

CS 498: Machine Learning System Spring 2025

Minjia Zhang

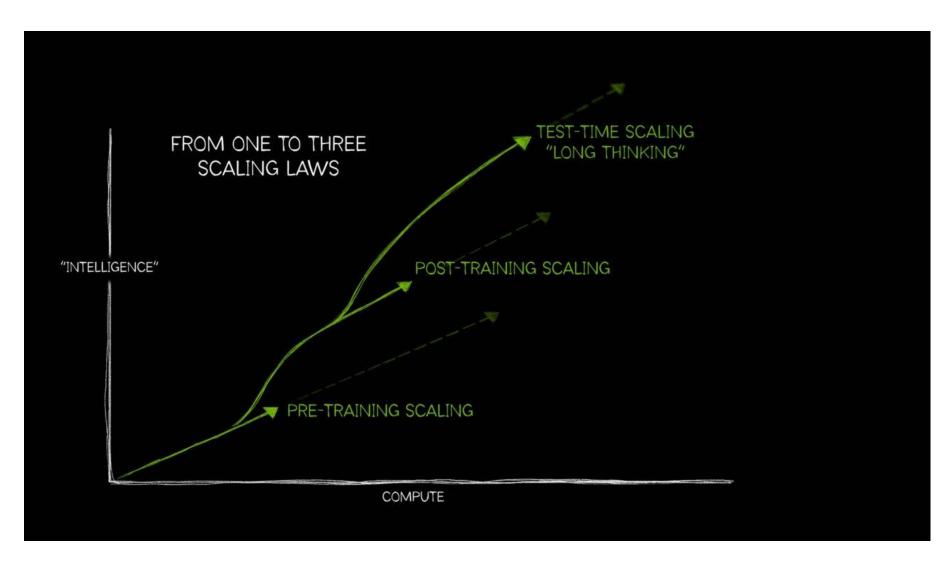
The Grainger College of Engineering

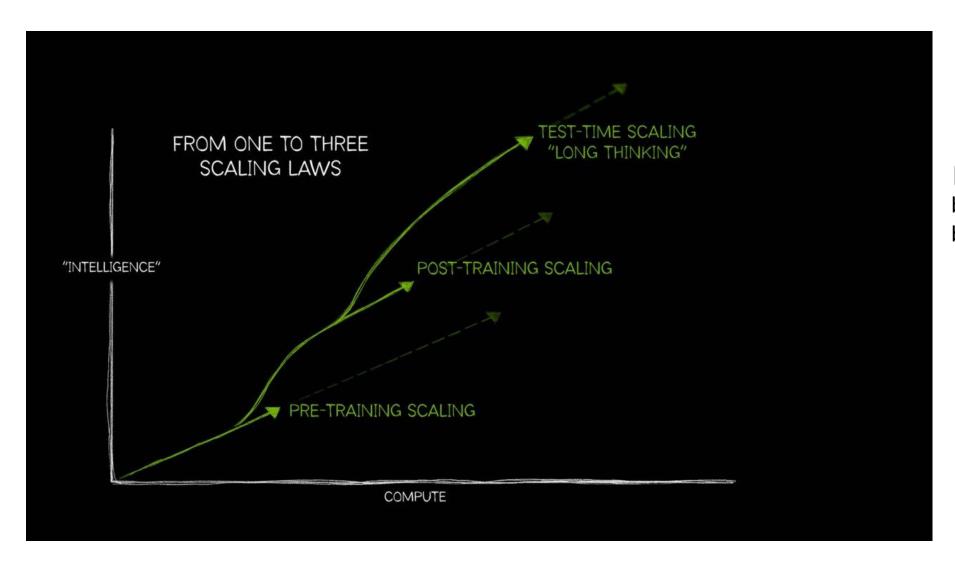
Today

DL Inference Overview

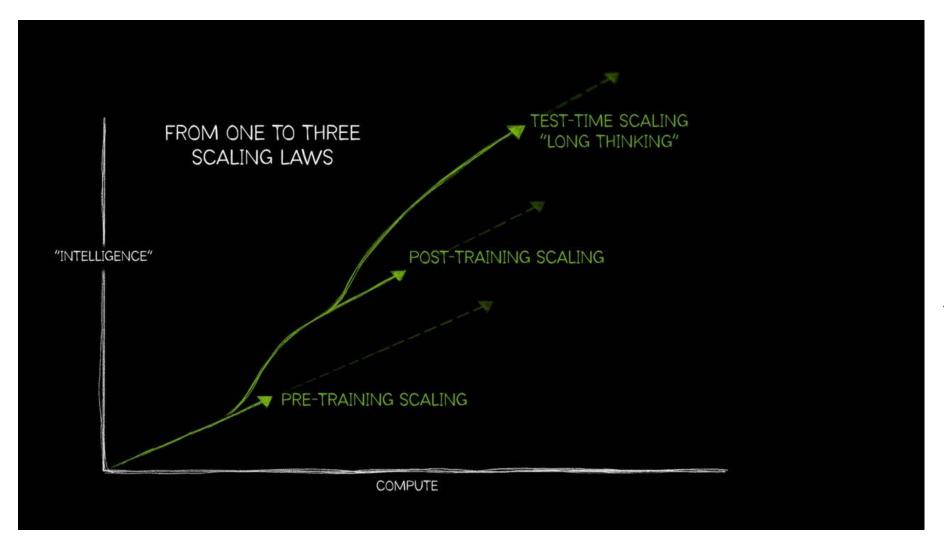
What is Model Serving/Inference?



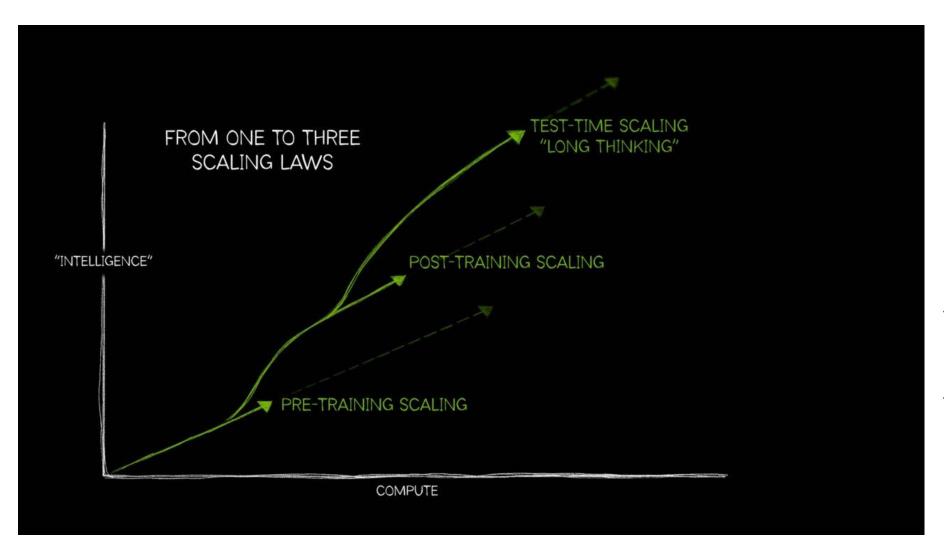




1 Pretraining scaling = bigger model and data, better performance

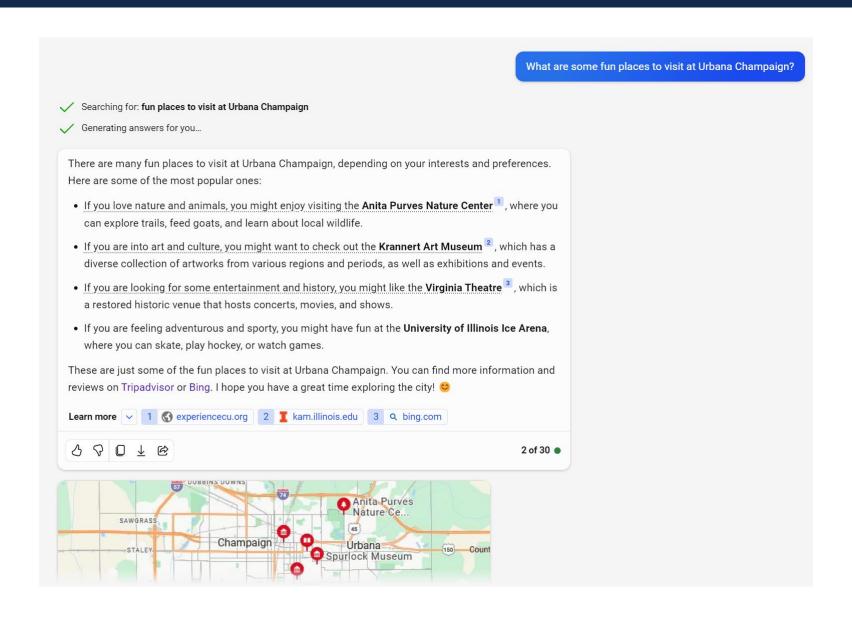


- 1 Pretraining scaling = bigger model and data, better performance
- **2** Post-training scaling = fine-tuning for precision



- 1 Pretraining scaling = bigger model and data, better performance
- **2** Post-training scaling = fine-tuning for precision
- 3 Test-time scaling (long thinking) = multi-pass reasoning for complex problems

Inference Scenario 1: Online ChatGPT/Copilot



Inference Scenario 2: Online Image Generation

DALL·E 3 · An expressive oil painting of a basketball player dunking, depicted as an explosion of a nebula.

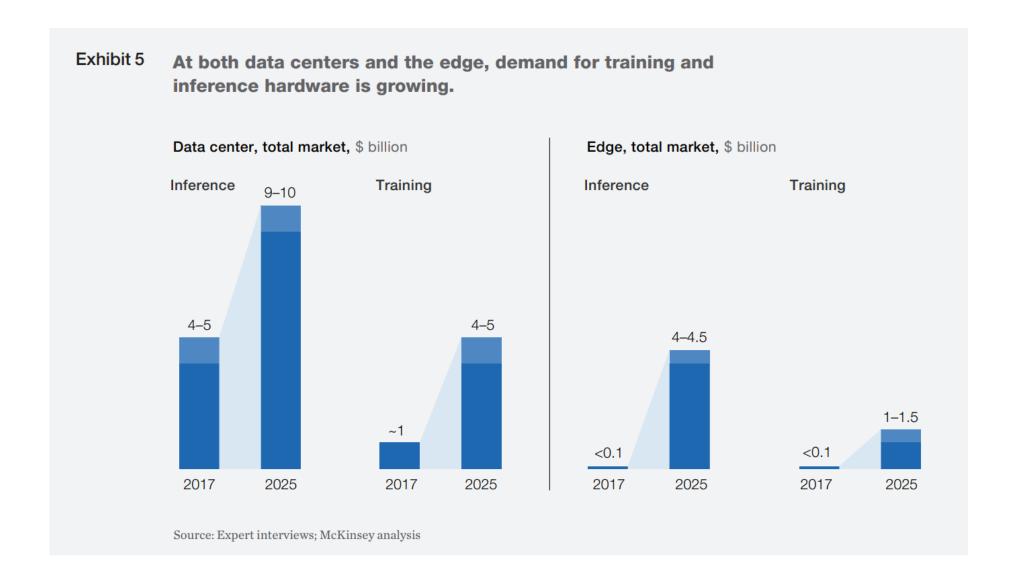
DALLE 3

An ink sketch style illustration of a small hedgehog holding a piece of watermelon with its tiny paws, taking little bites with its eyes closed in delight.

Inference Scenario 3: Online Video Generation

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

Training -> Inference



Training vs. Inference

	Training	vs Inference
Runtime	Weeks or months	Milliseconds or seconds
Challenges	TCO (Cost, Energy)	TCO (Cost, Energy)
		Speed (LLM: token rates) Model size • Parameter volume

• LLM: Context length

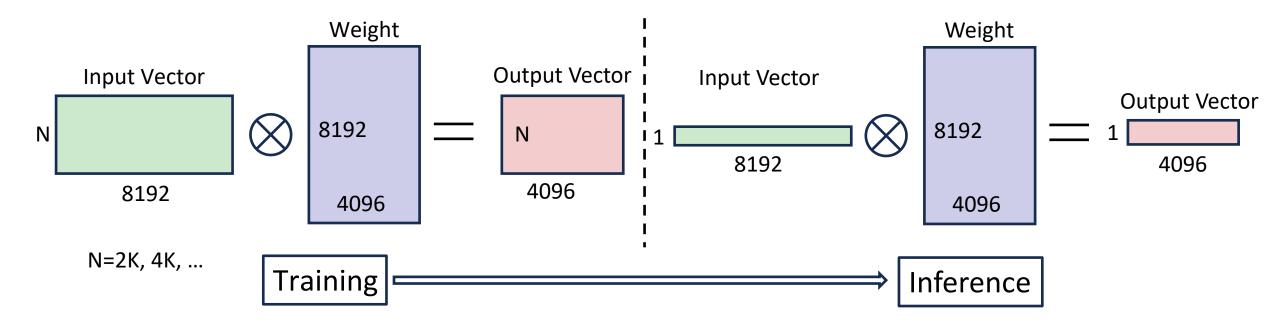
Inference Challenge 1: Long Latency Violates SLA

- Long serving latency blocks deployment
- Support advance models while meeting latency SLA and saving cost

DL Scenarios	Original Latency	Latency Target	
Turing Prototype 2	~100ms	< 10ms	
Turing Prototype 3	~107ms	< 10ms	
Deep Query Document Similarity	10~12ms for [query, 1 doc] x 33 docs	< 6ms	
Malta Click Features	10ms for [query, 1 passage] x 150 passages	< 5ms	
Ads seq2seq model for query rewriting	~51ms	< 5ms	

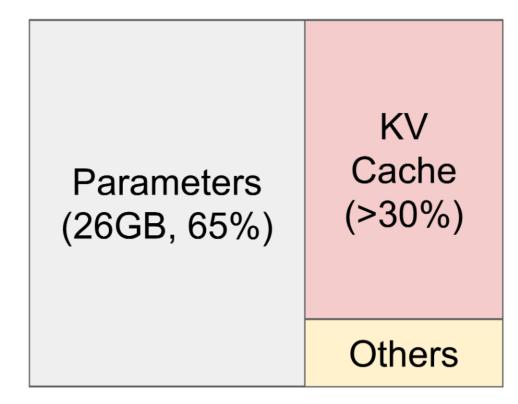
Inference Challenge 2: Small Batch Limits Parallelism

- Small batch size ⇒ Low data reuse
- Autoregressive generation ⇒ Sequential dependency



Inference Challenge 3: Large Memory Increases Cost

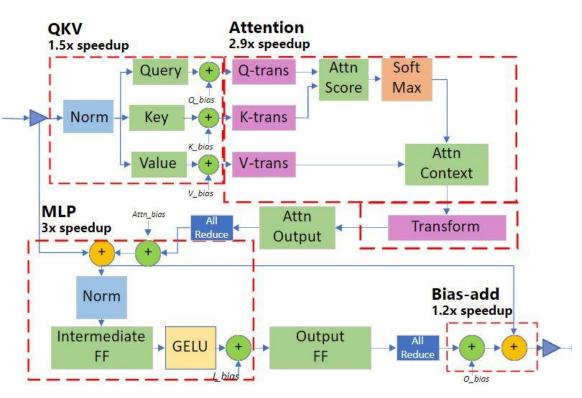
- Model parameters
 - # Layers
 - # Hidden dim
- KV cache
 - Batch size
 - Sequence length
 - # Layers
 - # Hidden
- Activation and others



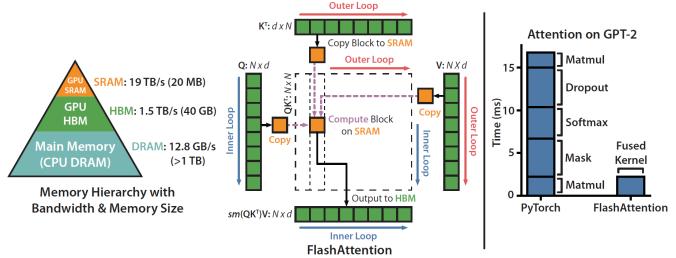
OPT-13B on A100 40 GB

Efficient Memory Management for Large Language Model Serving with PagedAttention, by Kwon et al., 2023

Customized Kernels

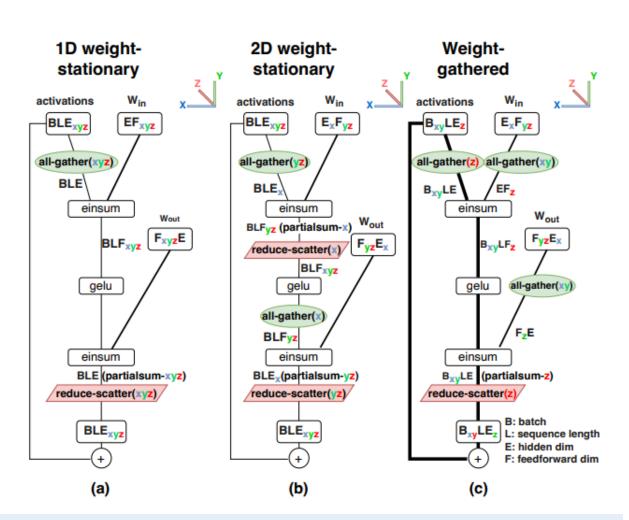


Fast and Memory-Efficient Exact Attention with IO-Awareness, 2023

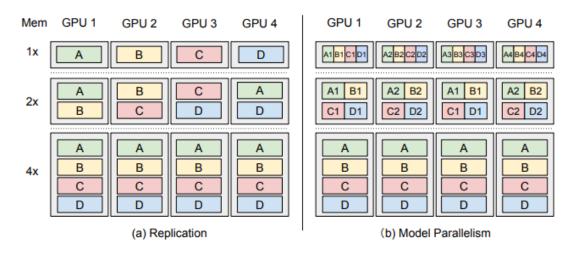


DeepSpeed-Inference: enabling efficient inference of transformer models at unprecedented scale, SC 2022

Multi-GPU Inference via Partitioned Layouts

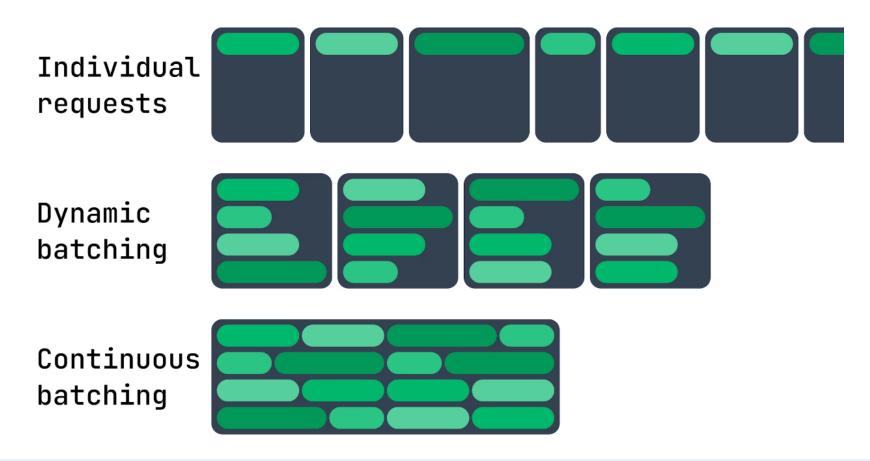


AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving, OSDI 2023



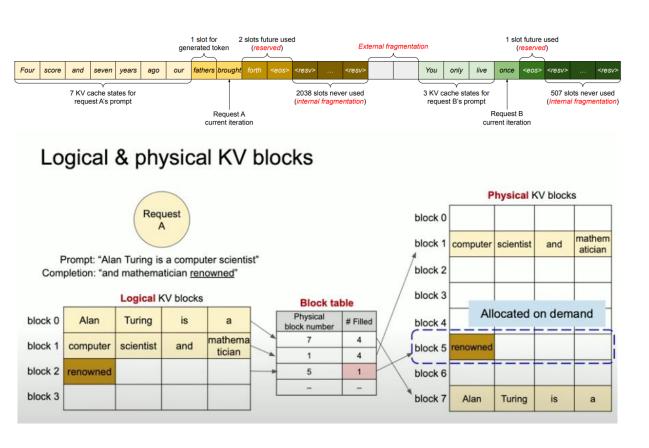
Efficiently Scaling Transformer Inference, MLSys 2023

Scheduling Strategies for LLM Inference



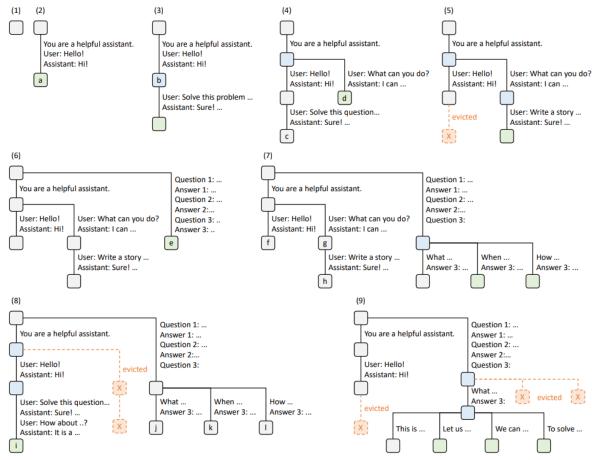
Orca: A Distributed Serving System for Transformer-Based Generative Models, OSDI 2022

KV Cache Management



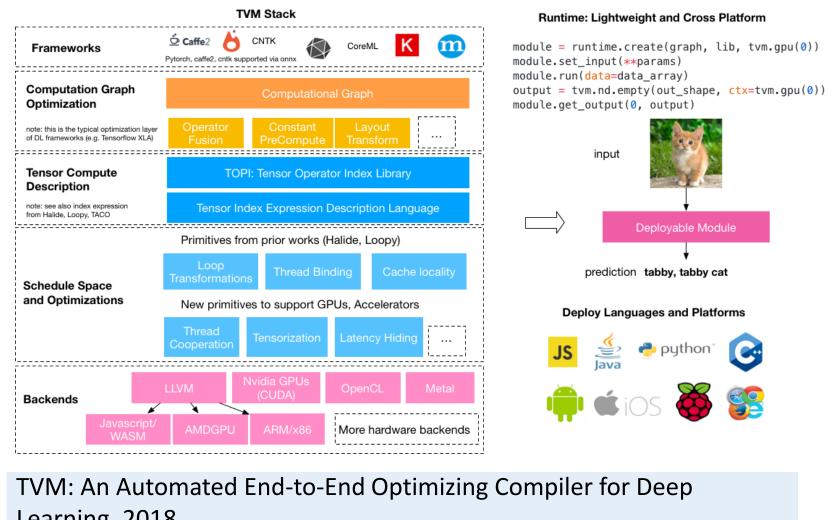
Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

SGLang: Efficient Execution of Structured Language Model Programs, 2024



DL Compilation

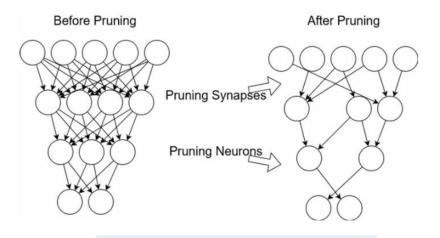
Triton: An Intermediate Language and Compiler for Tiled Neural Network Computations, 2019



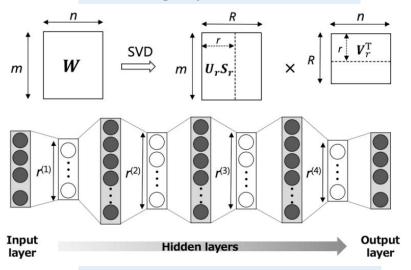
Interface to existing **DSLs** (Not addressed **Triton-C** in this paper) **Triton-IR** Triton-JIT Auto-Tuner Machine Benchmark -Independent **Passes** Machine -Dependent Passes Machine-Code

Learning, 2018

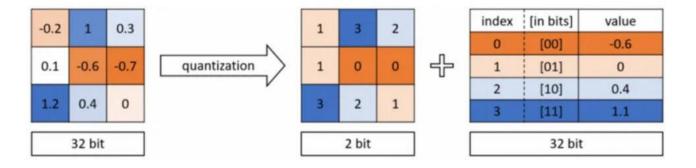
Compression Strategies



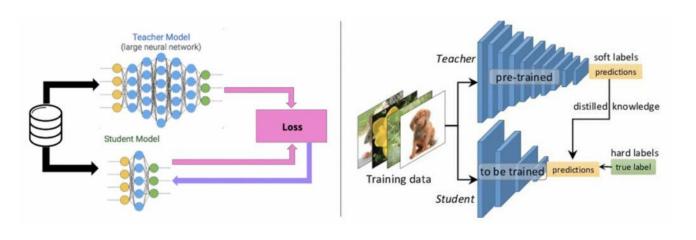
Pruning/Sparsification



Low-rank decomposition



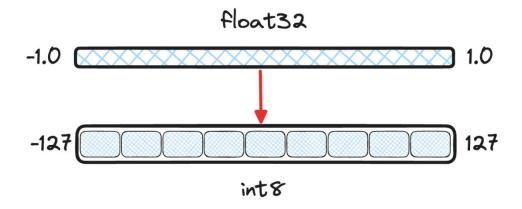
Quantization



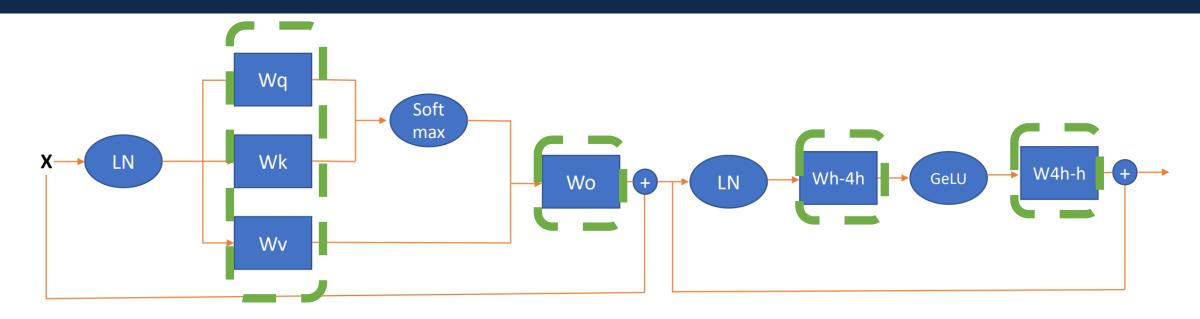
Distillation

Quantization: Quick Recap

- Reduce the bits per weight, saving memory consumption
- Accelerate inference speed on supporting hardware



8-bit Weight Quantization



8-bit weight quantization

$$\mathbf{x}_{quantize} = round\left(clamp(\frac{\mathbf{x}}{S}, -2^{bit-1}, 2^{bit-1} - 1)\right)$$

FP32 weight matrix

1.1	2.2	0.1	-0.1	-5.5	-6.6
1.1	2.1	0.1	-0.1	-4.8	-6.6

8-bit quantization

Scaling

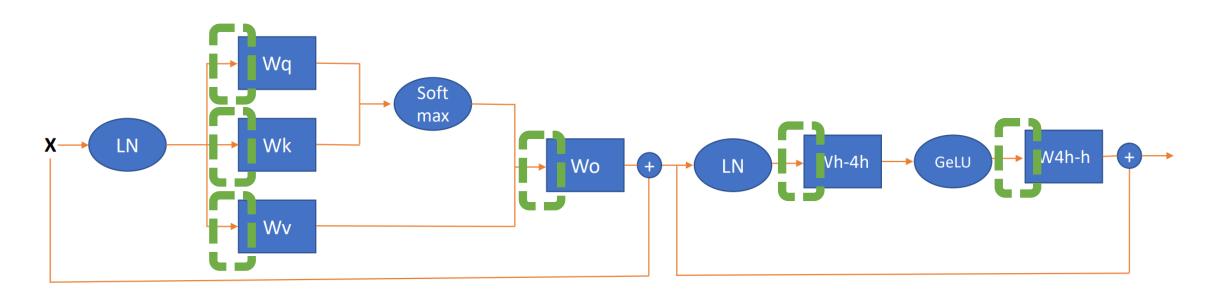
Factor

1/S

2 0.05 *

21	42	2	-2	-106	-127
21	40	2	-2	-92	-127

8-bit Activation Quantization



8-bit activation (Input to the linear layer)

$$\mathbf{x}_{quantize} = round\left(clamp(\frac{\mathbf{x}}{S}, -2^{bit-1}, 2^{bit-1} - 1)\right)$$

FP32 input matrix

1.1	2.2	0.1	-0.1	-5.5	-6.6
1.1	2.1	0.1	-0.1	-4.8	-6.6

Scaling Factor 1/S

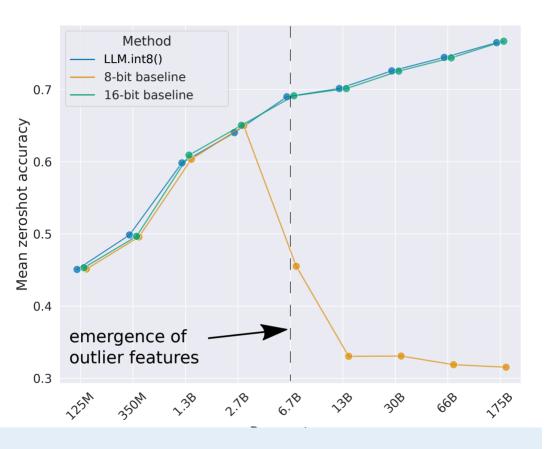


8-bit quantization

21	42	2	-2	-106	-127
21	40	2	-2	-92	-127

Challenges to Quantize LLMs

 Standard quantization strategy leads to catastrophic accuracy drop

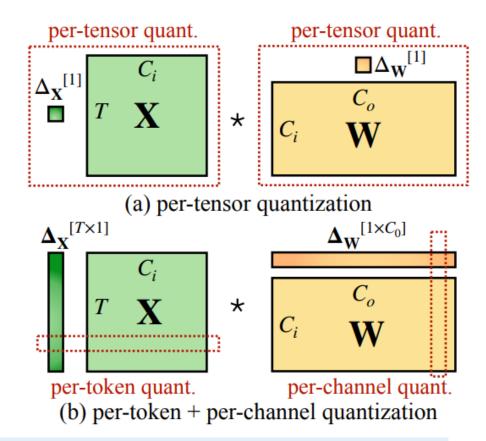


LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, 2023

Fine-grained Quantization

- Per-tensor quantization
 - Low accuracy
 - Fast to quantize/dequantize

- Per-token/channel quantization
 - High accuracy
 - Slower to quantize/dequantize
 - Custom kernels required



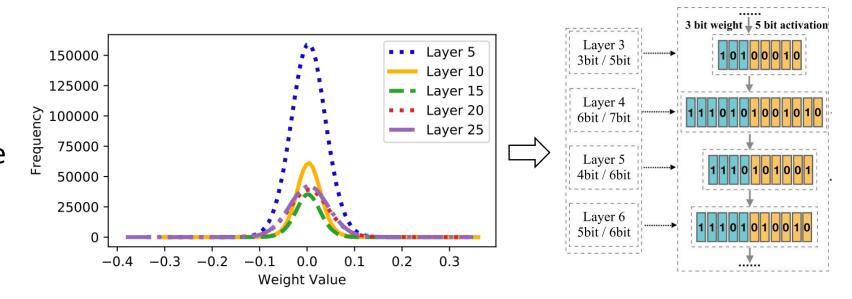
ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, NeurIPS 2022

Mixed Precision Quantization

 Weights follow Gaussian distribution

 Outliers remain in original form, quantize the rest of the values

Different bits for different layers

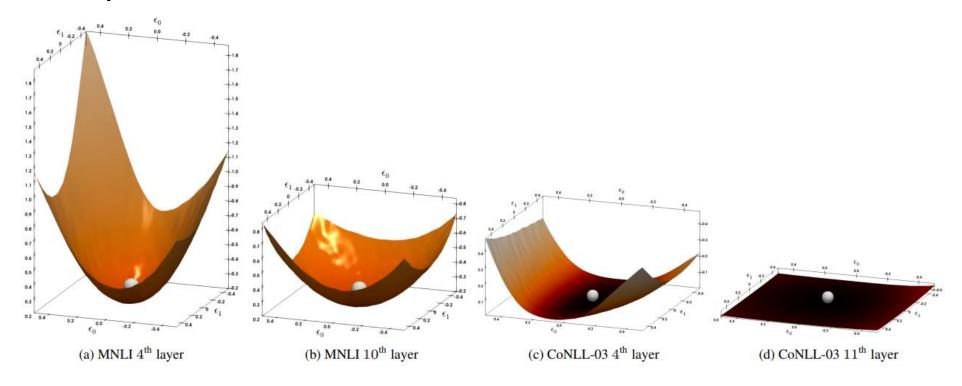


Per-layer weight distribution of BERT model

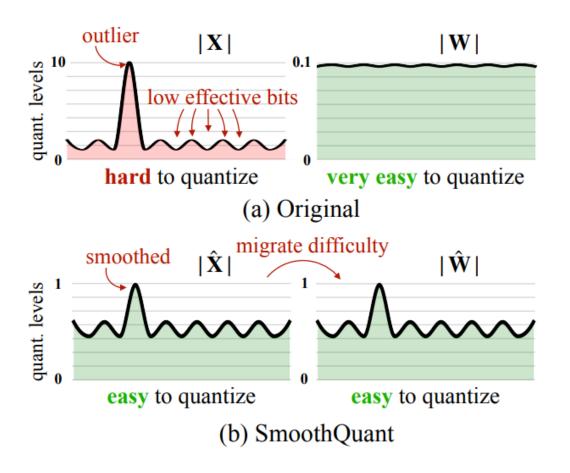
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy Efficient Inference, MICRO 2020

Second Order Information

 Analyze the loss curvature (Hessian matrices) to help identify layer sensitivity



GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers, ICLR 2023



SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

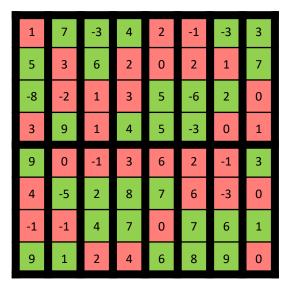
Sparsification

- Unstructured (connection) Sparsity:
- High accuracy
- No performance improvement or performance regression

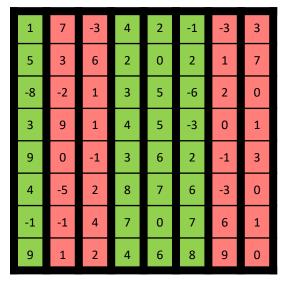
- N:M Semi-Structured Sparsity:
- High accuracy
- High performance improvement
- Structured Sparsity:
- Large accuracy degradation
- High performance scalability



Unstructured Sparsity

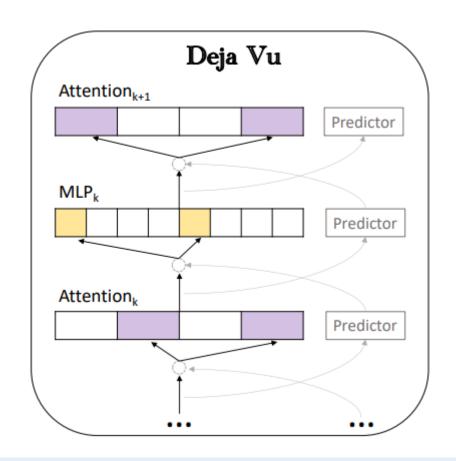


Semi-Structured Sparsity (4:2 N:M)



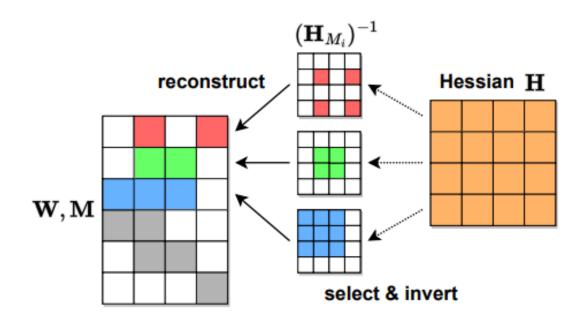
Structured Sparsity (Columnwise Sparsity)

Model Pruning

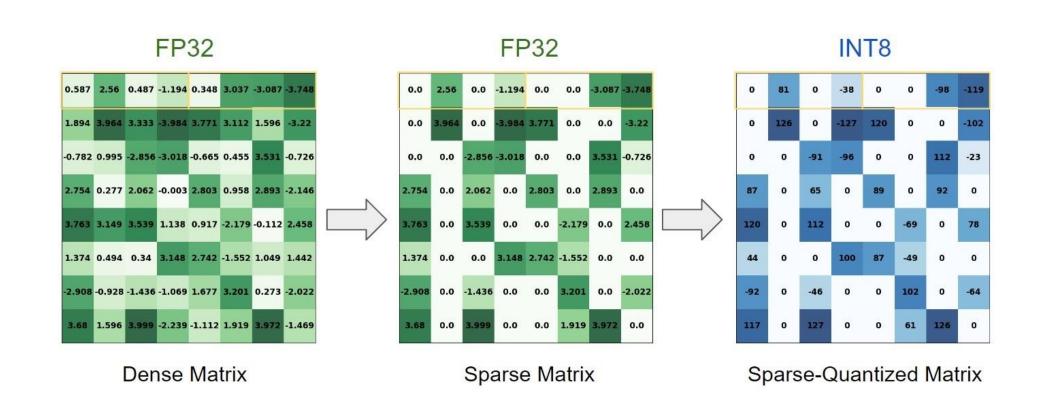


Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time, 2023

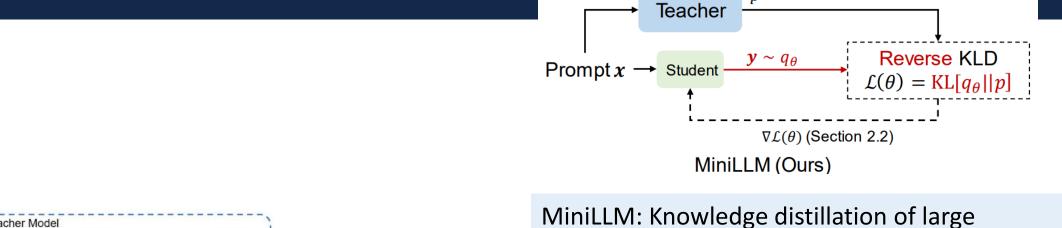
SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot, 2023



Sparsification + Quantization



Knowledge Distillation



Loss Fn

Student loss

Ground Truth y

Teacher Model

Layer

Softmax

(T=t)

Soft Labels

Distillation loss

Loss Fn

Softmax

(T=t)

Soft Prediction

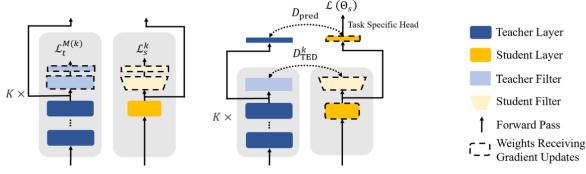
Hard Labels

Hard Labels

Distilling the Knowledge in a Neural Network , 2015

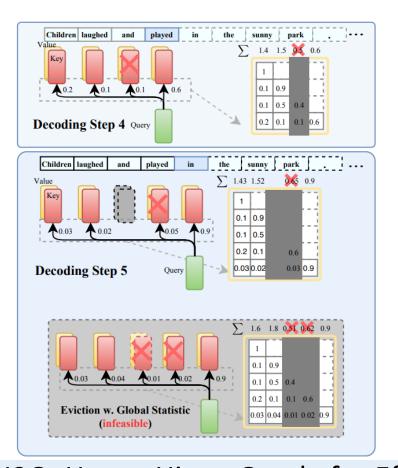
Ianguage models, 2024

Stage I: Training Task-aware Filters Stage II: Task-aware Layer-wise Distillation

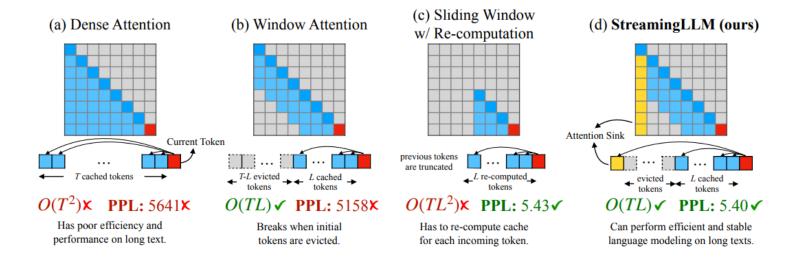


Less is More: Task-aware Layer-wise Distillation for Language Model Compression, 2024

KV Cache Compression

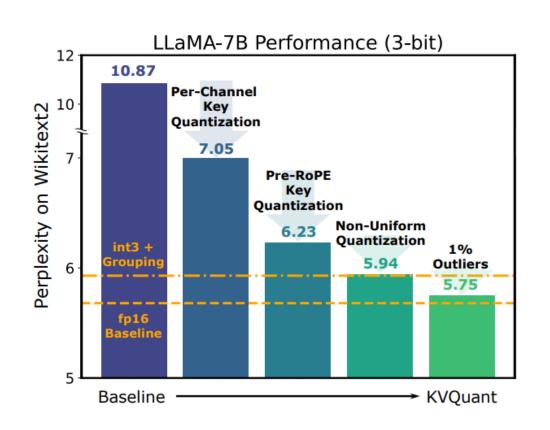


Efficient Streaming Language Models with Attention Sinks, ICL 2024

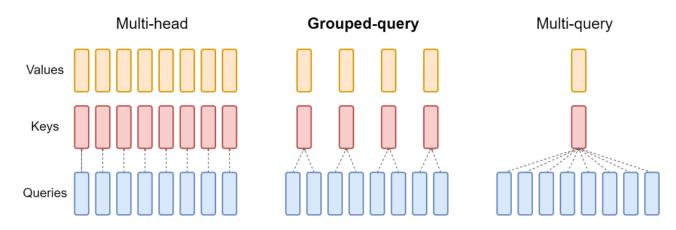


H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, 2023

KV Cache Compression



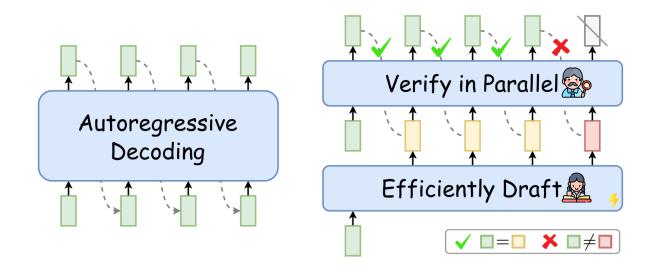
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints, 2023



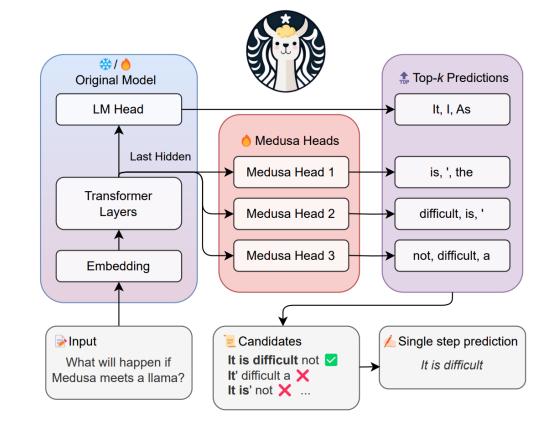
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization, 2024

Speculative/Parallel Decoding

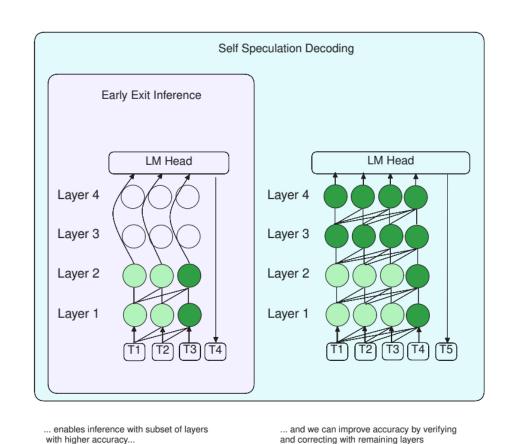
MEDUSA: Simple LLM Inference Acceleration Framework with Multiple, 2024



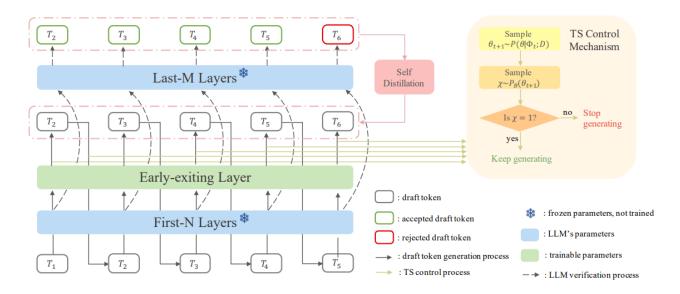
Fast Inference from Transformers via Speculative Decoding, 2023



Early-Exit Inference

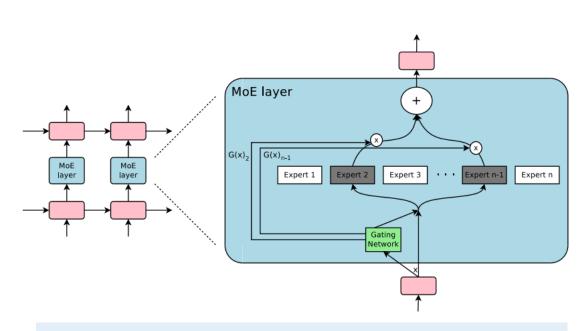


Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism, 2024



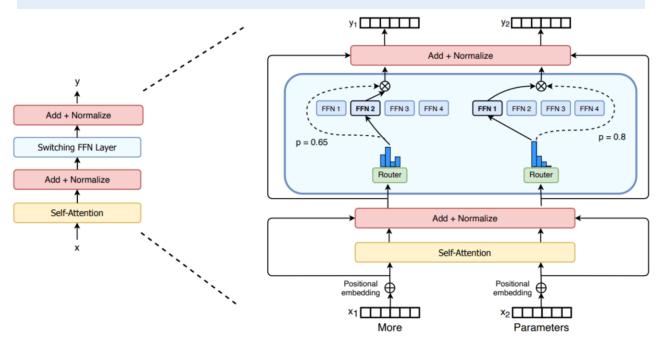
LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding, 2024

Mixture-of-Expert Models are Sparse and Need Less Compute



Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, 2017

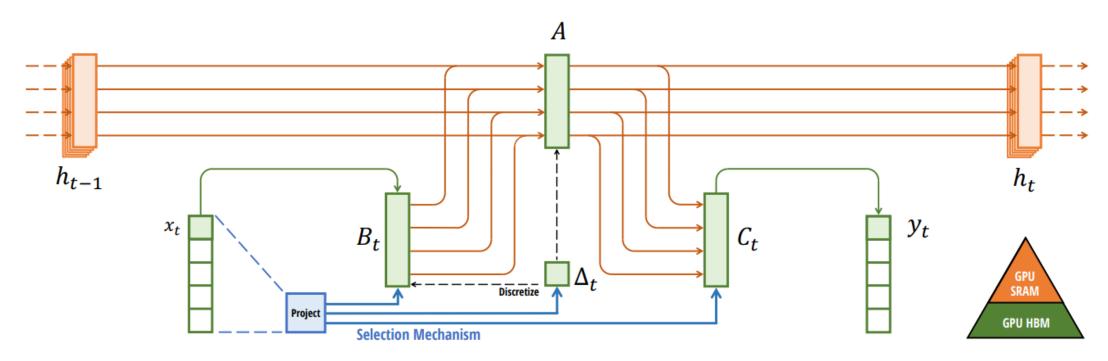
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2021



Mamba – Linear Time Sequence Model

Selective State Space Model

with Hardware-aware State Expansion



Mamba: Linear-Time Sequence Modeling with Selective State Spaces, 2024

Questions?