1L ILLINOIS

AAAAAAAAAAAAAAAA

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering



Deep Learning Inference Optimizations

e LLM Inference Basic
e Flash Attention
* Continuous Batching



LLMs are Slow and Expensive to Serve

dddddddddd

* At least ten A100-40GB GPUs to serve 175B GPT-3 in half-precision
* Generating 256 tokens takes ~20 seconds

* Cannot process requests in parallel
* Per-request key-value cache takes 3GB GPU memory



Generative LLM Inference: Autoregressive Decoding

Input Prompt: [Accelerating LLM requires machine]

Outputs:

Iter O
)

Layer 1

|

Layer 2 E

}

Layer J ;

:

learning

> leaming > Systems

lter 1 E lter 2

} }
Layer 1 Layer 1
I A
Layer £ Layer 2
Lo
Layer J Layer 3
! : |

systems  opti mlzatlﬂns

e

-+ Optimizations

lter 3
'

Layer 1

'

Layer 2

|

Layer J

|
[EOS]



Generative LLM Inference: Autoregressive Decoding

Input Prompt:

Pre-filling phase (0-th iteration):
* Process all input tokens at once

[Accelerating LLM regldlres machine|

Iter O
)

Layer 1

|

Layer £ E

}

Layer J ;

:

learning

» leaming

lter 1
'

Layer 1

!

Layer £
!
Layer J

!

systems

systems

lter 2

L

Layer 1
L
Layer £

L

Layer 3

ﬂphﬂnzanﬂns

IR

-+ Optimizations

lter 3
'

Layer 1

'

Layer 2

|

Layer J

|
[EOS]



Generative LLM Inference: Autoregressive Decoding

Input Prompt: [Accelerating LLM requires machine] # |.» leaming  ;» systems .»optimizations
4 a H
d
fer 0 lter 1 lter 2 lter 3
7
L7 b i - '
 Decoding phase (all other iterations): | ayer 1 Layer 1 Layer 1 | ayer 1
* Process a single token generated | | |
from previous iteration : .
 Use attention keys & values of all Layer 2 | Layer 2 Layer 2 Layer 2
previous tokens s~ | l | l
“bayer3 | Layer 3 Layer 3 Layer 3
N ‘ : ‘
Qutputs: learning systems i:lptlﬂ‘IIEEllI{]ﬂS [EOS)

Repeat until the sequence

e e

* Reaches the pre-defined maximum length (e.g., 2048 tokens)
* Generates the stop tokens (e.g., “<|end of sequence|>")




Generative LLM Inference: Important Metrics

e Time to First Token (TTFT): Measures how quickly users begin to see the model

output token after submitting a query.
* Critical for real-time interactions
* Driven by prompt processing time and the generation of the first token

* Time per Output Token (TPOT): Time taken to generate each output token.
* |mpacts user perception of speed (e.g., 100ms/token = 10 tokens/second)

 E2E Latency =TTFT + (TPOT * the number of generated tokens)

* Total time to generate the complete response
* Throughput: Number of tokens generated per second across all requests by the
inference server

LLM Inference Performance Engineering: Best Practices | Databricks



https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

Optimizing LLM Inference: Goals and Tradeoffs

* Goal: Minimize TTFT, maximize throughput, and reduce TPOT
* Throughput vs. TPOP Tradeoff: Processing multiple queries
concurrently increases throughput extends TPOT for each user.



DL Inference

* FlashAttention (cont.)



LLM Inference: Bottleneck from Attention Calculation

Input Prompt: [Accelerating LLM requires machine] .» leaming ;» systems .»optimizations

ter0 : lter1 i Mer2 i lter3

} : ! : } i !

e _- Layer 1 Layer 1 Layer 1 Layer 1

. . 1 : .

IR B U B

maeninel2 [0 117] J7---layer2 : Layer2  Layer2 ; Layer2
§382 . S I S I S B

8 8 \\\Layr:rr 3 i Layer3 { Layer3 i Layer3
| ' | |

Outputs: leamning -+  systems i:'[}tl mizations- [EOS)

. ke, ..

10



FlashAttention i

* First introduced at HAET workshop @ICML July 2022
* Published @ NeurlPS Dec 2022

* Very useful even though many people probably don’t even know they
are using it!

FlashAttention: Fast and Memory-Efficient
Exact Attention with 10-Awareness

Tri Dao, Dan Fu ({trid, danfu}@cs.stanford.edu)
7/23/22 HAET Workshop @ ICML 2022

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Ruda, Christopher Ré. Flash Attention: Fast and
Memory-Efficient Exact Attention with 10-Awareness. arXiv preprint arXiv:2205.14135.
https.//github.com/HazyResearch/flash-attention




FlashAttention 1

* First introduced at HAET workshop @ICML July 2022
* Published @ NeurlPS Dec 2022

* Very useful even though many people probably don’t even know they
are using it!

Massive adoption (5 months)

Attention on GPT-2 O P_yTO rC h

JMatmuI @OpenAI
Dropout en
> (N Meta
y A
Fused
Mask Kernel oo

HUGGING FACE
Y-
I —
TMatmul -_ byl X

i £ s ML
PyTorch FlashAttention y, WA mMosalic

—
W
1

—_—
o
1

Softmax

Time (ms)

W
1

o

12



Revisit: GPU Memory Hierarchy

Memory is arranged hierarchically

* GPU SRAM is small, and supports the
fastest access

* GPU HBM is larger but with much
slower access

 CPU DRAM is huge, but the slowest of
all

Vi: 19TB/s (20 MB)

HBM: 1.5TB/s (40 GB)

: 12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

13



Standard Attention

Attention: O = Softmax(QKT) V

Q:Nxd K:Nxd S =QKT:NxN S = mask(S) P=softmax(S): NxN V:Nxd O=PV:Nxd
[] ENEEEEEE ] ] ]
[] HEEEEEEEE | ] H H
= HEEEEEEE NN I==. x = - =
] I HEEEE o o
L L[] o H
] [P ] N
] HEEEEEEN ] N

P = softmax(S) €e RV*N 0 =PV e RV*4,

Algorithm 0 Standard Attention Implementation
Require: Matrices Q, K,V € RV*¢ in HBM.

1: Load Q,K by blocks from HBM, compute S = QK'. write S to HBM.
2: Read S from HBM. compute P = softmax(S). write P to HBM.
3
3!

. Load P and V by blocks from HBM, compute O = PV, write O to HBM.
: Return O.

14



Standard Attention

Attention: O = Softmax(QKT) V

Q:Nxd K:Nxd S =QKT:NxN S = mask(S) P=softmax(S): NxN V:Nxd O=PV:Nxd
B HEEEEEEEN [ []
0 =5 i =
[] N —) o
[] X l B
L] l H
B l |
R H u

Algorithm 0 Standard Attention Implementation
Require: Matrices Q, K,V € RV*¢ in HBM.

1: Load Q,K by blocks from HBM, compute S = QK'. write S to HBM.
2: Read S from HBM. compute P = softmax(S). write P to HBM.
3
3!

Question: What are
limitations of standard
attention implementation?

. Load P and V by blocks from HBM, compute O = PV, write O to HBM.
: Return O.

15



Standard Attention 1

Attention: O = Softmax(QKT) V

Q:Nxd K:Nxd S =QKT:NxN S = mask(S) P=softmax(S): NxN V:Nxd O=PV:Nxd

I EEEEEEEE o N
I B B
0 5o B
- XE= 0
B B B
O B O
R B B
Challenges:

* Repeated reads/writes from GPU HBM
e Large intermediate results
e Cannot scale to long sequences due to O(N?) intermediate results

16



FlashAttention i

* Three key ideas are combined to obtain FlashAttention

* Operator fusion: Use a single kernel that includes all operators
during attention computation to avoid kernel launching overhead
and intermediate data movement

* Tiling: compute the attention block by block so that we don’t have
to load everything into SRAM at once

* Recomputation: don’t store the full attention matrix in forward,
but just recompute during the backward pass

17



Operator Fusion

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

\’\e,mofy Compite

0o n nn U

—
g

000
nsnnnjug

18



Operator Fusion

Version A: Usually, we compute a neural network  Version B: Operator fusion instead moves the
one operator at a time by moving operation input  original input to GPU SRAM (fast/small), does a

to GPU SRAM (fast/small), doing some whole sequence of layer computations without
computation, then returning the output to GPU ever touching HBM, and then returns the final
HBM (slow/large) layer output to GPU HBM (slow/large)
\/\e,mofy Compite Mexnor ly Compite
n_n’—r? n :) E F‘I_i:'_-_"? ! F\ ij/
A A A i o
—_—
TR _—
Q00 o’j ?
000 ? . J‘S’
T jn 1o |0

19



Operator Fusion

Version A: Usually, we compute a neural network  Version B: Operator fusion instead moves the
one operator at a time by moving operation input  original input to GPU SRAM (fast/small), does a

to GPU SRAM (fast/small), doing some whole sequence of layer computations without
computation, then returning the output to GPU ever touching HBM, and then returns the final
HBM (slow/large) layer output to GPU HBM (slow/large)

Version A is how standard attention is implemented

S =QK™ e RV*N P =softmax(8S) e RNV, 0 =PV e RVNX94,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*¢ in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

20



Operator Fusion

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

Version B improves performance but requires CUDA code rewriting (or through DL compilers)

S=QK" e RV*N P =softmax(8) e RV*VN,

0 =PV e RVX4,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*¢ in HBM.

1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O =

4: Return O.

PV. write O to HBM.

21



Tiling: Decompose Large Attention Calculation into Smaller Blocks

Outer Loop

K:dxN
_ Copy Block to SRAM
Q:Nxd : Outer Loop V:N Xd
2 | A -:‘:“l ______ A
;;I |:l | w
= e e e . 1
el i
3 O =y C te Block I g
k! o .ompu & . ‘oc | =
— —_ on SHKAWV - o i
- vyl |, N o
= o) 1k B
] I —
| R | (@]
| | ®)
| X } e
| ) v v
| ERREEE . L e s e Yol
Output to HEM

sm(QK")V: N x d

Inner Loop

FlashAttention

22



Tiling: Decompose Large Attention Calculation into Smaller Blocks

1. Load inputs by blocks from global HBM to
SRAM

Outer Loop

K:dxN
_ Copy Block to SRAM
Q:Nxd | Outer Loop . V:N Xd
2r -:‘lql ______ "
1 | . T
El |: :l T
I I
3 y ! computeBlock | 2
9 - .ompute .‘OC | =
» =1 on SHAM - ~
qc) y | : ! l % g
E i B 1% L.
| v 15
| |
L 3 § N
il s g e g

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention

23



Tiling: Decompose Large Attention Calculation into Smaller Blocks

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

Outer Loop

K:dxN
_ Copy Block to SRAM
: Outer Loo
Q:Nxd : et V:N Xd
~ e rAShei i ?
;I T | w
= T P S —— J
el i
o = '; L Compute Block I g
O e -
S + - or“ % (. B
@ yl ] — N 5
- K | ® O
= | I — -
U I B
| o L=
| ) v v
| ERREEE . L e s e Yol

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention

24



Tiling: Decompose Large Attention Calculation into Smaller Blocks

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by blocks

Outer Loop

-
-

K:dxN
Copy Block to SRAM
Q:Nxd Outer Loop " V:N Xd

-

B

____________ .I.qv

P R p——

QK": NxN

T SKEN
7

Compute Block

Inner Loop

doo Jauuyj

!

.

b e i e

— " m— o o

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention

25

doo 23n0



Tiling: Decompose Large Attention Calculation into Smaller Blocks

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by blocks

(Everything in a single kernel)

Outer Loop

-
>

K:dxN
Copy Block to SRAM
Q:Nxd Outer Loop " V:N Xd

[
DO G e s (i 1
> 1y 1
| -
% Y T S !
&l 1l T
= O v | o
0 c
S Compute Block -
i & g I ®
o | - on SHAWVI | = e
c ' B g 8
= ] O
- | N l ; o
I & 1] o
! | Q
LN lw-c v
I
| ERREL Ty PR L O

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention

26



Tiling: Decompose Large Attention Calculation into Smaller Blocks

(K')T K
T . : |
Q s = @ (k'V) $) = Q (K@)
Output
va 0"
Stored in HBM

A = exp(§1) A% = exp($2)) . = :
Computed in SRAM 0"

(not materialized in HBM)

1“'“mes‘ ), 1@ =10+ ) exp(s?)

Figure from http://arxiv.org/abs/2307.08691 27



Tiling: Decompose Large Attention Calculation into Smaller Blocks

Attention: O =|Softmax|{QKT) V

(Kll.‘)f ‘1\.’ 1
Q:Nxd K:Nxd A=QKT:NxN A =mask(A) A=softmax(A) :NxN JV:Nxd O=AV:Nxd
[ | ANEEEEEE [ | [ |
= [ [ [T [[]] | | | = =
|| |
0 X 5= 0
[ | [ | |
[ | [ | [ |
[ [ [
r y >\ 1
Q > S =0 (k) §2 = @ (K@)
Output
1 0 1)
v
Stored in HBM
AY) = exp(S” ) A'“) = exp(§'4)) . - 2
Computed in SRAM 0
(not materialized In HBM) l" 2

(v :Zcxp(S‘)i 14 = (1) 4 \ exp(S§'* ),

t

Figure from http://arxiv.org/abs/2307.08691 28



Tiling: Decompose Large Attention Calculation into Smaller Blocks

Attention: O =|Softmax|{QKT) V

(Kll.‘)f ‘1\.’ 1
Q:Nxd K:Nxd A=QKT:NxN A =mask(A) A=softmax(A) :NxN JV:Nxd O=AV:Nxd
| ANEEEEEE | [ [ |
= [ T[T TTT] [ | | = =
|| |
0 X 5= 0
o i =
[ [ [
r y >\ 1
Q > $) = @ (K1) §2 = @ (K@)
Output
1 0 1)
v
Stored in HBM
AQY) = exp(S” ) A'“) = exp(§'4)) . = 2\
Computed in SRAM 0

(not materialized In HBM)

(v :Zcxp(S‘)i 14 = (1) 4 \ exp(S§'* ),

t

Discussion: How would you solve this problem
if you were transported back to 20227

Figure from http://arxiv.org/abs/2307.08691 29



Tiling: Decompose Large Attention Calculation into Smaller Blocks

Attention: O =|Softmax|{QKT) V

(Kll.‘)f (K 2)y1
Q:Nxd K:Nxd A=QKT:NxN A =mask(A) A=softmax(A) :NxN JV:Nxd O=AV:Nxd
[ | [ | [ |
[ | [ | [ |
: iL
i il
; B
& = =
Q 1 S = (KW)' ! 5@ = g (k@)
Output
(1) »
y OFY = o« FE)
Stored in HBM .
A = exp(Ss) A%) = exp(S5%)) . = i [ - Rescallng to
' : 0% =—=—0
Computed in SRAM 2) o
(rot mareriatied n HaM) 2 L~ correct
by Ve denominator

I":Zoxh(S'), 1@ = ) 4 ) exp(5@)

t

Figure from http://arxiv.org/abs/2307.08691 30



Tiling: Decompose Large Attention Calculation into Smaller Blocks

Attention: O =|Softmax|{QKT) V

(Kll.‘)f (K 2)y1
Q:Nxd K:Nxd A=QKT:NxN A =mask(A) A=softmax(A) :NxN JV:Nxd O=AV:Nxd
[ | [ | [ |
[ | [ | [ |
: iL§
i il
; B
& = =
Q 1 S = (KW)' ! 5@ = g (k@)
Output
(1) »
y OFY = o« FE)
Stored in HBM .
AD = exp(s) A®) = exp($?®) . - e Rescaling to
' : 0% =—=—0
Computed in SRAM 2) o
(rot mareriatied n HaM) 2 ' correct
by Ve denominator

,1):2:(.:\')(51)_ ['Y - 1'1 ' \‘:"'\l' S ‘ 1‘ . .
; T Question: But how? How to do the rescaling

while retaining the correctness?
Figure from http://arxiv.org/abs/2307.08691 31

t



How to Implement Softmax? Standard Softmax

For a vector z € R?, softmax is computed as:

e’

— ZJ emj

softmax(z)

32



How to Implement Softmax? Standard Softmax

For a vector z € R?, softmax is computed as:

e’

— ZJ emj

softmax(z)

Question: Standard softmax is rarely used in
practice, why?

33



How to Implement Softmax? Standard Softmax

For a vector z € R?, softmax is computed as:

e’
= Zj s

|

Problem: Exponentials can explode

softmax(z)

34



How to Implement Softmax? Standard Softmax

For a vector z € R?, softmax is computed as:

e’
= Zj s

|

Problem: Exponentials can explode

softmax(z)

e grows very quickly
Assume x = 1000, e1000 ~ 10434

Too large to store in FP32, overflow (INF)

35



Stable Softmax 10

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

1. Compute the maximum value in x:

m(x) := max x;
L

36



Stable Softmax 10

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

1. Compute the maximum value in x:
m(x) := max x;
1

2. Compute the adjusted exponentials:

f(iI-') = [e;;:l—m{:c}’ E:r:g—m[;c], e ETH_””IJ:)

37



Stable Softmax 10

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

1. Compute the maximum value in x:
m(x) := max z;
2. Compute the adjusted exponentials:
fa) = [errmia), emome) | grunte
3. Compute the normalization denominator:

l(z) := Z f(z):

38



Stable Softmax 10

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

1. Compute the maximum value in x:
m(x) := max x;
1

2. Compute the adjusted exponentials:
f(iI-') = [e;;:l—m{:c}’ E:r:g—m[;c), e eﬂ.ﬁ_m(__ﬂ)

3. Compute the normalization denominator:

l(z) := Z f(z):

4. Compute the final softmax:

f(z)
£(z) 59

softmax(xz) =



Stable Softmax 10

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

1. Compute the maximum value in x:

m(x) := max x;
L

Now the largest exponentise®=1,

2. Compute the adjusted exponentials: which is very safe.

) — e;;:l—ifn{:;:} e®? —m(x) o em‘g—r?l(;;:) |
7@ [ ’ o All other terms become e*™, which

are less than or equal to 1, avoiding

3. Compute the normalization denominator:
overflow.

l(z) := Z f(z):

4. Compute the final softmax:

f(z)
{(x) 40

softmax(xz) =



FlashAttention: Tiling + Stable Softmax

Outer Loop

-
>

K':dxN
1. Load inputs by blocks from global HBM to ! Copy Block to SRAM
SRAM Q:Nxd icliicece, SR T

2r ":‘:“' —————— "
=l i g
2. On chip, compute attention output wrt " ’g' v b u o
the block § o [ computesiock |
E oy . on SHKAl | 5 o
= 418 2 :
£ F ol I d T
3. Update output in HBM by blocks L 15
& ¥ i ‘
| EREr Toppp—" Al

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention



FlashAttention: Tiling + (Online) Stable Softmax

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by online stable
softmax

Outer Loop

-
-

K:dxN
Copy Block to SRAM
Q:Nxd Outer Loop " V:N Xd

[
DO G e s (i 1
> 1y 1
| -
% Y T S !
&l 1l T
= O v | o
0 c
S Compute Block -
i & g I ®
o | - on SHAWVI | = e
c ' B g 8
= ] O
- | N l ; o
I & 1] o
! | Q
LN lw-c v
I
| ERREL Ty PR L O

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention



FlashAttention: (Online) Stable Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:

r = [m{l}}mfzj] c R?P

43



FlashAttention: (Online) Stable Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks

m(z) = max(m(z™), m(z®))

44



FlashAttention: (Online) Stable Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks
m(z) = max(m(z)), m(z?))
2. Compute adjusted exponentials (rescaling)

f(:r) — [BTTL{:EH:}—'Hl(:l':]'f(m[lj)g e'm,[:r:[m]—m(;::]f(m[zj)}

45



FlashAttention: (Online) Stable Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks
m(z) = max(m(z™), m(z®))
2. Compute adjusted exponentials (rescaling)
f(z) = [Em{z%—m(w} f(zV), em?)-mia f(mm)}
3. Compute the normalization denominator (incrementally):

F(:’Iﬁ) — Em{:r':“]—mlf.';:]f(m{l}) | E'rrl{:r':z'}—'rfl[:u}ﬁ(m{Z})

46



FlashAttention: (Online) Stable Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks
m(z) = max(m(z™), m(z®))
2. Compute adjusted exponentials (rescaling)
f(z) = [Em{z%—m(w} f(zV), em?)-mia f(mm)}
3. Compute the normalization denominator (incrementally):

F(:’Iﬁ) — Em{:r':“]—mlf.';:]f(m{l}) | E'rrl{:r':z'}—'rfl[:u}ﬁ(m{Z})
4. Compute the final softmax:

oft = ——
softmax(x) i(z) .



FlashAttention: (Online) Stable Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks
m(z) = max(m(z™), m(z®))
2. Compute adjusted exponentials (rescaling)
f(z) = [Em{z%—m(w} f(zV), em?)-mia f(mm)}
3. Compute the normalization denominator (incrementally):

F(:’Iﬁ) — Em{:r':“]—mlf.';:]f(m{l}) | E'rrl{:r':z'}—'rfl[:u}ﬁ(m{Z})

4. Compute the final softmax: _ . o
Only need to track intermediate statistics

softmax(z) = f(z) (m(x®), [(x®)) to compute softmax one block
f‘(;r) at a time 48



FlashAttention Results 1|

Effect of Block Size
e | -l\\l g
The algorithm is performing exact < O
attention, no reduction in perplexity or 244 \ ’ g“
quality of the model x ~—.___ Runtime =
T 64128 256 512 2

Block Size

49



FlashAttention Results 1|

Effect of Block Size
\ & | -l\l -g.
The algorithm is performing exact < O
attention, no reduction in perplexity or 244 \ ’ g“
quality of the model x ~—.___ Runtime =
T 64 128 256 512 2
Block Size

Question: What would happen if we further increase the
block size?
50



FlashAttention: 2-4x speedup, 10-20x memory reduction

Speed (TFLOPs/s)

200 +

150 ~

100 +

A
(=]
I

Attention forward + backward speed (A100 80GB SXM4)

Pytorch

FlashAttention

xformers

Flashattention Triton
FlashAttention-2

512

FlashAttention Memory Reduction

20 1
- 189

15 1

10 A

Memory Reduction (X times less)

128 256 512 1024 2048 4096
1k 2k 4k 8k 16k Sequence Length
Sequence length

B Dropout + Masking

Memory linear in sequence length

51



Is FlashAttention Stable?

024

-
"
-

|

SM

|cs. LG

Is Flash Attention Stable?

Alicia Golden'? Samuel Hsia? Fei Sun® Bilge Acun! Basil Hosmer

1 Yejin Lee!

Zachary DeVito' Jeff Johnson! Gu-Yeon Wei’ David Brooks® Carole-Jean Wu'!

'FAIR at Meta  “Harvard University *Meta

Abstract—Training large-scale machine learning models poses
distinet system challenges, given both the size and complexity of
today’s workloads. Recently, many organizations training state-
of-the-art Generative Al models have reported cases of instability
during training, often taking the form of loss spikes. Numeric
deviation has emerged as a potential cause of this training
instability, although quantifyving this is especially challenging
given the costly nature of training runs. In this work, we develop
a principled approach to understanding the effects of numeric
deviation, and construct proxies to put observations into context
when downstream effects are difficult to quantify. As a case study,
we apply this framework to analyze the widely-adopted Flash
Attention optimization. We find that Flash Atfention sees roughly
an order of magnitude more numeric deviation as compared to
Baseline Attention at BF16 when measured during an isolated
forward pass. We then uwse a data-driven analysis based on
the Wasserstein Distance to provide upper bounds on how this
numeric deviation impacts model weights during training, finding
that the numerical deviation present in Flash Attention is 2-5
times less significant than low-precision training.

Index Terms—Generative Al Numeric Deviation, Training
Instability, Attention, Transformers

One under-explored potential cause of training instability is
numeric deviation. Numeric deviation between an optimization
and its corresponding baseline can lead to the gradual accu-
mulation of errors, which over the course of training have the
potential to culminate in loss spikes that require a resetting
of the model state [1]. This is challenging to quantify, as
training's stochastic nature suggests some level of numeric
deviation might be acceptable, vet determining the threshold
for when training becomes unstable proves difficult.

In this work, we develop a principled quantitative approach
to understanding numeric deviation in training optimizations.
Our approach consists of two phases, including (i) develop-
ing a microbenchmark to perturb numeric precision in the
given optimization, and (ii) evaluating how numeric deviation
translates to changes in model weights through a data-driven
analysis based on Wasserstein distance. This ultimately allows
us to provide an upper bound on the amount of numeric
deviation for a given optimization, and helps to contextualize
the imorovement within known technioues. We aim to use

52



DL Inference

* Continuous Batching

53



LLM Serving System

Inference Server

Execution Engine

requests

I
»

Scheduler

A

\ 4

A

response y

<

Model

Request Queue

Maximum Batch Size = 3

54



LLM Serving System

Inference Server

Execution Engine

requests Scheduler ,

response * )

< [ x1: | think ] [ x2: | love ] Model
Request Queue

Maximum Batch Size = 3

55



LLM Serving System

requests

Inference Server

response

I
»

<

Scheduler

Execution Engine

A

\ 4

Request Queue

Maximum Batch Size = 3

A

O

E | x1: I think |
t] [ x2:1love |

Model

56



LLM Serving System

requests

Inference Server

response

I
»

<

Scheduler

A

Execution Engine

\ 4

Request Queue

A

O

E | x1: I think |
t] [ x2:1love |

Model

Maximum Batch Size = 3

[ x1: this is great ]

[ X2: you ]

57



LLM Serving System

Inference Server

Execution Engine

requests _ Scheduler .
response y <
1:| e Model
[ Xt 2 i M } Request Queue

is great

| X2: 1love you | Maximum Batch Size = 3

58



Example: TensorRT Inference Server

C10 [
o Separates implementation of serving layer
and execution layer

| - EE B3 SRy
o Implements scheduling and batching = )

algorithms M
. . Request/Response Handling M .;m:;
« Dynamic Batching 2
u Sequence BatChIng Inference Request cat|nf eeeeee Response
» Continuous Batching
o Allows multiple models to concurrently
execute ;
o Supports multiple frameworks
= VLLM backend |
STATUS/HEALTH METRICS EXPORT il HTTP
= TensorFlow O E—— !
= PyTorch
- ONNX GPU GPU GPU GPU

59



DL Inference

* Continuous Batching

60



Problem 1: Request Level Scheduling

Execution Engine

/ this

1S great
you \ <EOS>\ - \

. | 1
( iter 1 (iter 3) (iter 4)
A X

2
i1 thinkq this | { is |Y great

ka I | love

——

61



Problem 1: Request Level Scheduling

Execution Engine /xZ generation done
/ this is | Lefeat <EOS>\
you ||| <EOS>" - \ -

A +
( iter 1 ) 1ter 3 (iter 4)
A X

M 1 !
331 I |think ]\j this | Y great |

you - - /

62



Problem 1: Request Level Scheduling

Execution Engine /xZ generation done
/ this is /gé <EOS>\ Early finished requests
\ - \ cannot return to the
you ||| <EOS> - - Inference Server -
+ Latency increase

A +
( iter 1 ) 1ter 3 (iter 4)
A X

M 1 !
L1 1 thinkq this | Y great |

........ you - - /

63



Problem 1: Request Level Scheduling

Inference Server

Execution Engine

requests Scheduler

* E x1: Ithlnk

x2: | love

response v «

P
<

Model

Request Queue

Started processing x1
and x2

Maximum Batch Size = 3

64



Problem 1: Request Level Scheduling

Inference Server

Execution Engine
requests
i . Scheduler .
1 E x1: Ithlnk
|

response ! New! . t] x2: | love

- [ x3: A man ] Model

Request Queue

Maximum Batch Size = 3

65



Problem 1: Request Level Scheduling

Inference Server

Execution Engine

iy
requests Scheduler (‘J

! E [ x1: I think |
response v New! t] [ x2: | love ]

Model

\ 4
\ 4

A

< [ x3: A man ]

Request Queue \

Late join requests need to wait until engine
finishes execution
- Latency Increase

Maximum Batch Size = 3

66



Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

schedule one

iter

return

select requests

Execution Engine

—
.

Request Pool




Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

select requests

Execution Engine

—
.

| x1:Ithink |

[ x2: | love ]

Request Pool




Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

Execution Engine
schedule one

iter "
.
.

| xl:Ithink |

[ x2: | love ]

~—

iter 1

Request Pool




Solution 1: Iteration Level Scheduling

requests

response

ORCA
Execution Engine
Scheduler I
.
return
] | x1: I think this |

[ x2: | love you ]

Request Pool

[ x3: A man ]




Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

select requests

Execution Engine

—
.

[ x1: | think this ] [ x3: A man ]

[ x2: | love you ]

Request Pool




Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

schedule one

iter

Execution Engine

]| x1: 1 think this

1

.

~—

iter 2

[ x2: | love you

[ x3: A man ]

Request Pool




Solution 1: Iteration Level Scheduling

requests

ORCA

response

Scheduler

return

Execution Engine

[ x1: | think this is

_

—
.

~—

[ x2: | love you <EOS>

]

[ x3: Amanis ]

Request Pool




Solution 1: Iteration Level Scheduling

requests

ORCA

response

:

x2: | love you
<EOS>

|

Scheduler

select requests

Execution Engine

—
.

Request Pool

[ x1: | think this is ] [ x4: How are ]

[ x3: Amanis ] [ x5: When will ]




Solution 1: Iteration Level Scheduling

ORCA

Execution Engine
schedule one

iter 1 \ x1: | think this is ]
requests Scheduler I )
i I \ x3: Amanis ]
) x4: How are ]
iter 3
response !

Request Pool

[ x5: When will ]




Solution 1: Iteration Level Scheduling

requests

ORCA

response

schedule one

Execution Engine

iter > E[ x1: | think this is ]
Scheduler )

-~

A

Iteration Level Scheduling handles early finished
requests and late joining requests

s
re |

/—

Request Pool

[ x5: When will ]




Problem 2: How to Batch Requests?

Output
Let’s assume Batch Size B=1 4
—> Add > Add
Input Dimension: [L x H] (L=sequence length, H=hidden dim.) i 2
MLP
Attention Operation: Attn Out Linear
1.  QKT:[LxH] x [HxL] = [L x L] i Linear
2. P =softmax(QK"): [Lx L] Attention t
GeLU
3. O=PV:[LxL] x [LxH] = [L x H] Quer}\ TKG:}/‘V&MG )
QKV Linear Linear
With Batch Size B, QKT will be [B x L x L] A X
LayerNorm LayerNorm
! .

Input



Problem 2: How to Batch Requests?

Let’s assume Batch SizeB=1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT :[LxH] x [HxL] = [L x L]

2. P =softmax(QK"): [Lx L]

3. O=PV:[LxL] x [LxH] = [L x H]

With Batch Size B, QK™ will be [B x L x L]

\

With different sequence lengths, QK"
cannot be computed

Output
*
—> Add Add
* A
_ MLP
Attn Out Linear
i Linear
Attention 4
GeLU
Quer}\ TK&:}/4 Value
+
QKYV Linear Linear
4 3
LayerNorm LayerNorm
! .
Input




Solution 2: Selective Batching

Only Attention operation does not work

with batching tensors with diff. L, ( split }[2,3}1] ( - } 2, H]

Batch for other ops. (Layer Norm, GelU, £7 3m] 3,3H] Attnz4 |[3, H]

etc.)
(QKV Linear) @
Attn z2
Coalesce [L, H] tensor to [ZL, H] I 1.3H] A [1:H]
7, H]

_ T14 |’
for batching

L22 Attention K/V Manager

x1: 1 H] / \ Ty : (T11,T12,%13) T2t (T21)
PR Use flattened2D Y (L] L]

X2 :1'H: ‘ [7,H] tensor without batch e [T 1] ]

x3: (2,H] tensor dimension

x4: [3,H] \_ )




Solution 2: Selective Batching

Split, process each
request and merge
tensors

Only Attention operation does not work

with batching tensors with diff. L, ( split ) 2,3H] _( Attn 23 ) 2, H]

Batch for other ops. (Layer Norm, GelLU, T[T 3H] [3,3H] 3, H]

etc.) [1,3H] 1, H]
(QKV Linear) Attn 21

Coalesce [L, H] tensor to [2L, H] o1a ’ 3 ’

for batching [7, H]

L22 Attention K/V Manager
w11 H T31| T32 T1: (T11,T12,Z13) T2 : (Z21)
- :1’H: [7.H) Ta1| Taz| Zas Key CTT] ]

- L4, ’ Val
x3: -Z,H- ‘ tensor Layer Input ue [L1] U
x4: [3,H]




LLM Inference Scheduler 1

/ \ ORCA

schedule one
iter

Scheduler .
I

Execution Engine

| xl:Ithink |

requests

select requests
response |

Request Pool

[ x2: | love ]

return result

~—

iter 1




LLM Inference Scheduler 10

o Enforces iteration-level first-come-first-served (FCFS) property
o« Maximum batch size - Throughput vs. Latency control knob

o Keep track of number of reserved slots to avoid deadlock
o Slot := memory required for storing an Attention key and value for a single
token

e Reserves max_tokens memory slots per request



Throughput Improvement from Continuous Batching

Throughput improvement over naive static batching vs. generated sequence length variance

B Static batching (FasterTransformer) m Continuous batching (text-generation-inference) Continuous batching (Ray Serve)
@ Continuous batching (vLLM)

20x —

10x

23.51
L 9.49
8x 8.23 P15
6Xx —
4x 4.29
' il 329
2.61
2X [~ 2.05
1.50
1x — 26 0%
1.03
32 128

512 1536

Improvement in throughput over HF Pipelines

Maximum number of generated tokens

https://www.anyscale.com/blog/continuous-batching-llm-inference



Continuous Batching Step-by-Step

» Handle early-finished and late-arrived requests more efficiently
» Higher GPU utilization

84



Questions?

85
COMPUTER SCIENCE GRAINGER ENGINEERING



FlashAttention

Attention on GPT-2

]Matmul

Dropout

Softmax

J L

Time (ms)

Fused
Mask Kernel

~

jMatmuI

PyTorch FlashAttention

86



FlashAttention

Attention on GPT-2

154 ]Matmul
Dropout Table 1. Proportions for operator classes in PyTorch.
Eto- i Operator class % flop % Runtime
o Softmax
£ d ;
2 Fused A Tensor contraction  99.80  61.0
Mask  Kemel [J Stat. normalization  0.17 255
: I matmul O Element-wise 0.03 13.5
PyTorch FlashAttention

Matrix multiplication takes up 99% of the FLOPS
* But only takes up 61% of the runtime

Question: Why do other operators take so much time?

87



FlashAttention

Attention on GPT-2

154 ]Matmul
Dropout Table 1. Proportions for operator classes in PyTorch.
Eto- i Operator class % flop % Runtime
o Softmax
£ d ;
2 Fused A Tensor contraction  99.80  61.0
Mask  Kemel [J Stat. normalization  0.17 255
: I matmul O Element-wise 0.03 13.5
PyTorch FlashAttention

Matrix multiplication takes up 99% of the FLOPS
* But only takes up 61% of the runtime

Question: Why do other operators take so much time?
Inference is usually memory-bound

* Lots of time is wasted moving data around on the GPU instead of doing
computation

88



Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (1-th iteration):
* Process all input tokens at once

* Decoding phase (all other iterations):
* Process a single token generated from previous iteration
* Use attention keys & values of all previous tokens

* Key-value cache:

e Save attention keys and values for the following iterations to avoid
recomputation

89



Generative LLM Inference: KV Cache

Prefill

Decode

(Q * K"T) * V computation process with caching

Heys T
Step 1 g T
Queri \ Values Results
; x » x —
I
& &4 &4
q
l[.ar hing K l{athinn: W
l Restoring Restaring
from cache K from cache
St-'E'P N Keys_Transpose
d "v\ Valuss
Queries Besuls
I
| |+ I )4 S — K
i &4
el

s J

Values that will be computed an this step

‘Walues that will be taken from cache

90



	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La– 
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

