1L ILLINOIS

AAAAAAAAAAAAAAAA

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering

DL Inference
* FlashAttention

Revisit: GPU Memory Hierarchy

Memory is arranged hierarchically

* GPU SRAM is small, and supports the
fastest access

* GPU HBM is larger but with much
slower access

 CPU DRAM is huge, but the slowest of
all

Vi: 19TB/s (20 MB)

HBM: 1.5TB/s (40 GB)

: 12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

FlashAttention 1|

Table 1. Proportions for operator classes in PyTorch.

Operator class % flop % Runtime

A Tensor contraction 99.80 61.0
[] Stat. normalization 0.17 255

Inference is usually memory-bound
* Matrix multiplication takes up

99% of the FLOPS O Element-wise 0.03 13.5
* But only takes up 61% of the Attention on GPT-2
runtime] Matmu

—
L
L

Dropout

e Lots of time is wasted moving
data around on the GPU instead
of doing computation

—
o
1

Softmax

Time (ms)

Fused

Mask Kernel
—

Loy
1

j Matmul

PyTorch FlashAttention

Operator Fusion

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

V\"’"’”':? Compate
? U
M M nn
= L
AAAA
—
AN ANDAY
e
|
—
oooog?
S S
TR

Figure from https://horace.io/brrr_intro.html

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

Memory Compite
__._-‘?-ﬂ\

I

=< o<— b

Operator Fusion

Version A: Usually, we compute a neural network
one operator at a time by moving operation input
to GPU SRAM (fast/small), doing some
computation, then returning the output to GPU
HBM (slow/large)

Version A is how standard attention is implemented

S=QK" e RV*N P =softmax(8) e RV*VN,

Version B: Operator fusion instead moves the
original input to GPU SRAM (fast/small), does a
whole sequence of layer computations without
ever touching HBM, and then returns the final
layer output to GPU HBM (slow/large)

0 =PV e RVX4,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*¢ in HBM.

1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O =

4: Return O.

PV. write O to HBM.

Standard Attention

Attention: O = Softmax(QKT) V

Q:Nxd K:Nxd A=QKT:NxN A = mask(A) A =softmax(A):NxN V:Nxd O=AV:Nxd
[] HEEEEEEEE]]
[]] [[]
] HEE]]
0) HEEN N X . = B
] HEEEE HEEER]]
= RN EEEEN I =
] HEEN EEEEEEN]]
] HEEEN HEEEEEREN]]

Version A is how standard attention is implemented

S=QK" e RV*N P =softmax(S) e R¥N*N, 0 =PV e RV,

Algorithm 0 Standard Attention Implementation
Require: Matrices Q, K,V € R¥*¢ in HBM.

1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3
4

: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
: Return O. /

Standard Attention 1

Attention: O = Softmax(QKT) V

Q:Nxd K:Nxd A=QKT:NxN A = mask(A) A =softmax(A):NxN V:Nxd O=AV:Nxd

] HEEEEEEE O]
] [[]
- ek
- X5
] []
] []
n]]
Challenges:

* Repeated reads/writes from GPU device memory
e Large intermediate results
e Cannot scale to long sequences due to O(N”2) intermediate results

FlashAttention i

* Three key ideas are combined to obtain FlashAttention

* Kernel fusion: One kernel that includes all operators during
attention computation to avoid kernel launching overhead and
intermediate data movement

* Tiling: compute the attention weights block by block so that we
don’t have to load everything into SRAM at once

* Recomputation: don’t store the full attention matrix in forward,
but just recompute the parts of it you need during the backward
pass

Tiling: Decompose Large GeMM into Smaller Blocks

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by
scaling

Outer Loop

K':dxN
_ Copy Block to SRAM
Q:Nxd | Outer Loop V:N Xd
E;‘ aey ”;
e B
| ' § i
q
S Oy Compute Block I g
.0 S .3
b + > o;""‘ ¥ ®
qc) y | : 1 | - I g g
£ E 1l % 8
|} I —
| B | O
| | QO
| v 11
| | J v
| ERIL~E T e | el A Yadl

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention

10

Tiling: Decompose Large GeMM into Smaller Blocks

(K.‘l‘)f

Q SIITQ(Kil)'A

Stored in HBM

A = exp(sW))

Computed in SRAM

(not materialized in HBM)

)
"

(v —Zc\p(S l‘}' I
]

Figure from http://arxiv.org/abs/2307.08691

(K'#)*
Q(K'*#
Output
All‘l
Vv]l O‘I——III' . V“:
= < - lll)
0 — 0V
1' < —
l ._‘ SN O0IT
. Vv
[.
OFIRN S

11

Tiling: Decompose Large GeMM into Smaller Blocks

(K.‘l‘)f ,I\'.’ !
r
Q s = @ (k) S Q (K
Output
All
V“ O‘I—l.lr V(l
Stored in HBM
Al :t‘.\;[\(\s'"l_’ ‘.IV-.' 7'._‘;“‘\..' ; . —_ " lll) i
Computed in SRAM 0* I_’.~O—
(not materialized in HBM)) > S ——
l ._‘ y4
. Vv
]

ll’—Zc?\p(S'; ' I 4 \ sie)))
; T ‘ Question: Why do we need to do the

scaling? And how?
Figure from http://arxiv.org/abs/2307.08691 12

]

How to Implement Softmax? 1

For a vector z € R?, softmax is computed as:

e’

— ZJ emj

softmax(z)

Issue: Easily lead to numerical instability, e.g., overflow because of Zj e’

13

Stable Softmax 10

1. Compute the maximum value in x:
m(x) = max
2. Compute the adjusted exponentials:
f(z) = [emmme) gmmie) | momma
3. Compute the normalization denominator:
U(z) =) f(a).
4. Compute the final softmax: 1

softmax(z) = ——

14

FlashAttention Tiled Softmax: Tiling + Online Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks
m(z) = max(m(z™), m(z®))
2. Compute adjusted exponentials:
f(z) = [Em{z%—m(w} f(zV), em?)-mia f(mm)}
3. Compute the normalization denominator (incrementally):

F(:’Iﬁ) — Em{:r':“]—mlf.';:]f(m{l}) | E'rrl{:r':z'}—'rfl[:u}ﬁ(m{Z})
4. Compute the final softmax:

oft = ——
softmax(x) i(z) ;

FlashAttention Tiled Softmax: Tiling + Online Softmax

Let’s say we have two blocks x(*) and x(?) each of size B. The concatenated vector is:
r = [m{l}}mfzj] c R?P
1. Track the max value across blocks
m(z) = max(m(z™), m(z®))
2. Compute adjusted exponentials:
f(z) = [Em{z%—m(w} f(zV), em?)-mia f(mm)}
3. Compute the normalization denominator (incrementally):

F(:’Iﬁ) — Em{:r':“]—mlf.';:]f(m{l}) | E'rrl{:r':z'}—'rfl[:u}ﬁ(m{Z})

4. Compute the final softmax: _ _ o
Only need to track intermediate statistics to

softmax(z) = i;((;) compute softmax one block at a time
16

FlashAttention Results 1|

Effect of Block Size
e | -l\\l g
The algorithm is performing exact < O
attention, no reduction in perplexity or 244 \ ’ g“
quality of the model x ~—.___ Runtime =
T 64128 256 512 2

Block Size

17

FlashAttention: 2-4x speedup, 10-20x memory reduction

Speed (TFLOPs/s)

200 +

150 ~

100 +

A
(=]
I

Attention forward + backward speed (A100 80GB SXM4)

Pytorch

FlashAttention

xformers

Flashattention Triton
FlashAttention-2

512

FlashAttention Memory Reduction

20 1
- 189

15 1

10 A

Memory Reduction (X times less)

128 256 512 1024 2048 4096
1k 2k 4k 8k 16k Sequence Length
Sequence length

B Dropout + Masking

Memory linear in sequence length

18

Questions?

19
COMPUTER SCIENCE GRAINGER ENGINEERING

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

