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Memory Optimization

2
COMPUTER SCIENCE GRAINGER ENGINEERING



* Task: Reduce the memory consumption to train a DL model
* Main challenge: Cost to store intermediate results and gradients
e Background: Reverse Mode Auto Differentiation

* Key Ideas:

 Computation graph memory optimization (In-place Storing,
Memory Sharing)

* Save memory by re-computing (gradient checkpointing)
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Background: Reverse Mode Auto Differentiation (AD)
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Background: Reverse Mode Auto Differentiation (AD)
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topological order of the computational graph
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Background: Extending Computation Graph

def gradient(out):
node to grad = {out: [1]}

for 7 in reverse_topo_order(out):
v, = Zj U;_,; = sum(node_to_grad][i])

for k € inputs(i):
— Ov;

compute Vg_,; = V; 75

append U,_,,; to node_to_grad[k]

return adjoint of input v, ¢

= 2
node to grad: {
1: [07]
2:[Vg 44, Vg 3]
3: [U3]
4: [0y] )

NOTE: id is identity function

}
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Background: Reverse Mode AD vs Backprop

Backprop Reverse mode AD by
- Run backward extending computational graph

operations on the
same forward

- Construct
separate graph
nodes for reverse

raph.
grap D
- Used in first
generation deep - Used by modern
learning DL frameworks
frameworks (PyTorch,

TensorFlow)

(caffee, torch)

Question: Why do we need automatic differentiation that extends the graph
instead of backprop in graph?
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Background: Reverse Mode AD vs Backprop

CoMm

Backprop Reverse mode AD by
- Run backward extending computational graph

operations on the
same forward

- Construct
separate graph
nodes for reverse

raph.
grap D
- Used in first
generation deep - Used by modern
learning DL frameworks
frameworks (PyTorch,

(caffee, torch) TensorFlow)

Advantages of using Explicit Extended Backward Path:

- Clearly describes computation dependency for better memory managements;

- Ability to have a different backward path (multiple out-going edges, gradient aggregation instead of
introducing an explicit split layer);

- Ability to calculate higher order gradients (e.g., Hessian)



How to build an Executor for a Given Graph?

Computational Graph for exp(a * b + 3)

mul ]77[ add-const ]—»[ exp ]
b
3
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Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

Computational Graph for exp(a * b + 3)

Same color represent same 4
piece of memory

add-const exp J

8
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Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.

Computational Graph for exp(a * b + 3)

(32 ] L 35 ] [ exp(32) ]

mul ]77[ add-const J—{ exp J

3

if
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Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.

_ Computational Graph for exp(a * b + 3)
Temporary space linear

to number of ops

[ 32 ] (35 ] | exp(32) |

mul ]77[ add-const J—{ exp ]

3

ﬁf
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Memory Management: Build an Executor for a Given Graph

Dynamic Memory Allocation

Static Memory Allocation
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Dynamic Memory Allocation

1. Allocate when needed

2. Recycle when a memory is not needed.

Memory Pool

4 [ 32
ﬂ mul add-const J—-[ exp J
8 [ v

3
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Dynamic Memory Allocation

1. Allocate when needed

2. Recycle when a memory is not needed.

Memory Pool

[ )

35 |

[
>[ mul ]77[ add-const J—{ exp J
8 b

3
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Dynamic Memory Allocation

1. Allocate when needed

2. Recycle when a memory is not needed.

Memory Pool

35 | | exp(35) |

mul ]7[ add-const J—{ exp J

3

ﬁf

16
COMPUTER SCIENCE GRAINGER ENGINEERING



Static Memory Planning

1. Plan for reuse ahead of time

2. Analog: register allocation algorithm in compiler

Same color represent same 4 [ a |

piece of memory add-const x|

8

-
“’Q
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Static Memory Planning

1. Plan for reuse ahead of time

2. Analog: register allocation algorithm in compiler

TensorFlow 1.x, PyTorch 2.0 (static graph mode)

)
—

Same color represent same 4| @ | [ ) J
piece of memory mul add-const |——  exp |

8o

w
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Static Memory Planning

1. Plan for reuse ahead of time

2. Analog: register allocation algorithm in compiler

Question: What are differences, pros, and cons
between static and dynamic allocation?

Same color represent same 4 [ a |

piece of memory add-const x|

8

-
“’Q
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Memory Management 11

Dynamic Memory Allocation
- Can be done at runtime

Static Memory Allocation
- Determined at compile time

20
COMPUTER SCIENCE GRAINGER ENGINEERING



Memory Management

Dynamic Memory Allocation
- Can be done at runtime
- Flexible, more efficient use of memory

Static Memory Allocation
- Determined at compile time
- No runtime overhead
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Memory Management

Dynamic Memory Allocation
- Can be done at runtime
- Flexible, more efficient use of memory
- Potential for fragmentation

Static Memory Allocation
- Determined at compile time
- No runtime overhead
- Inflexible, can lead to wasted memory

COMPUTER SCIENCE
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Common Patterns of Memory Planning 11

e Inplace store the result in the input

e Normal Sharing reuse memory that are no longer needed.
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Inplace Optimization 11

* Operations that modify data directly in the memory location where it is stored
 Examples: In-place activation functions, in-place BatchNorm
* Benefits:

- Reduce memory footprint

- Improve computation efficiency

Computational Graph for exp(a * b + 3)

) )

[
add-const ]—»[ exp ]
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Inplace Optimization 11

* Operations that modify data directly in the memory location where it is stored
 Examples: In-place activation functions, in-place BatchNorm
* Benefits:

- Reduce memory footprint

- Improve computation efficiency

Computational Graph for exp(a * b + 3)

o | ]
()

{ ) )
" 7{ sdiconst | e ]

3
Question: What operation cannot be done in-place?
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Inplace Optimization 11

 We can only do in-place computation if the result op is the only
consumer of the current value (i.e., no other operator depends on the

current value)
b |

3

—

exp J
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Memory Optimization: Memory Sharing

- Memory used by intermediate results that are no longer needed can be recycled

and used in another node;
- Shared memory between the nodes whose lifetime do not overlap

Recycle memory that i |s no Ionger needed.

| ) )
>[:)7( S |
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Memory Allocation/Planning Algorithm 11

- Static Memory Planning: plan for reuse ahead of time
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time

A

Q
B = sigmoid(A) [ﬁ -

; S \D F = Pooling(B)
C = sigmoid(B) & :

' |
E = Pooling(C) &~~~ o)

Initial state of
allocation algorithm

[ internal arrays, same color indicates shared Tag used to indicate memory sharing on
memory. 0 allocation Algorithm. :

: ‘:] Box of free tags in allocation algorithm.
. — data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm: Liveness Analysis

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled

before memory can be reused

A
=)
B = sigmoid(A) lﬁ ~=_

v
C = sigmoid(B) &

~~a_ F =Pooling(B)

' |
E = Pooling(C) o----y
G=E*F

Initial state of
allocation algorithm

Tag used to indicate memory sharing on

: [C] internal arrays, same color indicates shared
: memory. J allocation Algorithm.
. count ref counter on dependent operations that
yetlobe ulkAied ‘:] Box of free tags in allocation algorithm.

: — data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused

A
Q
v
B = sigmoid(A) 7.2
; ~~~a_ F =Pooling(B)
C =sigmoid(B8) 1 '

' |
E = Pooling(C) o----y
1 { G=E*F

Initial state of
allocation algorithm

: [ internal arrays, same color indicates shared Tag used to indicate memory sharing on
: memory. 0 allocation Algorithm. :

count ref counter on dependent operations that
: yetiobe fulk-nimed ‘:] Box of free tags in allocation algorithm.
. — data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused

1

A
i z
A
B = sigmoid(A) 7.2 ;- ~?‘ v
! ~~~n_ F =Pooling(B) ‘D
¥ &] 1
C=sigmoid®) P1 T 4 : !
] : ' '
¥ s
E = Pooling(C) &~~~ o) - =
1 1 G=E*F 1 1
Initial state of step 1: Allocate
allocation algorithm tag for B

: [ internal arrays, same color indicates shared Tag used to indicate memory sharing on
: memory. 0 allocation Algorithm. :

count ref counter on dependent operations that :
: yetiobe fulk-nimed ‘:] Box of free tags in allocation algorithm. :
. — data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused

A
® [ ]
. 2 1
B = sigmoid(A) 7.2 m T BT~
1 "~~~ F=Pooling(B) 4 =) t
L = 1 g?1 1
C =sigmoid(B8) 1 ' ) . :
] : ' 1 a o
¢ -
E = Pooling(C) &F---- ) - = 1 1
1 1 G=E*F 1 1
Initial state of step 1: Allocate step 2: Allocate tag
allocation algorithm tag for B for C, cannot do
inplace because B is
still alive
: [ internal arrays, same color indicates shared Tag used to indicate memory sharing on
memory. 0 allocation Algorithm. :

count ref counter on dependent operations that :
: yetiobe fulk-nimed ‘:] Box of free tags in allocation algorithm. :
. — data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled

before memory can be reused

A v
= z 5
A\
B = sigmoid(A) &2 i 'k 2 : :]
Iy NS = Poolin " ]
i L 2 1 a%1 3
C = sigmoid(8) &1 ' q r 1 ! é} !
' : ¥ ' —
VETTY T O----vh 5 -&; =
E = Pooling(C) 1 1 1 1
1 1 G=E*F 1 1
Initial state of step 1: Allocate step 2: Allocate tag step 3: Allocate tag
allocation algorithm tag for B for C, cannot do for F, release space
inplace because B is of B
still alive
: [ internal arrays, same color indicates shared Tag used to indicate memory sharing on
: memory. 0 allocation Algorithm. :
. count ref counter on dependent operations that :
full-fill
yetiobe fulk-nimed ‘:] Box of free tags in allocation algorithm. :

—— data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled

before memory can be reused

ET\D

A I:l
i z
A\
B = sigmoid(A) 7.2 ;- ~?‘ v
i1 "~~.,_F=Pooling(B) ¥ ‘D :]
' my 1 : 0
C =sigmoid(B8) 1 ' ' )
] : ' 1 a
¥ San -&:
E = Pooling(C) = ~-~-13 g ™ 1 1 ¥y
1 1 G=E*F 1 1
Initial state of step 1: Allocate step 2: Allocate tag step 3: Allocate tag step 4: Reuse the tag
allocation algorithm tag for B for C, cannot do for F, release space in the box for E
inplace because B is of B
still alive
[ internal arrays, same color indicates shared Tag used to indicate memory sharing on
: memory. 0 allocation Algorithm. :
. count ref counter on dependent operations that :
et to be full-filled ) ) .
y ‘:] Box of free tags in allocation algorithm. :

—— data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time

- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused

-.D>

A
B = sigmoid(A) H2

v
C =sigmoid(B8) 1

¥
E = Pooling(C) &F---- )
1 1

1

Initial state of
allocation algorithm

COMPUTER SCIENCE

~~a_ F =Pooling(B)

G=E*

[ |
¥
=B t;:l
' 1
B----
1 1

step 1: Allocate
tag for B

]
1 0
NT---
Pl 1 mt1 :?
& --
1

.
" L A
1

step 2: Allocate tag step 3: Allocate tag
for C, cannot do for F, release space

inplace because B is of B
still alive

[ internal arrays, same color indicates shared

memory.

count ref counter on dependent operations that

yet to be full-filled

—— data dependency, operation completed

. _.-_-» data dependency, operation not completed

5} )
0 El]o
[}
0 1 0 0
----vh o—h
| 1 0

step 4: Reuse the tag
in the box for E

step 5: Re-use tag of E,
This is an inplace
optimization

Tag used to indicate memory sharing on
) allocation Algorithm. :

‘:] Box of free tags in allocation algorithm.
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled

before memory can be reused

A g J]
]
: 2 1 0 0
B = sigmoid(A) 7.2 e m T m D .
! s = Poolin b
' 15 By By sP1 1 a¥1 1y o [o
C =sigmoid(B8) 1 ' ' ) : é} !
o dd b - e i g
E = Pooling(C) 1 1 1 1 0
1 1 G=E*F 1 1
Initial state of step 1: Allocate step 2: Allocate tag step 3: Allocate tag step 4: Reuse the tag step 5: Re-use tag of E,
allocation algorithm tag for B for C, cannot do for F, release space in the box for E This is an inplace
inplace because B is of B optimization
g still alive
Final Memory Plan e e S
[ internal arrays, same color indicates shared Tag used to indicate memory sharing on
memory. 0 allocation Algorithm. :

count ref counter on dependent operations that
: yetiobe fulk-nimed ‘:] Box of free tags in allocation algorithm.
. — data dependency, operation completed

. _.-_-» data dependency, operation not completed
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Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time

- Liveness counters: Track the number of operations that need to be fulfilled

before memory can be reused

- Dependencies: Important to declare minimum dependencies to optimize
memory usage (DL frameworks already handle this for common operators)

¢
B = sigmoid(A) H2

~~a_ F =Pooling(B) v D
¥
C=sigmoid®) P1 T 4 " 1
] : ' 1
' —
E = Pooling(C) &~~~ ) - =
1 1 G=E*F 1 1

step 1: Allocate
tag for B

Initial state of
allocation algorithm

Final Memory Plan

COMPUTER SCIENCE

g EZE

]
1 0
Al Rt
Pl :,11 mt1 :?7

pod

r 1 9

step 2: Allocate tag step 3: Allocate tag
for C, cannot do for F, release space

inplace because B is of B
still alive

- [ internal arrays, same color indicates shared

memory.

count ref counter on dependent operations that

yet to be full-filled

—— data dependency, operation completed

. _.-_-» data dependency, operation not completed

a
0
(5]
b
i
1

|

step 4: Reuse the tag
in the box for E

step 5: Re-use tag of E,
This is an inplace
optimization

Tag used to indicate memory sharing on
) allocation Algorithm. :

‘:] Box of free tags in allocation algorithm.
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Memory Plan with Gradient Calculation

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

— ) ) |
%> o ]7add-const — T

v 3 '
a_grad [ - }: - }Et_gr'ad
[ J ]

'SR

1
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Memory Optimization on a Two Layer MLP

Network Configuration Gradient Calculation Graph
input input input-grad
fullc-forward fullc-forward fullc-backward
sigmoid-forward sigmoid-forward sigmoid-backward
fullc-forward fullc-forward fullc-backward
softmax-forward softmax-forward softmax-backward
log-loss label
—— data dependency [] Memory allocation for each output of op, same

color indicates shared memory.

COMPUTER SCIENCE
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Memory Optimization on a Two Layer MLP

Network Configuration Gradient Calculation Graph A Possible Allocation Plan
inout input input-grad ' i
inpu put-g ——— input input-grad memow
operation ?r,]?rﬂmg
fullc-forward fullc-forward fullc-backward \‘\\ fullc-forward fillcbackward ’ ,’I
sigmoid-forward sigmoid-forward sigmoid-backward sig;?wid-forward sigmoid-backward ,”I
i
fullc-forward fullc-forward fullc-backward fullc-forward fullc-backward ,'II
softmax-forward softmax-forward softmax-backward softmax-forward softma x-backward'I
log-loss label log-loss label
—— data dependency [ ] Memory allocation for each output of op, same

color indicates shared memory.
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Gradient Checkpointing 1

We can save memory usage by a constant factor using memory sharing for
training, how can we do better?
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Gradient Checkpointing 1

We can save memory usage by a constant factor using memory sharing for
training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra
forward computation (from the closest checkpointed results) when needed.

43
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Gradient Checkpointing 1

We can save memory usage by a constant factor using memory sharing for
training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra
forward computation (from the closest checkpointed results) when needed.

Algorithm:

1. Divide the network into several segments;

2. Store the output of each segment and drops all the intermediate results
within each segment;

3. Recompute dropped results at segment-level during back-propagation
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Gradient Checkpointing 1

Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for

gradient calculation
onard (@O @@

O Data to be checkpointed for backprop

O Data to be dropped
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Gradient Checkpointing 1

Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for

gradient calculation
orvard O—@—O—@—O—@
Backwardt () @ O O@O—0O—0

O Data to be checkpointed for backprop

O Data to be dropped
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Gradient Checkpointing 1

Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for

gradient calculation
orvard O—@—O—@—O—@
Backwardt () @ O O@O—0O—0

Backward?2 Q M

O Data to be checkpointed for backprop

O Data to be dropped
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Sublinear Memory Cost: O(sqrt(n))

Drop the results of low compute cost operations, e.g., Conv-BatchNorm-
Activation, drop results of the batch norm, activation, and pooling, but keep the

results of convolution

Assume we divide the n network into k segments, the activation memory to train
the network:
. n
cost-total = max cost-of-segment(i) + O(k) = O (E) + O(k)
i=1,...,
Assume segments are equally divided, setting k — .\/?’_1 , we get 0(2\/5) with

only one additional forward pass.
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Results: Memory Cost

Running different schemes on top of MXNet on ResNet and LSTM.

256 16 512 16
o i @ sharing(total
=~ 128 no optimization_,, - - shanng(t;)tal) 9 256 o 9 ) P4
2 |rlplace A ‘g no optimization > 8
; 64 as 8 5 sharing(feature map cost) g 128 ¥
5 % shavrlng .Tg‘ P g‘ 64 inplace = 4
s e KV m = / £ = O 34 -~ sharing(feature map cost)
g 32 ™ ¥y m ] Y g 32 L =
a e 4 Y S sublinear plan(total) = S 9y 8 ;s
o A > \ 16 s S s )
E 16 i B drop bn, relu g 4 g e Ly B 2 v sublinear plan(total
g 23 s v 8 X Y £ /
2 g ¢ g 2 5 4 “E’ v _ =
& —— i z & 4 ¥ subNnearplan 2 1 t//.
% 4 ‘ sublinear plan ./. G 5 e \ ° 5l % p //. 8 -
5 S ezl e 2 LW /./ -
g , Feaest ! sublinear plan(feature map cost) g ;| S e 0.5 sublinear plan(feature map cost)
g &— = 3 05 e ,
= 4 1 =598 0.25
128 256 512 1024 128 256 512 1024 . 64 128 256 512 1024 2048 64 128 256 512 1024 2048
Number of layers Number of layers Number of unrolling steps Number of unrolling steps
(a) Feature map memory cost estimation (b) Runtime total memory cost (a) Feature map memory cost estimation (b) Runtime total memory cost

Training time roughly increase 30%.
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Questions?
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