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ZeRO-Style Data Parallelism (Fully-Sharded Data Parallelism)

• Motivation

• ZeRO capability overview

• Understanding Memory Consumption

• ZeRO-DP: ZeRO powered data parallelism

• Evaluation

Today



Models are scaling in 
size, and larger models 
lead to better accuracy

More compute efficient 
to train larger models 
than smaller ones to 
same accuracy

Why large model training? 



Max Parameter 
(in billions)

Max Parallelism
Compute 
Efficiency

Usability 
(Model Rewrite)

Data Parallel (DP) Approx. 1.2 >1000 Very Good Great

Model Parallel (MP) Approx. 20 Approx. 16 Good Needs Model Rewrite

MP + DP Approx. 20 >  1000 Good
Needs Model Rewrite

Pipeline Parallel (PP) Approx. 100 Approx. 128 Very Good Needs Model Rewrite

PP + DP Approx. 100 > 1000 Very Good Needs Model Rewrite

MP + PP + DP > 1000 > 1000
Very Good Needs Significant Model 

Rewrite

ZeRO 1000 1000 Very Good Great

*Mixed precision Adam on Cluster of DGX-2 with NVIDIA 32 GB V100 GPUs

State-of-art and its limitations
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Intranode Interconnect Intranode Interconnect

Intranode Interconnect Intranode Interconnect

Internode Interconnect

Forward 
Propagation

Backward
Propagation

Compute 
Optimizer 

Specific 
Updates

Mini-Batch

Model

Loss

Average 
Gradients

Updates

Apply Updates

Distributed GPU ClusterData Parallel Training Loop

Distributed Data Parallel Training Overview 



GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1
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A 16-layer transformer model = 1 layer

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Understanding Memory Consumption 

https://arxiv.org/pdf/1710.03740.pdf
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https://arxiv.org/pdf/1710.03740.pdf
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• FP16 parameter
• FP16 Gradients
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• FP16 parameter
• FP16 Gradients
• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters

18*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Understanding Memory Consumption 

https://arxiv.org/pdf/1710.03740.pdf
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• FP16 parameter : 2M bytes
• FP16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model
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Understanding Memory Consumption 

https://arxiv.org/pdf/1710.03740.pdf


GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes
• FP16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

20*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

Understanding Memory Consumption 

https://arxiv.org/pdf/1710.03740.pdf
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Example 1B parameter model -> 20GB/GPU
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• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)

23

ZeRO-DP: ZeRO powered Data Parallelism
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                      Stage 1 (Pos)
• Compute gradients on 

different data
• Average Gradients

ZeRO-DP: ZeRO powered Data Parallelism



• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)
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                   Stage 2 (Pos+g)
• Compute gradients on 

different data
• Average Gradients

ZeRO-DP: ZeRO powered Data Parallelism



• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages)
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                 Stage 3 (Pos+g+p)
• Compute gradients on 

different data
• Average Gradients

ZeRO-DP: ZeRO powered Data Parallelism
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ZeRO-DP: ZeRO powered Data Parallelism
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
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ZeRO-DP: ZeRO powered Data Parallelism
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ZeRO-DP: ZeRO powered Data Parallelism
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ZeRO-DP: ZeRO powered Data Parallelism
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ZeRO-DP : Stage 3 Forward Propagation



fp16 params
fp16 grads

fp32 grads
fp32 momentum
fp32 variance
fp32 params 

ZeRO-DP : Stage 3 Backward Propagation



fp16 params
fp16 grads

fp32 grads
fp32 momentum
fp32 variance
fp32 params 

ZeRO-DP : Stage 3 Optimizer Step



Memory 
Reduction 

with N GPUs

Max params 
with ZeRO only

(in billions)

Max params with 
ZeRO and model 

parallelism 
(in billions)

Comm 
Volume

Data Parallel 1x 1.2 20 1x

ZeRO Stage 1 
(Pos) 4x 6 100 1x

ZeRO Stage 2
(Pos+g) 8x 13 200 1x

ZeRO Stage 3
(Pos+g+p) Nx >1000 >1000 1.5x

57

• Progressive memory savings and Communication Volume

*Mixed precision Adam on Cluster of DGX-2 with NVIDIA 32 GB V100 GPUs

ZeRO-DP: Memory Savings
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• Progressive memory savings and Communication Volume

*Mixed precision Adam on Cluster of DGX-2 with NVIDIA 32 GB V100 GPUs

ZeRO-DP: Memory Savings
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• Progressive memory savings and Communication Volume

*Mixed precision Adam on Cluster of DGX-2 with NVIDIA 32 GB V100 GPUs

ZeRO-DP: Communication Volume



DeepSpeed/ZeRO Usability



G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

The instructor was invited to serve as the LLM session chair at 
PPoPP 2025 next week

- March 4 (online, course project discussion)

- March 6 (online, course project discussion)

Two guest lectures from industry

- March 11, Microsoft, Masahiro Tanaka (online) 

- March 13, Google, Yanqi Zhou (online)

62

Logistics



G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Questions?

63
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