
Deepspeed - Alphafold3
–Minjia Zhang, Hoa La–

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering

1

Deep Learning Inference Optimizations

• LLM Inference Basic

• Flash Attention

• Continuous Batching

Today

2

LLMs are Slow and Expensive to Serve

3

• At least ten A100-40GB GPUs to serve 175B GPT-3 in half-precision

• Generating 256 tokens takes ~20 seconds

• Cannot process requests in parallel
• Per-request key-value cache takes 3GB GPU memory

Generative LLM Inference: Autoregressive Decoding

4

Generative LLM Inference: Autoregressive Decoding

5

• Pre-filling phase (0-th iteration):
• Process all input tokens at once

Generative LLM Inference: Autoregressive Decoding

6

Repeat until the sequence
• Reaches the pre-defined maximum length (e.g., 2048 tokens)
• Generates the stop tokens (e.g., “<|end of sequence|>”)

• Decoding phase (all other iterations):
• Process a single token generated

from previous iteration
• Use attention keys & values of all

previous tokens

Generative LLM Inference: Important Metrics

7

• Time to First Token (TTFT): Measures how quickly users begin to see the model
output token after submitting a query.
• Critical for real-time interactions
• Driven by prompt processing time and the generation of the first token

• Time per Output Token (TPOT): Time taken to generate each output token.
• Impacts user perception of speed (e.g., 100ms/token = 10 tokens/second)

• E2E Latency = TTFT + (TPOT * the number of generated tokens)
• Total time to generate the complete response

• Throughput: Number of tokens generated per second across all requests by the
inference server

LLM Inference Performance Engineering: Best Practices | Databricks

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

Optimizing LLM Inference: Goals and Tradeoffs

8

• Goal: Minimize TTFT, maximize throughput, and reduce TPOT
• Throughput vs. TPOP Tradeoff: Processing multiple queries

concurrently increases throughput extends TPOT for each user.

DL Inference

• LLM Inference

• FlashAttention (cont.)

• Continuous Batching

Today

9

LLM Inference: Bottleneck from Attention Calculation

10

FlashAttention

11

• First introduced at HAET workshop @ICML July 2022

• Published @ NeurIPS Dec 2022

• Very useful even though many people probably don’t even know they
are using it!

FlashAttention

12

• First introduced at HAET workshop @ICML July 2022

• Published @ NeurIPS Dec 2022

• Very useful even though many people probably don’t even know they
are using it! Massive adoption (5 months)

Revisit: GPU Memory Hierarchy

13

Memory is arranged hierarchically
• GPU SRAM is small, and supports the

fastest access
• GPU HBM is larger but with much

slower access
• CPU DRAM is huge, but the slowest of

all

Standard Attention

14

S S = mask(S) P=softmax(S): N x N O = PV: N x d

Standard Attention

15

S S = mask(S) P=softmax(S): N x N O = PV: N x d

Question: What are
limitations of standard
attention implementation?

Standard Attention

16

S S = mask(S) P=softmax(S): N x N O = PV: N x d

Challenges:
• Repeated reads/writes from GPU HBM
• Large intermediate results
• Cannot scale to long sequences due to O(N2) intermediate results

FlashAttention

17

• Three key ideas are combined to obtain FlashAttention
• Operator fusion: Use a single kernel that includes all operators

during attention computation to avoid kernel launching overhead
and intermediate data movement

• Tiling: compute the attention block by block so that we don’t have
to load everything into SRAM at once

• Recomputation: don’t store the full attention matrix in forward,
but just recompute during the backward pass

Operator Fusion

18

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

Figure from https://horace.io/brrr_intro.html

Operator Fusion

19

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

Figure from https://horace.io/brrr_intro.html

Operator Fusion

20

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

Version A is how standard attention is implemented

Operator Fusion

21

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

Version B improves performance but requires CUDA code rewriting (or through DL compilers)

Tiling: Decompose Large Attention Calculation into Smaller Blocks

22

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by scaling

Tiling: Decompose Large Attention Calculation into Smaller Blocks

23

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by scaling

Tiling: Decompose Large Attention Calculation into Smaller Blocks

24

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by scaling

Tiling: Decompose Large Attention Calculation into Smaller Blocks

25

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by blocks

Tiling: Decompose Large Attention Calculation into Smaller Blocks

26

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by blocks

(Everything in a single kernel)

Tiling: Decompose Large Attention Calculation into Smaller Blocks

27Figure from http://arxiv.org/abs/2307.08691

Tiling: Decompose Large Attention Calculation into Smaller Blocks

28Figure from http://arxiv.org/abs/2307.08691

Tiling: Decompose Large Attention Calculation into Smaller Blocks

29Figure from http://arxiv.org/abs/2307.08691

Discussion: How would you solve this problem
if you were transported back to 2022?

Tiling: Decompose Large Attention Calculation into Smaller Blocks

30Figure from http://arxiv.org/abs/2307.08691

Rescaling to
correct
denominator

Tiling: Decompose Large Attention Calculation into Smaller Blocks

31Figure from http://arxiv.org/abs/2307.08691

Question: But how? How to do the rescaling
while retaining the correctness?

Rescaling to
correct
denominator

How to Implement Softmax? Standard Softmax

32

For a vector , softmax is computed as:

How to Implement Softmax? Standard Softmax

33

For a vector , softmax is computed as:

Question: Standard softmax is rarely used in
practice, why?

How to Implement Softmax? Standard Softmax

34

For a vector , softmax is computed as:

Problem: Exponentials can explode

How to Implement Softmax? Standard Softmax

35

For a vector , softmax is computed as:

Problem: Exponentials can explode

ex grows very quickly
Assume x = 1000, e1000 ≈ 10434

Too large to store in FP32, overflow (INF)

Stable Softmax

36

1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

Stable Softmax

37

1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

Stable Softmax

38

1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

Stable Softmax

39

1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

Stable Softmax

40

1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:

Subtracting the max value from the input vector before applying the exp function,
which helps prevent overflow issue

Now the largest exponent is e0 = 1,
which is very safe.

All other terms become ex-m , which
are less than or equal to 1, avoiding
overflow.

FlashAttention: Tiling + Stable Softmax

41

1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by blocks

FlashAttention: Tiling + (Online) Stable Softmax

42

1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

1. Load inputs by blocks from global HBM to
SRAM

2. On chip, compute attention output wrt
the block

3. Update output in HBM by online stable
softmax

FlashAttention: (Online) Stable Softmax

43

1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

FlashAttention: (Online) Stable Softmax

44

1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

FlashAttention: (Online) Stable Softmax

45

1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

FlashAttention: (Online) Stable Softmax

46

1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

FlashAttention: (Online) Stable Softmax

47

1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

FlashAttention: (Online) Stable Softmax

48

1. Track the max value across blocks

2. Compute adjusted exponentials (rescaling)

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

Only need to track intermediate statistics
(m(x(i)), l(x(i))) to compute softmax one block
at a time

FlashAttention Results

49

The algorithm is performing exact
attention, no reduction in perplexity or
quality of the model

FlashAttention Results

50

The algorithm is performing exact
attention, no reduction in perplexity or
quality of the model

Question: What would happen if we further increase the
block size?

FlashAttention: 2-4x speedup, 10-20x memory reduction

51

Is FlashAttention Stable?

52

DL Inference

• LLM Inference

• FlashAttention

• Continuous Batching

Today

53

LLM Serving System

54

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

LLM Serving System

55

requests

response

Inference Server

Scheduler

Request Queue

x1: I think x2: I love

Maximum Batch Size = 3

Execution Engine

Model

LLM Serving System

56

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

LLM Serving System

57

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: this is great

x2: you

x1: I think

x2: I love

LLM Serving System

58

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model
x1: I think this

is great

X2: I love you

Example: TensorRT Inference Server

59

○ Separates implementation of serving layer
and execution layer

○ Implements scheduling and batching
algorithms
■ Dynamic Batching
■ Sequence Batching
■ Continuous Batching

○ Allows multiple models to concurrently
execute

○ Supports multiple frameworks
■ vLLM backend
■ TensorFlow
■ PyTorch
■ ONNX

DL Inference

• FlashAttention

• LLM Inference

• Continuous Batching

Today

60

Problem 1: Request Level Scheduling

61

Execution Engine

Problem 1: Request Level Scheduling

62

Execution Engine x2 generation done

Problem 1: Request Level Scheduling

63

Execution Engine x2 generation done

Early finished requests
cannot return to the
Inference Server →
Latency increase

Problem 1: Request Level Scheduling

64

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

Started processing x1
and x2

Problem 1: Request Level Scheduling

65

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Problem 1: Request Level Scheduling

66

requests

response

Inference Server

Scheduler

Request Queue

Maximum Batch Size = 3

Execution Engine

Model

x1: I think

x2: I love

x3: A man

New!

Late join requests need to wait until engine
finishes execution
→ Latency Increase

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one
iter

return

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think

x2: I love

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one
iter x1: I think

x2: I love

iter 1

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

return

x1: I think this

x2: I love you

x3: A man

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this

x2: I love you

x3: A man

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this

x2: I love you

x3: A man

schedule one
iter

iter 2

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

return

x1: I think this is

x2: I love you <EOS>

x3: A man is

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is
x2: I love you

<EOS>

x3: A man is

x4: How are

x5: When will

select requests

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is

x3: A man is

x4: How are

x5: When will

schedule one
iter

iter 3

Solution 1: Iteration Level Scheduling

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

x1: I think this is

x3: A man is

x4: How are

x5: When will

schedule one
iter

iter 3Iteration Level Scheduling handles early finished
requests and late joining requests

Solution 1: Iteration Level Scheduling

Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

Problem 2: How to Batch Requests?

Let’s assume Batch Size B = 1

Input Dimension: [L x H] (L=sequence length, H=hidden dim.)

Attention Operation:
1. QKT : [LxH] x [HxL] → [L x L]

2. P = softmax(QKT) : [L x L]

3. O = PV : [LxL] x [LxH] → [L x H]

With Batch Size B, QKT will be [B x L x L]

With different sequence lengths, QKT
cannot be computed

Problem 2: How to Batch Requests?

Only Attention operation does not work
with batching tensors with diff. Li

Batch for other ops. (Layer Norm, GeLU,
etc.)

Coalesce [Li, H] tensor to [ΣLi, H]
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]
x4: [3,H]

[7,H]
tensor

Use flattened 2D
tensor without batch

dimension

Solution 2: Selective Batching

Only Attention operation does not work
with batching tensors with diff. Li

Batch for other ops. (Layer Norm, GeLU,
etc.)

Coalesce [Li, H] tensor to [ΣLi, H]
for batching

x1: [1,H]
x2: [1,H]
x3: [2,H]
x4: [3,H]

[7,H]
tensor

Solution 2: Selective Batching

Split, process each
request and merge

tensors

requests

response

Execution Engine

Scheduler

Request Pool

ORCA

schedule one
iter x1: I think

x2: I love

iter 1

return result

select requests

LLM Inference Scheduler

● Enforces iteration-level first-come-first-served (FCFS) property

● Maximum batch size → Throughput vs. Latency control knob

● Keep track of number of reserved slots to avoid deadlock
○ Slot := memory required for storing an Attention key and value for a single

token

● Reserves max_tokens memory slots per request

LLM Inference Scheduler

Throughput Improvement from Continuous Batching

https://www.anyscale.com/blog/continuous-batching-llm-inference

Continuous Batching Step-by-Step

84

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E

Questions?

85

FlashAttention

86

Inference is usually memory-bound
• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime
• Lots of time is wasted moving data around on the GPU instead of doing

computation

Figure from https://arxiv.org/pdf/2205.14135

FlashAttention

87

Inference is usually memory-bound
• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime
• Lots of time is wasted moving data around on the GPU instead of doing

computation

Figure from https://arxiv.org/pdf/2205.14135

• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime

Challenge: Inference is usually memory-bound
• Lots of time is wasted moving data around on the GPU instead of doing

computation

Question: Why do other operators take so much time?

FlashAttention

88

• Matrix multiplication takes up 99% of the FLOPS
• But only takes up 61% of the runtime

Inference is usually memory-bound
• Lots of time is wasted moving data around on the GPU instead of doing

computation

Question: Why do other operators take so much time?

Generative LLM Inference: Autoregressive Decoding

89

• Pre-filling phase (1-th iteration):
• Process all input tokens at once

• Decoding phase (all other iterations):
• Process a single token generated from previous iteration
• Use attention keys & values of all previous tokens

• Key-value cache:
• Save attention keys and values for the following iterations to avoid

recomputation

Generative LLM Inference: KV Cache

90

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

