
Deepspeed - Alphafold3
–Minjia Zhang, Hoa La–

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering



Today

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Memory Optimization
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Overview
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• Task: Reduce the memory consumption to train a DL model

• Main challenge: Cost to store intermediate results and gradients

• Background: Reverse Mode Auto Differentiation 

• Key Ideas:

• Computation graph memory optimization (In-place Storing, 
Memory Sharing)

• Save memory by re-computing (gradient checkpointing) 
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Background: Reverse Mode Auto Differentiation (AD)
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Background: Extending Computation Graph
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Background: Reverse Mode AD vs Backprop
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Question: Why do we need automatic differentiation that extends the graph 
instead of backprop in graph?

- Run backward 
operations on the 
same forward 
graph.

- Used in first 
generation deep 
learning 
frameworks 
(caffee, torch)

- Construct 
separate graph 
nodes for reverse 
AD

- Used by modern 
DL frameworks 
(PyTorch, 
TensorFlow)
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Advantages of using Explicit Extended Backward Path:
- Clearly describes computation dependency for better memory managements;
- Ability to have a different backward path (multiple out-going edges, gradient aggregation instead of 
introducing an explicit split layer);
- Ability to calculate higher order gradients (e.g., Hessian) 



How to build an Executor for a Given Graph?
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Memory Management: Build an Executor for a Given Graph
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Dynamic Memory Allocation

Static Memory Allocation



Dynamic Memory Allocation
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Static Memory Planning

G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E
17



Static Memory Planning
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TensorFlow 1.x, PyTorch 2.0 (static graph mode)



Static Memory Planning
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Question: What are differences, pros, and cons 
between static and dynamic allocation?



Memory Management
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Dynamic Memory Allocation
 - Can be done at runtime
 - Flexible, more efficient use of memory
              - Potential for fragmentation

Static Memory Allocation
 - Determined at compile time
 - No runtime overhead
              - Inflexible, can lead to wasted memory
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Common Patterns of Memory Planning
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Inplace Optimization
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Question: What operation cannot be done in-place?

• Operations that modify data directly in the memory location where it is stored
• Examples: In-place activation functions, in-place BatchNorm
• Benefits:

- Reduce memory footprint
- Improve computation efficiency
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Inplace Optimization
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• We can only do in-place computation if the result op is the only 
consumer of the current value (i.e., no other operator depends on the 
current value)



Memory Optimization: Memory Sharing
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- Memory used by intermediate results that are no longer needed can be recycled 
and used in another node;
- Shared memory between the nodes whose lifetime do not overlap



Memory Allocation/Planning Algorithm
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- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled 
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize 
memory usage 
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Memory Allocation/Planning Algorithm: Liveness Analysis
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- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled 
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize 
memory usage (DL frameworks already handle this for common operators) 



Memory Plan with Gradient Calculation
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Memory Optimization on a Two Layer MLP
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Gradient Checkpointing
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We can save memory usage by a constant factor using memory sharing for 
training, how can we do better? 

Idea: Drop some of the intermediate results and recover them from an extra 
forward computation (from the closest checkpointed results) when needed.

Algorithm:
1. Divide the network into several segments;
2. Store the output of each segment and drops all the intermediate results 

within each segment;
3. Recompute dropped results at segment-level during back-propagation
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Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for 
gradient calculation
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Gradient Checkpointing
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Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for 
gradient calculation



Sublinear Memory Cost: O(sqrt(n))
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Drop the results of low compute cost operations, e.g., Conv-BatchNorm-
Activation, drop results of the batch norm, activation, and pooling, but keep the 
results of convolution

Assume we divide the n network into k segments, the activation memory to train 
the network: 

Assume segments are equally divided, setting                     , we get                     with 
only one additional forward pass. 



Results: Memory Cost
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Questions?
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