large Attention Calculation into Smaller Blocks
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1. Load inputs by blocks from global HBM to 
SRAM

2. On chip, compute attention output wrt 
the block

3. Update output in HBM by blocks 

(Everything in a single kernel)



Tiling: Decompose Large Attention Calculation into Smaller Blocks

27Figure from http://arxiv.org/abs/2307.08691 



Tiling: Decompose Large Attention Calculation into Smaller Blocks

28Figure from http://arxiv.org/abs/2307.08691 



Tiling: Decompose Large Attention Calculation into Smaller Blocks

29Figure from http://arxiv.org/abs/2307.08691 

Discussion: How would you solve this problem 
if you were transported back to 2022?



Tiling: Decompose Large Attention Calculation into Smaller Blocks

30Figure from http://arxiv.org/abs/2307.08691 

Rescaling to 
correct 
denominator



Tiling: Decompose Large Attention Calculation into Smaller Blocks

31Figure from http://arxiv.org/abs/2307.08691 

Question: But how? How to do the rescaling 
while retaining the correctness?

Rescaling to 
correct 
denominator



How to Implement Softmax? Standard Softmax
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For a vector               ,  softmax is computed as:



How to Implement Softmax? Standard Softmax
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For a vector               ,  softmax is computed as:

Question: Standard softmax is rarely used in 
practice, why?



How to Implement Softmax? Standard Softmax
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For a vector               ,  softmax is computed as:

Problem: Exponentials can explode



How to Implement Softmax? Standard Softmax
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For a vector               ,  softmax is computed as:

Problem: Exponentials can explode

ex grows very quickly
Assume x = 1000, e1000 ≈ 10434 

Too large to store in FP32, overflow (INF)



Stable Softmax

36

1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function, 
which helps prevent overflow issue
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Stable Softmax
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1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function, 
which helps prevent overflow issue

Now the largest exponent is e0 = 1, 
which is very safe.

All other terms become ex-m , which 
are less than or equal to 1, avoiding 
overflow.



FlashAttention: Tiling + Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

1. Load inputs by blocks from global HBM to 
SRAM

2. On chip, compute attention output wrt 
the block

3. Update output in HBM by blocks 



FlashAttention: Tiling + (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

1. Load inputs by blocks from global HBM to 
SRAM

2. On chip, compute attention output wrt 
the block

3. Update output in HBM by online stable 
softmax



FlashAttention: (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:



FlashAttention: (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:



FlashAttention: (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:



FlashAttention: (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:



FlashAttention: (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:



FlashAttention: (Online) Stable Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

Only need to track intermediate statistics 
(m(x(i)), l(x(i))) to compute softmax one block 
at a time



FlashAttention Results

49

The algorithm is performing exact 
attention, no reduction in perplexity or 
quality of the model



FlashAttention Results
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The algorithm is performing exact 
attention, no reduction in perplexity or 
quality of the model

Question: What would happen if we further increase the 
block size?



FlashAttention: 2-4x speedup, 10-20x memory reduction
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Is FlashAttention Stable?
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DL Inference

• LLM Inference

• FlashAttention

• Continuous Batching

Today
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LLM Serving System
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requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model
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Inference Server

Scheduler

Request Queue

x1: I think x2: I love

Maximum Batch Size = 3

Execution Engine

Model
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LLM Serving System
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requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: this is great

x2: you

x1: I think

x2: I love



LLM Serving System
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requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model
x1: I think this 

is great

X2: I love you



Example: TensorRT Inference Server
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○ Separates implementation of serving layer 
and execution layer

○ Implements scheduling and batching 
algorithms
■ Dynamic Batching
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently 
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX



DL Inference

• FlashAttention

• LLM Inference

• Continuous Batching

Today

60



Problem 1: Request Level Scheduling
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Execution Engine



Problem 1: Request Level Scheduling
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Execution Engine x2 generation done



Problem 1: Request Level Scheduling

63

Execution Engine x2 generation done

Early finished requests 
cannot return to the 
Inference Server → 
Latency increase



Problem 1: Request Level Scheduling
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requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

Started processing x1 
and x2



Problem 1: Request Level Scheduling
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requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!



Problem 1: Request Level Scheduling
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requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Late join requests need to wait until engine 
finishes execution
→  Latency Increase



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one 
iter

return

select requests

Solution 1: Iteration Level Scheduling
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requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this

x2: I love you

x3: A man

select requests

Solution 1: Iteration Level Scheduling



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this

x2: I love you

x3: A man

schedule one 
iter

iter 2

Solution 1: Iteration Level Scheduling



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

return

x1: I think this is

x2: I love you <EOS>

x3: A man is

Solution 1: Iteration Level Scheduling



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is
x2: I love you 

<EOS>

x3: A man is

x4: How are

x5: When will

select requests

Solution 1: Iteration Level Scheduling



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is

x3: A man is

x4: How are

x5: When will

schedule one 
iter

iter 3

Solution 1: Iteration Level Scheduling



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is

x3: A man is

x4: How are

x5: When will

schedule one 
iter

iter 3Iteration Level Scheduling handles early finished 
requests and late joining requests 

Solution 1: Iteration Level Scheduling



Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

Problem 2: How to Batch Requests?



Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

With different sequence lengths, QKT 
cannot be computed

Problem 2: How to Batch Requests?



Only Attention operation does not work 
with batching tensors with diff. Li 

Batch for other ops. (Layer Norm, GeLU, 
etc.)

 
Coalesce [Li, H] tensor to [ΣLi, H] 
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]          
x4: [3,H]

[7,H] 
tensor

Use flattened 2D 
tensor without batch 

dimension

Solution 2: Selective Batching



Only Attention operation does not work 
with batching tensors with diff. Li 

Batch for other ops. (Layer Norm, GeLU, 
etc.)

 
Coalesce [Li, H] tensor to [ΣLi, H] 
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]          
x4: [3,H]

[7,H] 
tensor

Solution 2: Selective Batching

Split, process each 
request and merge 

tensors



requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one 
iter x1: I think

x2: I love

iter 1

return result

select requests

LLM Inference Scheduler



● Enforces iteration-level first-come-first-served (FCFS) property

● Maximum batch size → Throughput vs. Latency control knob

● Keep track of number of reserved slots to avoid deadlock
○ Slot :=  memory required for storing an Attention key and value for a single 

token

● Reserves max_tokens memory slots per request

LLM Inference Scheduler



Throughput Improvement from Continuous Batching

https://www.anyscale.com/blog/continuous-batching-llm-inference



Continuous Batching Step-by-Step

84



G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Questions?

85



FlashAttention

86

Inference is usually memory-bound
• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime
• Lots of time is wasted moving data around on the GPU instead of doing 

computation

Figure from https://arxiv.org/pdf/2205.14135 



FlashAttention
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Inference is usually memory-bound
• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime
• Lots of time is wasted moving data around on the GPU instead of doing 

computation

Figure from https://arxiv.org/pdf/2205.14135 

• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime

Challenge: Inference is usually memory-bound
• Lots of time is wasted moving data around on the GPU instead of doing 

computation

Question: Why do other operators take so much time? 



FlashAttention
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• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime

Inference is usually memory-bound
• Lots of time is wasted moving data around on the GPU instead of doing 

computation

Question: Why do other operators take so much time? 



Generative LLM Inference: Autoregressive Decoding

89

• Pre-filling phase (1-th iteration):
• Process all input tokens at once

• Decoding phase (all other iterations):
• Process a single token generated from previous iteration
• Use attention keys & values of all previous tokens

• Key-value cache:
• Save attention keys and values for the following iterations to avoid 

recomputation



Generative LLM Inference: KV Cache

90
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