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DL Inference

• FlashAttention

Today
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Revisit: GPU Memory Hierarchy
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Memory is arranged hierarchically 
• GPU SRAM is small, and supports the 

fastest access
• GPU HBM is larger but with much 

slower access
• CPU DRAM is huge, but the slowest of 

all



FlashAttention
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Inference is usually memory-bound
• Matrix multiplication takes up 

99% of the FLOPS
• But only takes up 61% of the 

runtime
• Lots of time is wasted moving 

data around on the GPU instead 
of doing computation



Operator Fusion

5Figure from https://horace.io/brrr_intro.html 

Version A: Usually, we compute a neural network 
one operator at a time by moving operation input 
to GPU SRAM (fast/small), doing some 
computation, then returning the output to GPU 
HBM (slow/large)

Version B: Operator fusion instead moves the 
original input to GPU SRAM (fast/small), does a 
whole sequence of layer computations without 
ever touching HBM, and then returns the final 
layer output to GPU HBM (slow/large)



Operator Fusion
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Version A: Usually, we compute a neural network 
one operator at a time by moving operation input 
to GPU SRAM (fast/small), doing some 
computation, then returning the output to GPU 
HBM (slow/large)

Version B: Operator fusion instead moves the 
original input to GPU SRAM (fast/small), does a 
whole sequence of layer computations without 
ever touching HBM, and then returns the final 
layer output to GPU HBM (slow/large)

Version A is how standard attention is implemented



Standard Attention
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Version A is how standard attention is implemented



Standard Attention
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Challenges:
• Repeated reads/writes from GPU device memory
• Large intermediate results
• Cannot scale to long sequences due to O(N^2) intermediate results



FlashAttention
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• Three key ideas are combined to obtain FlashAttention
• Kernel fusion: One kernel that includes all operators during 

attention computation to avoid kernel launching overhead and 
intermediate data movement

• Tiling: compute the attention weights block by block so that we 
don’t have to load everything into SRAM at once

• Recomputation: don’t store the full attention matrix in forward, 
but just recompute the parts of it you need during the backward 
pass



Tiling: Decompose Large GeMM into Smaller Blocks
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Tiling: Decompose Large GeMM into Smaller Blocks

11Figure from http://arxiv.org/abs/2307.08691 



Tiling: Decompose Large GeMM into Smaller Blocks

12Figure from http://arxiv.org/abs/2307.08691 

Question: Why do we need to do the 
scaling? And how?



How to Implement Softmax?
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For a vector               ,  softmax is computed as:

Issue: Easily lead to numerical instability, e.g., overflow because of



Stable Softmax
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1. Compute the maximum value in x:

2. Compute the adjusted exponentials:

3. Compute the normalization denominator:

4. Compute the final softmax:



FlashAttention Tiled Softmax: Tiling + Online Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:



FlashAttention Tiled Softmax: Tiling + Online Softmax
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1. Track the max value across blocks

2. Compute adjusted exponentials:

3. Compute the normalization denominator (incrementally):

4. Compute the final softmax:

Let’s say we have two blocks x(1) and x(2) each of size B. The concatenated vector is:

Only need to track intermediate statistics to 
compute softmax one block at a time



FlashAttention Results
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The algorithm is performing exact 
attention, no reduction in perplexity or 
quality of the model



FlashAttention: 2-4x speedup, 10-20x memory reduction
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G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Questions?
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