

CS 498: Machine Learning System Spring 2025

Minjia Zhang

The Grainger College of Engineering

Today

Memory Optimization

Overview

• Task: Reduce the memory consumption to train a DL model

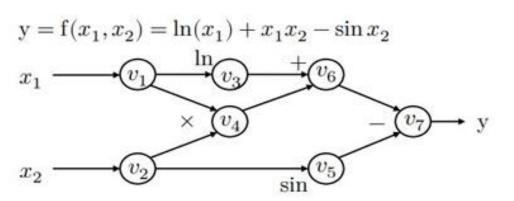
• Main challenge: Cost to store intermediate results and gradients

• Background: Reverse Mode Auto Differentiation

Key Ideas:

- Computation graph memory optimization (In-place Storing, Memory Sharing)
- Save memory by re-computing (gradient checkpointing)

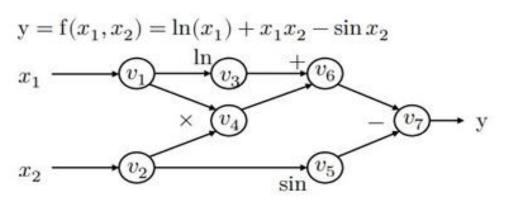
Background: Reverse Mode Auto Differentiation (AD)



Forward evaluation trace

$$\begin{array}{l} v_1=x_1=2\\ v_2=x_2=5\\ v_3=\ln v_1=\ln 2=0.693\\ v_4=v_1\times v_2=10\\ v_5=\sin v_2=\sin 5=-0.959\\ v_6=v_3+v_4=10.693\\ v_7=v_6-v_5=10.693+0.959=11.652\\ y=v_7=11.652 \end{array}$$

Background: Reverse Mode Auto Differentiation (AD)



Forward evaluation trace

$$\begin{array}{l} v_1 = x_1 = 2 \\ v_2 = x_2 = 5 \\ v_3 = \ln v_1 = \ln 2 = 0.693 \\ v_4 = v_1 \times v_2 = 10 \\ v_5 = \sin v_2 = \sin 5 = -0.959 \\ v_6 = v_3 + v_4 = 10.693 \\ v_7 = v_6 - v_5 = 10.693 + 0.959 = 11.652 \\ y = v_7 = 11.652 \end{array}$$

Define adjoint $\overline{v_i} = \frac{\partial y}{\partial v_i}$

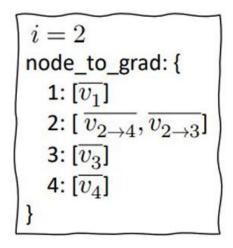
We can then compute the $\overline{v_i}$ iteratively in the **reverse** topological order of the computational graph

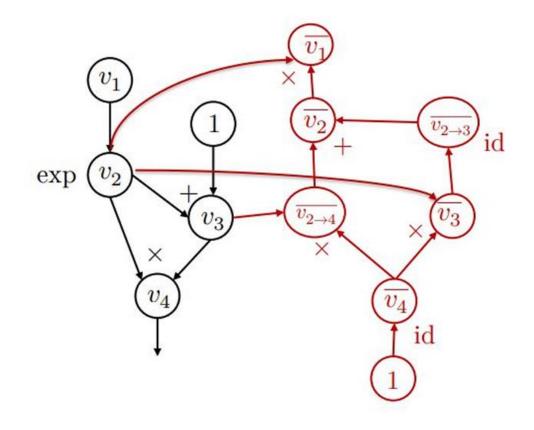
Reverse AD evaluation trace

$$\begin{split} \overline{v_7} &= \frac{\partial y}{\partial v_7} = 1 \\ \overline{v_6} &= \overline{v_7} \frac{\partial v_7}{\partial v_6} = \overline{v_7} \times 1 = 1 \\ \overline{v_5} &= \overline{v_7} \frac{\partial v_7}{\partial v_5} = \overline{v_7} \times (-1) = -1 \\ \overline{v_4} &= \overline{v_6} \frac{\partial v_6}{\partial v_4} = \overline{v_6} \times 1 = 1 \\ \overline{v_3} &= \overline{v_6} \frac{\partial v_6}{\partial v_3} = \overline{v_6} \times 1 = 1 \\ \overline{v_2} &= \overline{v_5} \frac{\partial v_5}{\partial v_2} + \overline{v_4} \frac{\partial v_4}{\partial v_2} = \overline{v_5} \times \cos v_2 + \overline{v_4} \times v_1 = -0.284 + 2 = 1.716 \\ \overline{v_1} &= \overline{v_4} \frac{\partial v_4}{\partial v_1} + \overline{v_3} \frac{\partial v_3}{\partial v_1} = \overline{v_4} \times v_2 + \overline{v_3} \frac{1}{v_1} = 5 + \frac{1}{2} = 5.5 \end{split}$$

Background: Extending Computation Graph


```
\begin{aligned} &\text{def gradient(out):} \\ &\text{node\_to\_grad} = \{\text{out: [1]}\} \\ &\text{for } i \text{ in reverse\_topo\_order(out):} \\ &\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum(node\_to\_grad}[i]) \\ &\text{for } k \in inputs(i): \\ &\text{compute } \overline{v_{k \to i}} = \overline{v_i} \ \frac{\partial v_i}{\partial v_k} \\ &\text{append } \overline{v_{k \to i}} \text{ to node\_to\_grad}[k] \\ &\text{return adjoint of input } \overline{v_{input}} \end{aligned}
```

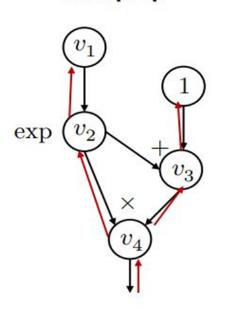




NOTE: id is identity function

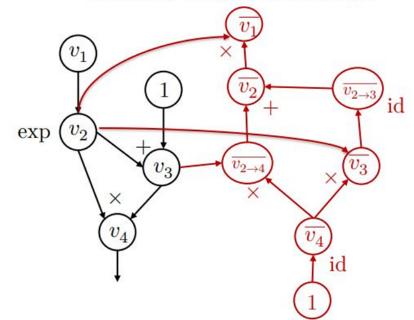
Background: Reverse Mode AD vs Backprop

Backprop



- Run backward operations on the same forward graph.
- Used in first generation deep learning frameworks (caffee, torch)

Reverse mode AD by extending computational graph

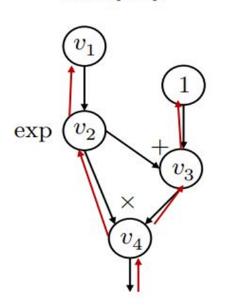


- Constructseparate graphnodes for reverseAD
- Used by modernDL frameworks(PyTorch,TensorFlow)

Question: Why do we need automatic differentiation that extends the graph instead of backprop in graph?

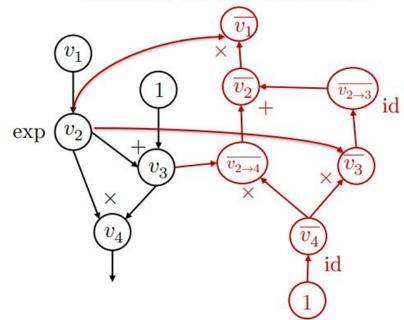
Background: Reverse Mode AD vs Backprop

Backprop



- Run backward operations on the same forward graph.
- Used in first generation deep learning frameworks (caffee, torch)

Reverse mode AD by extending computational graph



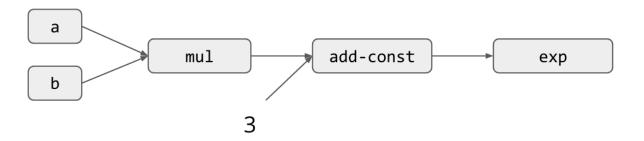
- Constructseparate graphnodes for reverseAD
- Used by modernDL frameworks(PyTorch,TensorFlow)

Advantages of using Explicit Extended Backward Path:

- Clearly describes computation dependency for better memory managements;
- Ability to have a different backward path (multiple out-going edges, gradient aggregation instead of introducing an explicit split layer);
- Ability to calculate higher order gradients (e.g., Hessian)

How to build an Executor for a Given Graph?

Computational Graph for exp(a * b + 3)

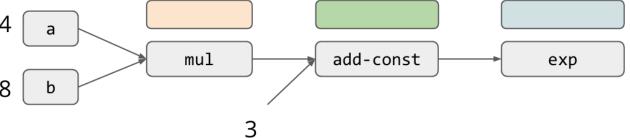


Build an Executor for a Given Graph

1. **Allocate** temp memory for intermediate computation

Computational Graph for exp(a * b + 3)

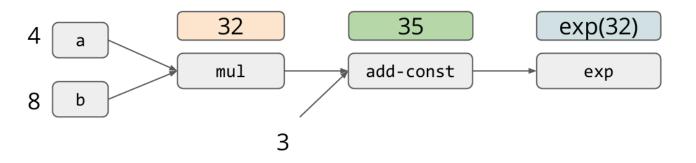
Same color represent same ⁴ piece of memory



Build an Executor for a Given Graph

- 1. **Allocate** temp memory for intermediate computation
- 2. **Traverse and execute** the graph by topo order.

Computational Graph for exp(a * b + 3)

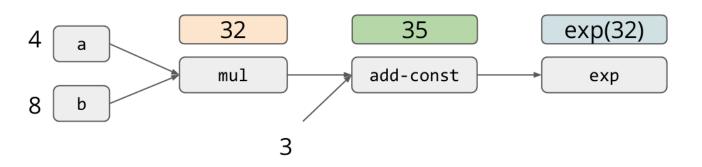


Build an Executor for a Given Graph

- 1. **Allocate** temp memory for intermediate computation
- 2. **Traverse and execute** the graph by topo order.

Temporary space linear to number of ops

Computational Graph for exp(a * b + 3)



Memory Management: Build an Executor for a Given Graph

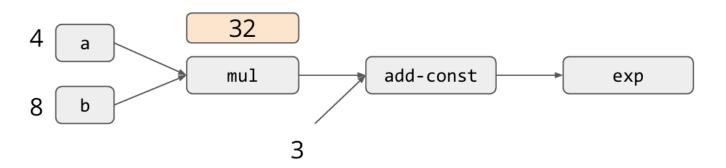
Dynamic Memory Allocation

Static Memory Allocation

Dynamic Memory Allocation

- 1. Allocate when needed
- 2. **Recycle** when a memory is not needed.

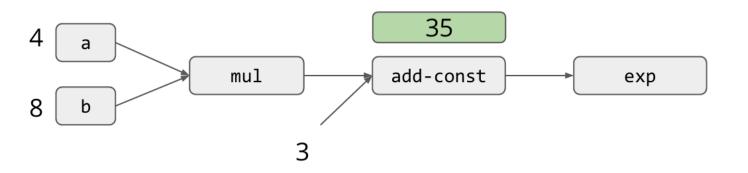
Memory Pool



Dynamic Memory Allocation

- Allocate when needed
- 2. **Recycle** when a memory is not needed.

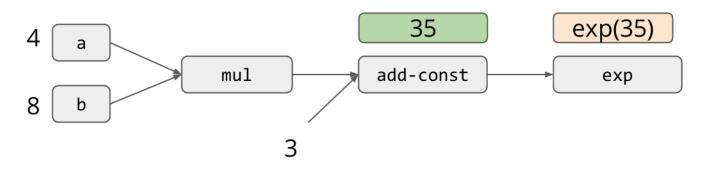
Memory Pool



Dynamic Memory Allocation

- Allocate when needed
- 2. **Recycle** when a memory is not needed.

Memory Pool



Static Memory Planning

- Plan for reuse ahead of time
- 2. Analog: register allocation algorithm in compiler

Same color represent same 4 a piece of memory 8 b

Static Memory Planning

- Plan for reuse ahead of time
- 2. Analog: register allocation algorithm in compiler

TensorFlow 1.x, PyTorch 2.0 (static graph mode)

Same color represent same 4 a mul add-const exp

Static Memory Planning

- Plan for reuse ahead of time
- 2. Analog: register allocation algorithm in compiler

Question: What are differences, pros, and cons between static and dynamic allocation?

Same color represent same 4 a piece of memory 8 b

Memory Management

Dynamic Memory Allocation

- Can be done at runtime

Static Memory Allocation

- Determined at compile time

Memory Management

Dynamic Memory Allocation

- Can be done at runtime
- Flexible, more efficient use of memory

Static Memory Allocation

- Determined at compile time
- No runtime overhead

Memory Management

Dynamic Memory Allocation

- Can be done at runtime
- Flexible, more efficient use of memory
- Potential for fragmentation

Static Memory Allocation

- Determined at compile time
- No runtime overhead
- Inflexible, can lead to wasted memory

Common Patterns of Memory Planning

- **Inplace** store the result in the input
- Normal Sharing reuse memory that are no longer needed.

Inplace Optimization

- Operations that modify data directly in the memory location where it is stored
- Examples: In-place activation functions, in-place BatchNorm
- Benefits:
 - Reduce memory footprint
 - Improve computation efficiency

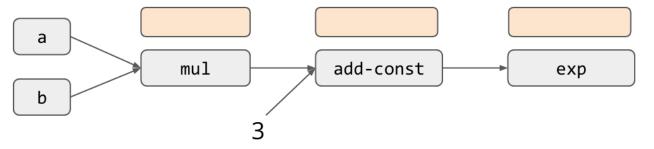
Computational Graph for exp(a * b + 3)



Inplace Optimization

- Operations that modify data directly in the memory location where it is stored
- Examples: In-place activation functions, in-place BatchNorm
- Benefits:
 - Reduce memory footprint
 - Improve computation efficiency

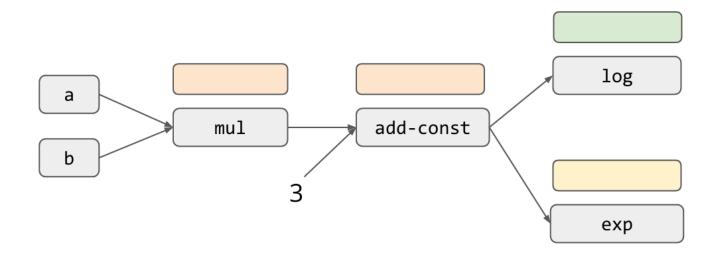
Computational Graph for exp(a * b + 3)



Question: What operation cannot be done in-place?

Inplace Optimization

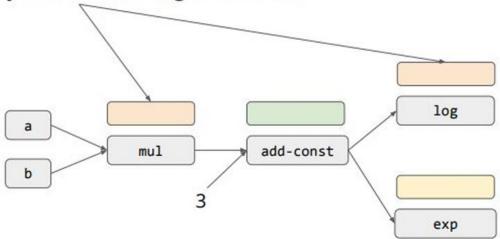
 We can only do in-place computation if the result op is the only consumer of the current value (i.e., no other operator depends on the current value)



Memory Optimization: Memory Sharing

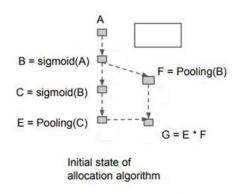
- Memory used by intermediate results that are no longer needed can be recycled and used in another node;
- Shared memory between the nodes whose lifetime do not overlap

Recycle memory that is no longer needed.



- Static Memory Planning: plan for reuse ahead of time

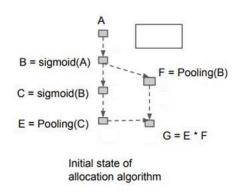
- Static Memory Planning: plan for reuse ahead of time



_	internal arrays, same color indicates shared memory.	Tag used to indicate memory sharing on allocation Algorithm.
	data dependency, operation completed	Box of free tags in allocation algorithm.
)	data dependency, operation not completed	

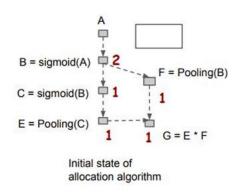
Memory Allocation/Planning Algorithm: Liveness Analysis

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused



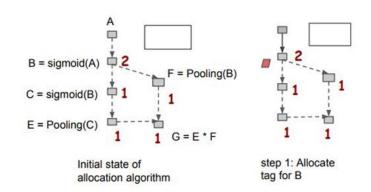
	internal arrays, same color indicates shared memory.	Tag used to indicate memory sharing on allocation Algorithm.
count	ref counter on dependent operations that yet to be full-filled	Box of free tags in allocation algorithm.
\longrightarrow	data dependency, operation completed	
	data dependency, operation not completed	

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused



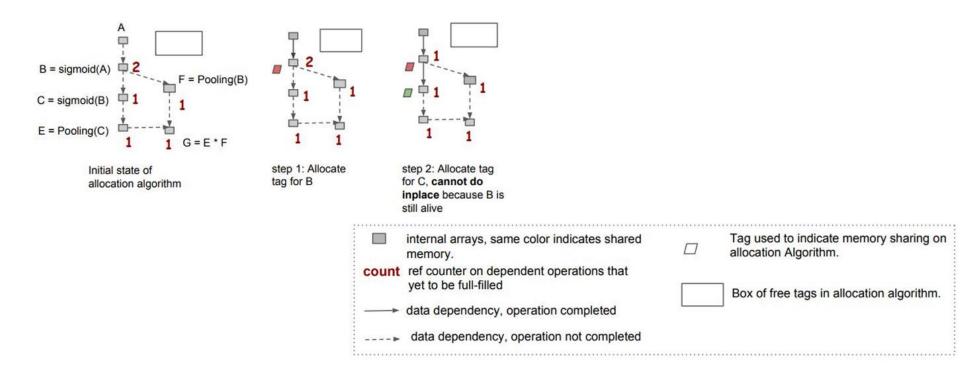
	internal arrays, same color indicates shared memory.	Tag used to indicate memory sharing on allocation Algorithm.
count	ref counter on dependent operations that yet to be full-filled	Box of free tags in allocation algorithm.
→	data dependency, operation completed	
	data dependency, operation not completed	

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused

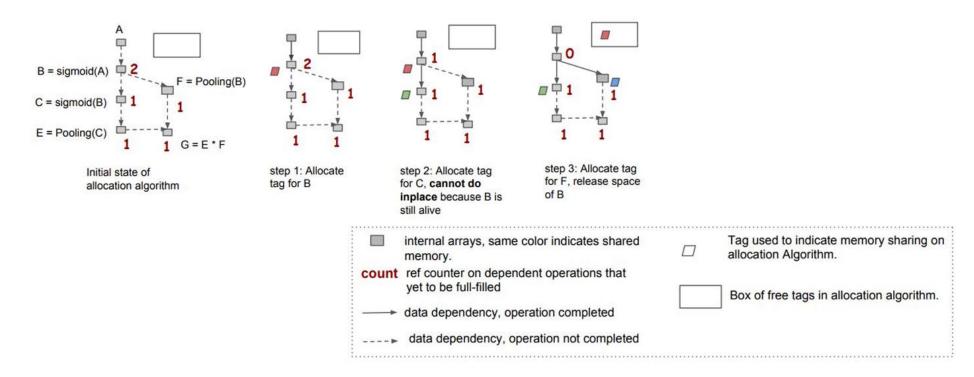


	internal arrays, same color indicates shared memory.	Tag used to indicate memory sharing on allocation Algorithm.
count	ref counter on dependent operations that yet to be full-filled	Box of free tags in allocation algorithm.
→	data dependency, operation completed	
	data dependency, operation not completed	

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused



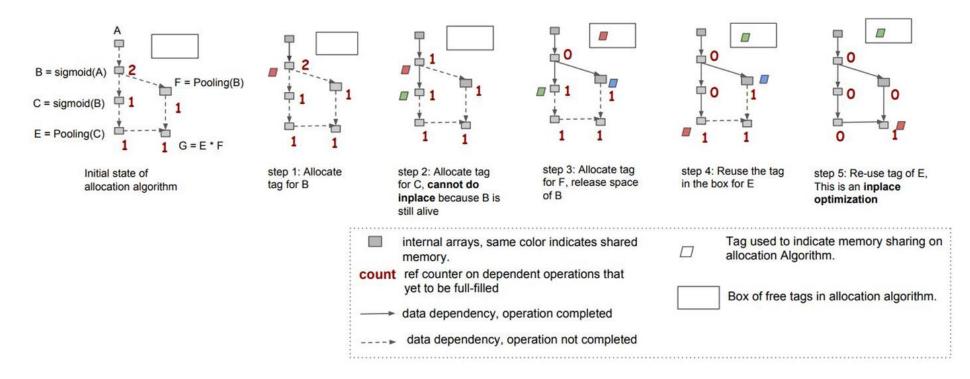
- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused



- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused

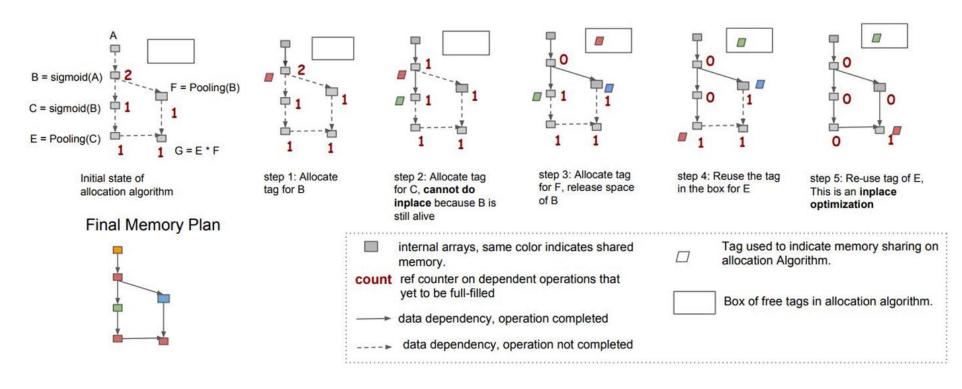


- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused



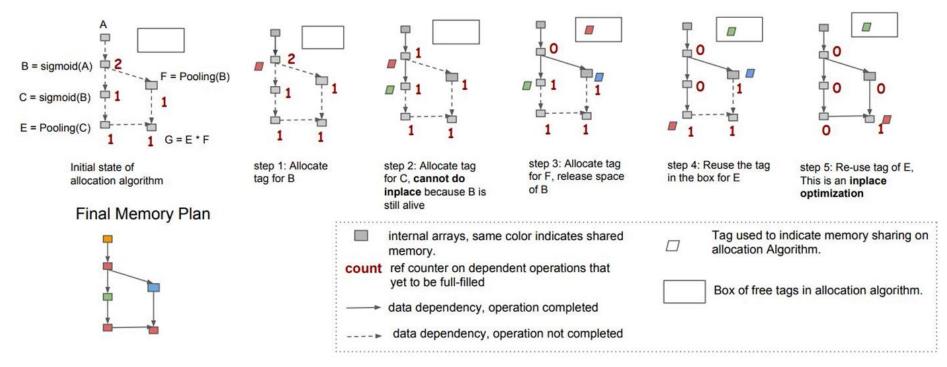
Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused



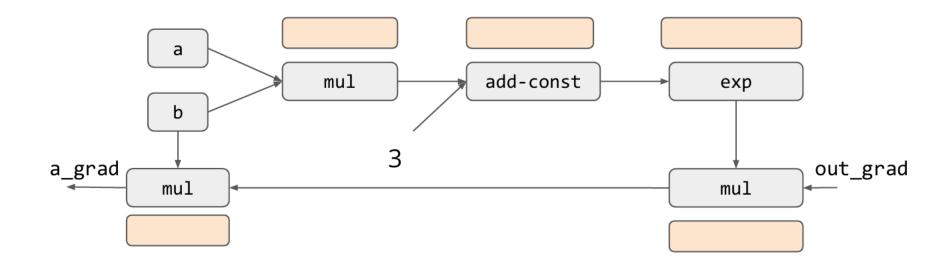
Memory Allocation/Planning Algorithm

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize memory usage (DL frameworks already handle this for common operators)

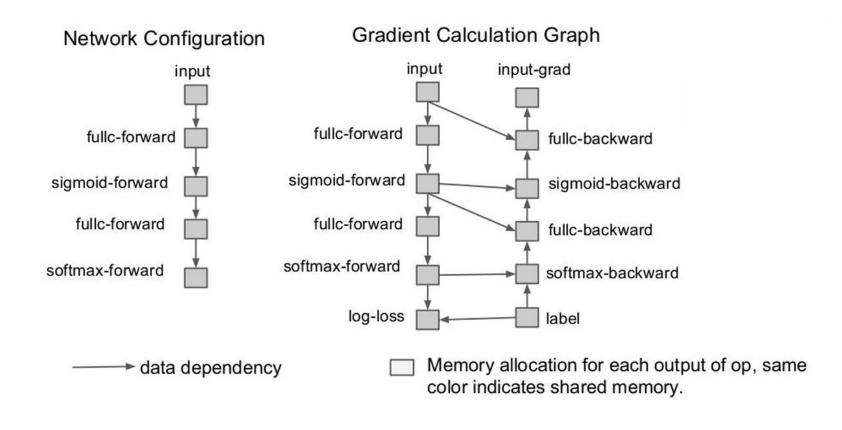


Memory Plan with Gradient Calculation

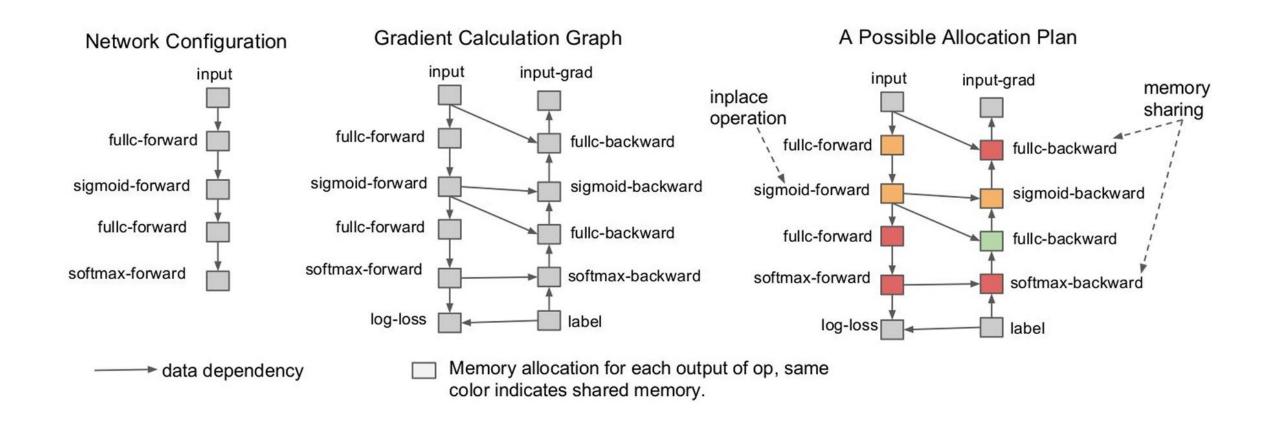
Back to the Question: Why do we need automatic differentiation that extends the graph instead of backprop in graph?



Memory Optimization on a Two Layer MLP



Memory Optimization on a Two Layer MLP



We can save memory usage by a **constant factor** using memory sharing for training, how can we do better?

We can save memory usage by a **constant factor** using memory sharing for training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra forward computation (from the closest checkpointed results) when needed.

We can save memory usage by a **constant factor** using memory sharing for training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra forward computation (from the closest checkpointed results) when needed.

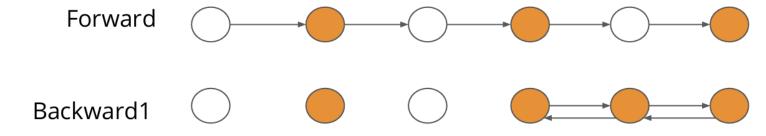
Algorithm:

- 1. Divide the network into several segments;
- Store the output of each segment and drops all the intermediate results within each segment;
- 3. Recompute dropped results at segment-level during back-propagation

Checkpointing: storing only a few intermediate results during the forward pass. Recomputation: Recomputing the necessary values during the backward for gradient calculation

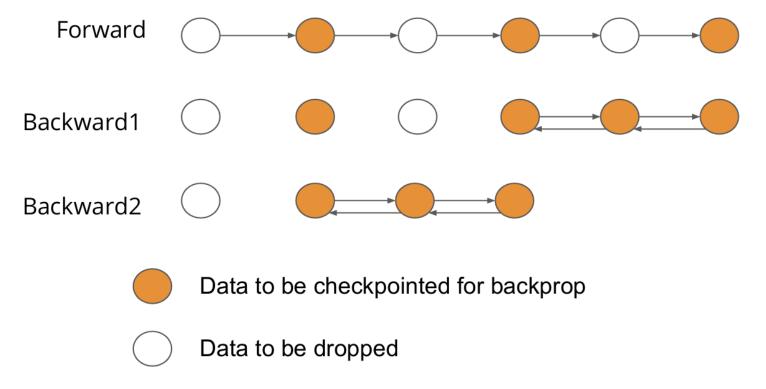
- Data to be checkpointed for backprop
- O Data to be dropped

Checkpointing: storing only a few intermediate results during the forward pass. Recomputation: Recomputing the necessary values during the backward for gradient calculation



- Data to be checkpointed for backprop
- O Data to be dropped

Checkpointing: storing only a few intermediate results during the forward pass. Recomputation: Recomputing the necessary values during the backward for gradient calculation



Sublinear Memory Cost: O(sqrt(n))

Drop the results of low compute cost operations, e.g., Conv-BatchNorm-Activation, drop results of the batch norm, activation, and pooling, but keep the results of convolution

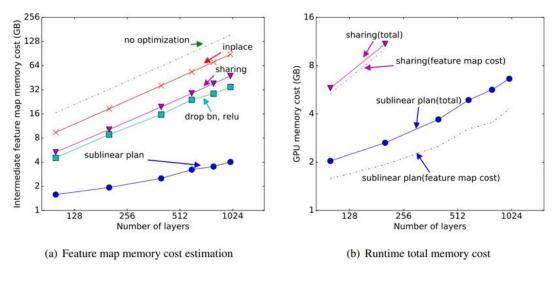
Assume we divide the n network into k segments, the activation memory to train the network:

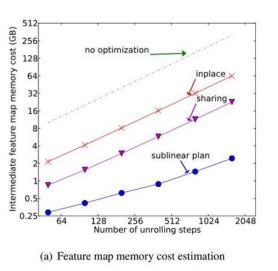
$$\operatorname{cost-total} = \max_{i=1,...,k} \operatorname{cost-of-segment}(i) + O(k) = O\left(\frac{n}{k}\right) + O(k)$$

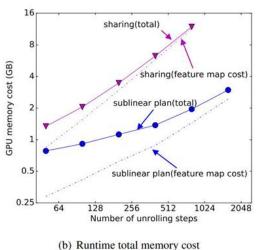
Assume segments are equally divided, setting $k=\sqrt{n}$, we get $O(2\sqrt{n})$ with only one additional forward pass.

Results: Memory Cost

Running different schemes on top of MXNet on ResNet and LSTM.







Training time roughly increase 30%.

Questions?