

CS 498: Machine Learning System Spring 2025

Minjia Zhang

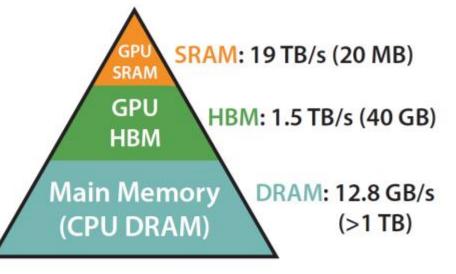
The Grainger College of Engineering

DL Inference

• FlashAttention

Memory is arranged hierarchically

- GPU SRAM is small, and supports the fastest access
- GPU HBM is larger but with much slower access
- CPU DRAM is huge, but the slowest of all

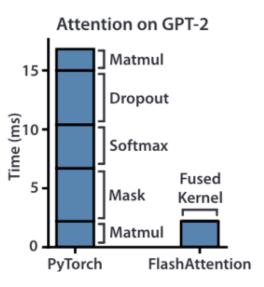


Memory Hierarchy with Bandwidth & Memory Size Inference is usually memory-bound

- Matrix multiplication takes up 99% of the FLOPS
- But only takes up 61% of the runtime
- Lots of time is wasted moving data around on the GPU instead of doing computation

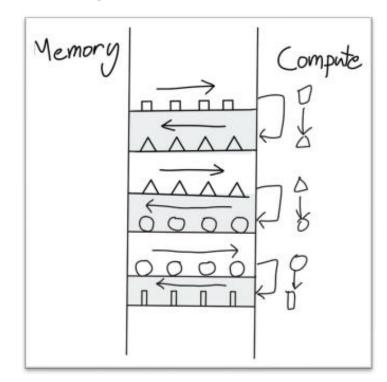
Table 1. Proportions for operator classes	in PyTorch.
---	-------------

Operator class	% flop	% Runtime
\triangle Tensor contraction	99.80	61.0
□ Stat. normalization	0.17	25.5
O Element-wise	0.03	13.5

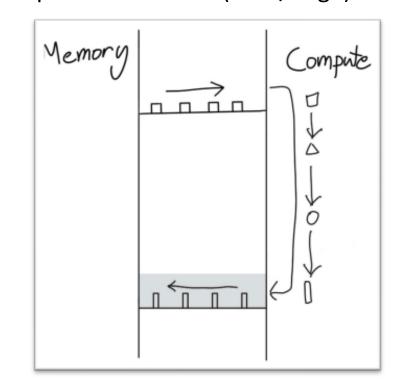


Operator Fusion

Version A: Usually, we compute a neural network one operator at a time by moving operation input to GPU SRAM (fast/small), doing some computation, then returning the output to GPU HBM (slow/large)



Version B: Operator fusion instead moves the original input to GPU SRAM (fast/small), does a whole sequence of layer computations without ever touching HBM, and then returns the final layer output to GPU HBM (slow/large)



Operator Fusion

Version A: Usually, we compute a neural network one operator at a time by moving operation input to GPU SRAM (fast/small), doing some computation, then returning the output to GPU HBM (slow/large)

Version B: Operator fusion instead moves the original input to GPU SRAM (fast/small), does a whole sequence of layer computations without ever touching HBM, and then returns the final layer output to GPU HBM (slow/large)

Version A is how standard attention is implemented

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

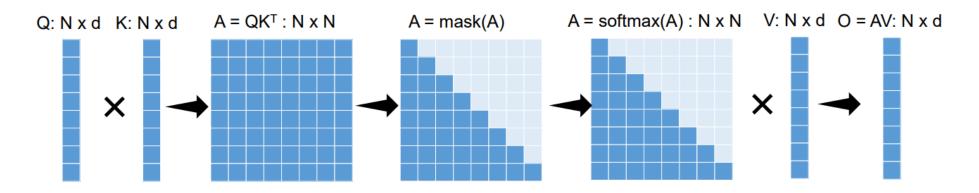
Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute $\mathbf{P} = \text{softmax}(\mathbf{S})$, write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.

Standard Attention

Attention: $O = Softmax(QK^T) V$



Version A is how standard attention is implemented

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

Algorithm 0 Standard Attention Implementation

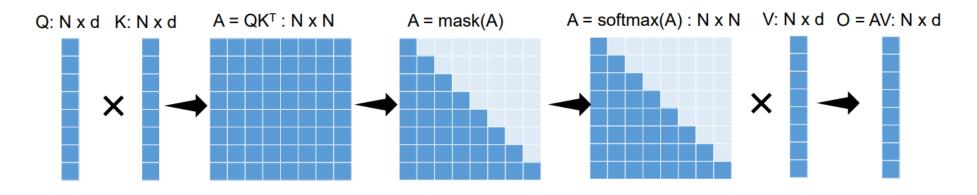
Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load **Q**, **K** by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write **S** to HBM.
- 2: Read **S** from HBM, compute $\mathbf{P} = \text{softmax}(\mathbf{S})$, write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.

4: Return **O**.

Standard Attention

Attention: $O = Softmax(QK^T) V$



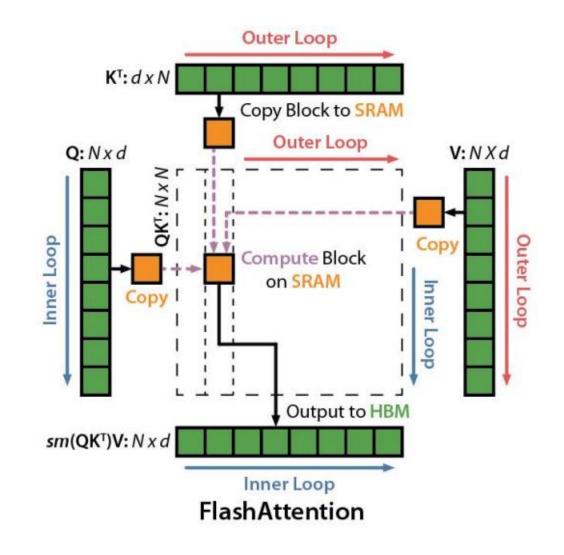
Challenges:

- Repeated reads/writes from GPU device memory
- Large intermediate results
- Cannot scale to long sequences due to O(N^2) intermediate results

- Three key ideas are combined to obtain FlashAttention
 - Kernel fusion: One kernel that includes all operators during attention computation to avoid kernel launching overhead and intermediate data movement
 - Tiling: compute the attention weights block by block so that we don't have to load everything into SRAM at once
 - Recomputation: don't store the full attention matrix in forward, but just recompute the parts of it you need during the backward pass

Tiling: Decompose Large GeMM into Smaller Blocks

- 1. Load inputs by blocks from global to shared memory
- 2. On chip, compute attention output wrt the block
- Update output in device memory by scaling



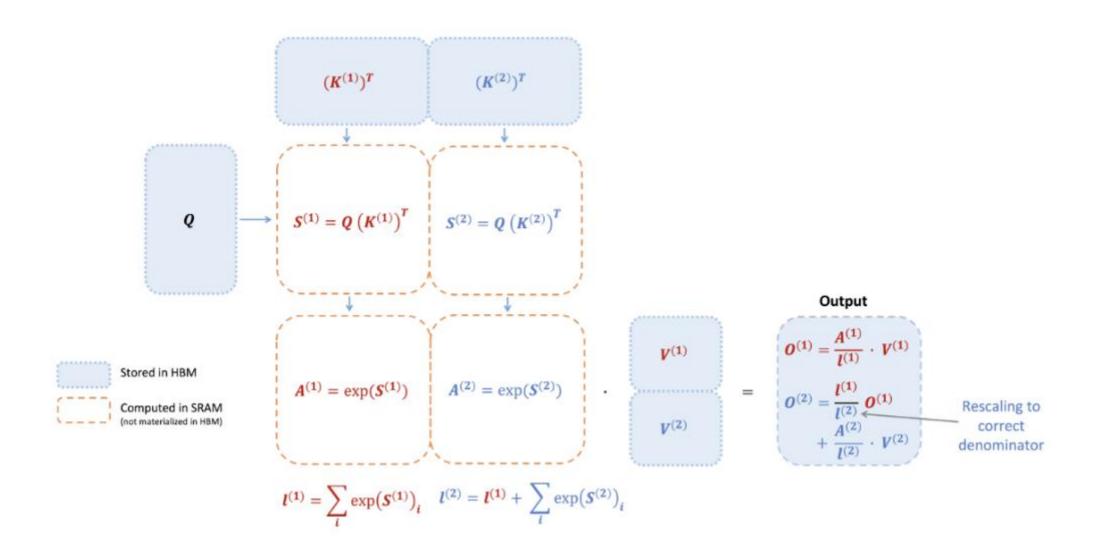


Figure from http://arxiv.org/abs/2307.08691

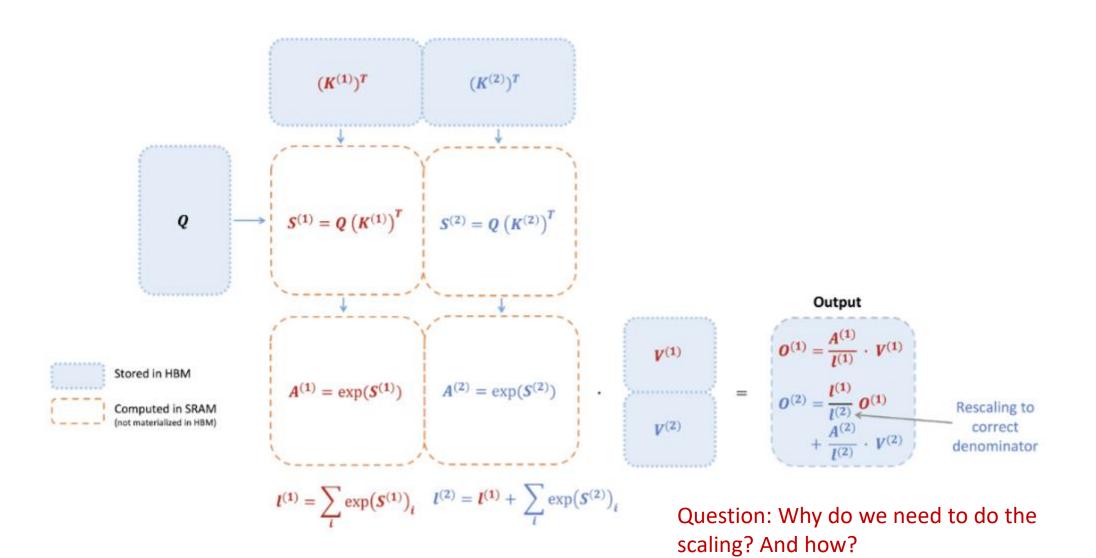


Figure from http://arxiv.org/abs/2307.08691

For a vector $x \in \mathbb{R}^B$, softmax is computed as:

$$ext{softmax}(x) = rac{e^{x_i}}{\sum_j e^{x_j}}$$

Issue: Easily lead to numerical instability, e.g., overflow because of $\sum_{j} e^{x_{j}}$

Stable Softmax

1. Compute the maximum value in x:

$$m(x):=\max_i x_i$$

2. Compute the adjusted exponentials:

$$f(x):=\left[e^{x_1-m(x)},e^{x_2-m(x)},\ldots,e^{x_B-m(x)}
ight]$$

3. Compute the normalization denominator:

$$\ell(x):=\sum_i f(x)_i$$

4. Compute the final softmax:

$$\operatorname{softmax}(x) = rac{f(x)}{\ell(x)}$$

Let's say we have two blocks $x^{(1)}$ and $x^{(2)}$ each of size B. The concatenated vector is:

$$x = [x^{(1)}, x^{(2)}] \in \mathbb{R}^{2B}$$

1. Track the max value across blocks

 $m(x) = \max(m(x^{(1)}), m(x^{(2)}))$

2. Compute adjusted exponentials:

$$f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}), e^{m(x^{(2)}) - m(x)} f(x^{(2)})
ight]$$

3. Compute the normalization denominator (incrementally):

$$\ell(x) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)})$$

4. Compute the final softmax:

$$\operatorname{softmax}(x) = rac{f(x)}{\ell(x)}$$

15

Let's say we have two blocks $x^{(1)}$ and $x^{(2)}$ each of size B. The concatenated vector is:

$$x = [x^{(1)}, x^{(2)}] \in \mathbb{R}^{2B}$$

1. Track the max value across blocks

 $m(x) = \max(m(x^{(1)}), m(x^{(2)}))$

2. Compute adjusted exponentials:

$$f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}), e^{m(x^{(2)}) - m(x)} f(x^{(2)})
ight]$$

3. Compute the normalization denominator (incrementally):

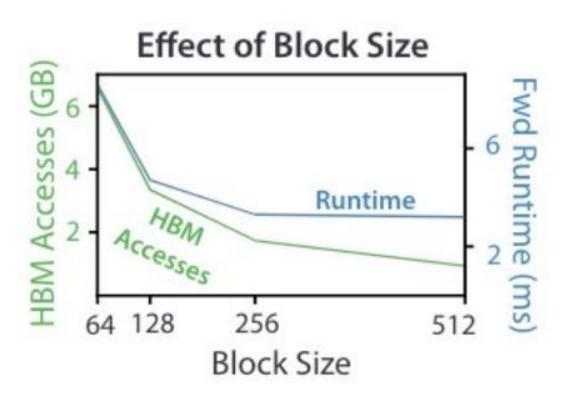
$$\ell(x) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)})$$

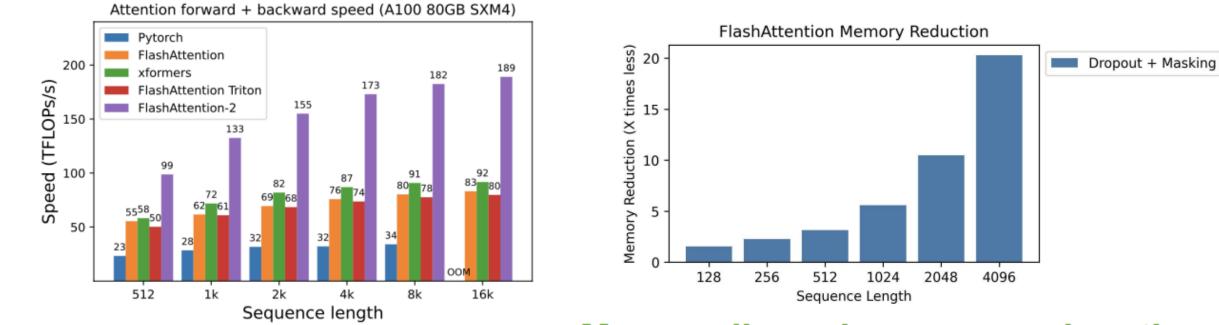
4. Compute the final softmax:

$$\operatorname{softmax}(x) = rac{f(x)}{\ell(x)}$$

Only need to track intermediate statistics to compute softmax one block at a time

The algorithm is performing exact attention, no reduction in perplexity or quality of the model





Memory linear in sequence length

Questions?

COMPUTER SCIENCE

