
Deepspeed - Alphafold3
–Minjia Zhang, Hoa La–

CS 498: Machine Learning System
Spring 2025

Minjia Zhang

The Grainger College of Engineering

Today

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E

Memory Optimization

2

Overview

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E

• Task: Reduce the memory consumption to train a DL model

• Main challenge: Cost to store intermediate results and gradients

• Background: Reverse Mode Auto Differentiation

• Key Ideas:

• Computation graph memory optimization (In-place Storing,
Memory Sharing)

• Save memory by re-computing (gradient checkpointing)
3

Background: Reverse Mode Auto Differentiation (AD)

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
4

Background: Reverse Mode Auto Differentiation (AD)

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
5

Background: Extending Computation Graph

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
6

Background: Reverse Mode AD vs Backprop

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
7

Question: Why do we need automatic differentiation that extends the graph
instead of backprop in graph?

- Run backward
operations on the
same forward
graph.

- Used in first
generation deep
learning
frameworks
(caffee, torch)

- Construct
separate graph
nodes for reverse
AD

- Used by modern
DL frameworks
(PyTorch,
TensorFlow)

Background: Reverse Mode AD vs Backprop

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
8

- Run backward
operations on the
same forward
graph.

- Used in first
generation deep
learning
frameworks
(caffee, torch)

- Construct
separate graph
nodes for reverse
AD

- Used by modern
DL frameworks
(PyTorch,
TensorFlow)

Advantages of using Explicit Extended Backward Path:
- Clearly describes computation dependency for better memory managements;
- Ability to have a different backward path (multiple out-going edges, gradient aggregation instead of
introducing an explicit split layer);
- Ability to calculate higher order gradients (e.g., Hessian)

How to build an Executor for a Given Graph?

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
9

Build an Executor for a Given Graph

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
10

Build an Executor for a Given Graph

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
11

Build an Executor for a Given Graph

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
12

Memory Management: Build an Executor for a Given Graph

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
13

Dynamic Memory Allocation

Static Memory Allocation

Dynamic Memory Allocation

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
14

Dynamic Memory Allocation

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
15

Dynamic Memory Allocation

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
16

Static Memory Planning

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
17

Static Memory Planning

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
18

TensorFlow 1.x, PyTorch 2.0 (static graph mode)

Static Memory Planning

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
19

Question: What are differences, pros, and cons
between static and dynamic allocation?

Memory Management

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
20

Dynamic Memory Allocation
 - Can be done at runtime
 - Flexible, more efficient use of memory
 - Potential for fragmentation

Static Memory Allocation
 - Determined at compile time
 - No runtime overhead
 - Inflexible, can lead to wasted memory

Memory Management

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
21

Dynamic Memory Allocation
 - Can be done at runtime
 - Flexible, more efficient use of memory
 - Potential for fragmentation

Static Memory Allocation
 - Determined at compile time
 - No runtime overhead
 - Inflexible, can lead to wasted memory

Memory Management

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
22

Dynamic Memory Allocation
 - Can be done at runtime
 - Flexible, more efficient use of memory
 - Potential for fragmentation

Static Memory Allocation
 - Determined at compile time
 - No runtime overhead
 - Inflexible, can lead to wasted memory

Common Patterns of Memory Planning

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
23

Inplace Optimization

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
24

Question: What operation cannot be done in-place?

• Operations that modify data directly in the memory location where it is stored
• Examples: In-place activation functions, in-place BatchNorm
• Benefits:

- Reduce memory footprint
- Improve computation efficiency

Inplace Optimization

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
25

• Operations that modify data directly in the memory location where it is stored
• Examples: In-place activation functions, in-place BatchNorm
• Benefits:

- Reduce memory footprint
- Improve computation efficiency

Question: What operation cannot be done in-place?

Inplace Optimization

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
26

• We can only do in-place computation if the result op is the only
consumer of the current value (i.e., no other operator depends on the
current value)

Memory Optimization: Memory Sharing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
27

- Memory used by intermediate results that are no longer needed can be recycled
and used in another node;
- Shared memory between the nodes whose lifetime do not overlap

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
28

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
29

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm: Liveness Analysis

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
30

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
31

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
32

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
33

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
34

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
35

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
36

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
37

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage

Memory Allocation/Planning Algorithm

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
38

- Static Memory Planning: plan for reuse ahead of time
- Liveness counters: Track the number of operations that need to be fulfilled
before memory can be reused
- Dependencies: Important to declare minimum dependencies to optimize
memory usage (DL frameworks already handle this for common operators)

Memory Plan with Gradient Calculation

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
39

Memory Optimization on a Two Layer MLP

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
40

Memory Optimization on a Two Layer MLP

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
41

Gradient Checkpointing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
42

We can save memory usage by a constant factor using memory sharing for
training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra
forward computation (from the closest checkpointed results) when needed.

Algorithm:
1. Divide the network into several segments;
2. Store the output of each segment and drops all the intermediate results

within each segment;
3. Recompute dropped results at segment-level during back-propagation

We can save memory usage by a constant factor using memory sharing for
training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra
forward computation (from the closest checkpointed results) when needed.

Algorithm:
1. Divide the network into several segments;
2. Store the output of each segment and drops all the intermediate results

within each segment;
3. Recompute dropped results at segment-level during back-propagation

Gradient Checkpointing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
43

Gradient Checkpointing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
44

We can save memory usage by a constant factor using memory sharing for
training, how can we do better?

Idea: Drop some of the intermediate results and recover them from an extra
forward computation (from the closest checkpointed results) when needed.

Algorithm:
1. Divide the network into several segments;
2. Store the output of each segment and drops all the intermediate results

within each segment;
3. Recompute dropped results at segment-level during back-propagation

Gradient Checkpointing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
45

Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for
gradient calculation

Gradient Checkpointing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
46

Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for
gradient calculation

Gradient Checkpointing

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
47

Checkpointing: storing only a few intermediate results during the forward pass.
Recomputation: Recomputing the necessary values during the backward for
gradient calculation

Sublinear Memory Cost: O(sqrt(n))

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
48

Drop the results of low compute cost operations, e.g., Conv-BatchNorm-
Activation, drop results of the batch norm, activation, and pooling, but keep the
results of convolution

Assume we divide the n network into k segments, the activation memory to train
the network:

Assume segments are equally divided, setting , we get with
only one additional forward pass.

Results: Memory Cost

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E
49

G R A I N G E R E N G I N E E R I N GC O M P U T E R S C I E N C E

Questions?

50

	Slide 1: Deepspeed - Alphafold3 –Minjia Zhang, Hoa La–
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

