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Mixed Precision Training
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 Mixed Precision Hardware
* What is Mixed Precision Training?
e Considerations for Mixed Precision

 Mixed Precision Software
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Mixed Precision Hardware
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2006 — Now: Compute and Scaling

TensorCore

Public SANVIDIA. ©
cloud CUDA. ,

2006 2007 2016 2017 2019

Compute scaling
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2006 — Now: Compute and Scaling
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Vector Processing Unit 11

* A processing unit that operates on an
entire vector in one instruction (SIMD) SCALAR VECTOR

(1 operation) (N operations)

R

* Work done in parallel L

* The operand to the instructions are
vectors instead of a scalar

length

add r3, rl, r2 adad.vv v3i, vl, va
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What are Tensor Cores? Matrix Multiplication Units

COMPUTER SCIENCE
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What are Tensor Cores? Matrix Multiplication Units

o L Werp Scheduler D2 Wredichh) )

* Tensor cores are: e T
* Built to accelerate deep learning
* Special hardware execution units

e Execute matrix multiply operations (fused
multiply-add on small matrices) in one - - B
instruction CYC' e ] e e s s s et TR U e (<o ;) i () o) R
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What are Tensor Cores? Matrix Multiplication Units

* Tensor cores are:

S Werp Scheduler D2 Wreedich)
Dispatich Unit {32 threadici)

Dispatch Unit (32 $heeadiclh)

Rogister File (16,384 x 32-bit)

wr wr R |
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* Built to accelerate deep learning
* Special hardware execution units

e Execute matrix multiply operations (fused
multiply-add on small matrices) in one
instruction cycle
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* (V100) Volta Tensor Cores FP16
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TENSOR TENSOR
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Tensor Cores: Mixed Precision Matrix Math on 4x4 Matrices

D =

FP16 or FP32

FP16 or FP32
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Internals of Tensor Cores (Volta)

Sum with
FP16 Full precision FP32
storage/input product accumulator
more products
b4

—®
—

I
2

* Accelerate matrix multiplications and convolutions
* Tensor core optimized libraries: cuDNN, cuBLAS, CUTLASS

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

12
COMPUTER SCIENCE GRAINGER ENGINEERING



What is Mixed Precision Training?
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IEEE 754 Floating Point Representation Recap

* Number can be represented by (—1)%# (1. M) = 2(¥ ~Bias)

COMPUTER SCIENCE

(sign)

(fraction or mantissa)

(exponent)
Half Precision ) 5 bit |

(Floating Point 16) | 1 Pit 10 bit

Singj-e Prer:isinn 1 bit 8 bit 28 bit
(Floating Point 32)

Double Precision .

11 bit

(Floating Point 64) | ' Pt 52 bit
Quadruple Precision

(Floating Point 128) | 1 Pt 15 bit 113 bit
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IEEE 754 Floating Point Representation Recap

* Number can be represented by (—1)%# (1. M) = 2(¥ ~Bias)

COMPUTER SCIENCE

(sign)

(fraction or mantissa)
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IEEE 754 Floating Point Representation Recap

* Number can be represented by (—1)%# (1. M) = 2(¥ ~Bias)

COMPUTER SCIENCE

(sign)

(fraction or mantissa)

0 10000001 10100000000000000000000

Assume bias is 127

(-1)A0 * (1.625) * 2A(129 - 127) = 1.625 * 4
=6.5

(exponent)
Half Precision ) 5 bit |

(Floating Point 16) | 1 Pit 10 bit

Singfe Prer:isinn 1 bit 8 bit 28 bit
(Floating Point 32)

Double Precision .

11 bit

(Floating Point 64) | ' Pt 52 bit
Quadruple Precision

(Floating Point 128) | 1 Pt 15 bit 113 bit
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New Floating-Point Format

ibit  8bit 23bit
IEEE754
FP32 [ )
1bit  Sbit 10bit
IEEE754

FP16 L J

1bit 8bit 7bit
Google
bfloatl6 l
i i 10bit
NVIDIA 1bit 8bit |
TensorFloat
AMD 1bit 7bit 16bit
FP24

COMPUTER SCIENCE
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New Floating-Point Format

1bit 8bit 23bit
IEEE754
FP32 [ |
— 1bit Shit 10bit
FP16 L )
1bit  8bit 7bit Reduced storage
Sangie [ and bandwidth
bfloatl6
i i 10bit
NVIDIA 1bit 8bit I
TensorFloat
AMD 1bit 7bit 16bit
FP24
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What is Mixed Precision Training? In a Nutshell

* |dea that you can train deep neural networks in multiple precisions:
* Make precision decisions per layer or operation
 Full precision (Fp32) where needed to maintain task-specific accuracy
* Reduced precision (Fp16) everywhere else for speed and scale

19
COMPUTER SCIENCE GRAINGER ENGINEERING



What is Mixed Precision Training? In a Nutshell

* |dea that you can train deep neural networks in multiple precisions:

* Make precision decisions per layer or operation
 Full precision (Fp32) where needed to maintain task-specific accuracy

* Reduced precision (Fp16) everywhere else for speed and scale

* By using multiple precisions, we can have the best of both worlds: speed
and accuracy

e Goal: accelerate deep neural network training with mixed precision under
the constraints of matching accuracy of full precision training and no
changes to how model is trained
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Mixed Precision Training Benefits

* Accelerates speed
 Tensor cores are 8x faster than FP32
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Mixed Precision Training Benefits

* Accelerates speed
 Tensor cores are 8x faster than FP32

 Reduces memory bandwidth pressure
* FP16 halves memory traffic compared to FP32
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Mixed Precision Training Benefits

* Accelerates speed
 Tensor cores are 8x faster than FP32

 Reduces memory bandwidth pressure
* FP16 halves memory traffic compared to FP32

* Reduces memory consumption
* FP16 halves the size of activation and gradient tensors
* Enables larger models, mini batches or inputs
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Why Use Mixed Precision? Pure FP167?

* Models cannot always converge properly in pure FP16
* FP16 has a narrower dynamic range than FP32
e May cause underflow/overflow issues and other arithmetic issues
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Why Use Mixed Precision? Pure FP167?

* Models cannot always converge properly in pure FP16
* FP16 has a narrower dynamic range than FP32
e May cause underflow/overflow issues and other arithmetic issues

* Weight updates
* Optimizer takes very small increments when search narrows into a solution
* Late updates often cannot be represented in FP16, but can be crucial for accuracy
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Why Use Mixed Precision? Pure FP167?

* Models cannot always converge properly in pure FP16
* FP16 has a narrower dynamic range than FP32
e May cause underflow/overflow issues and other arithmetic issues

* Weight updates
* Optimizer takes very small increments when search narrows into a solution
* Late updates often cannot be represented in FP16, but can be crucial for accuracy

* Reductions
* Large sums of values, e.g., in linear layers and convolutions, can be too big for FP16
* Adding small values to a large sum can lead to rounding errors
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Mixed Precision Training Example

- RAN-50 Time To Train (MXNet, 8-GPU, Batch=256/GPU)

— FP32

L ReSNet_SO training for ImageNet Mined Precision L mﬂx-#ﬁu.-xl;,,--— e N
classification : i

* 8 GPUs on DGX-1 1

* Comparing to FP32 training :, :
 ~3x speedup . L2
* Equal accuracy 2 L FP_32 e
* No hyperparameters changed D o 1 Lo

Elapsed Training Time [minutes)

training time
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Mixed Precision is Generalizable

* Works across a wide range of tasks, problem domains, deep neural
network architectures

DLSS BERT
AlexNet Deeplab Partial Image Inpainting Gated Convolutions
DenseMet Faster R-CNN Progress GAN mLSTM
Inception Mask R-CHNN Pix? Pix RoBERTa
MobileMet 55D Transformer XL
NASNet NVIDIA Automotive _
Reset Retinaet Deep Speech 2 | Tamaten |
ResNeXt UNET Jasper Convolutional Seq2Seq
ShuffleNet Tacotron e T B

VGG

Xception

COMPUTER SCIENCE

DeepRecommender

NCF

WaveNet

WaveGlow

Levenshtein Transformer

Transformer (Self-Attention)

28
GRAINGER ENGINEERING



Mixed Precision Trains Faster: Drastically Reduces Training Time ]I

ResNet-50 3.6x
Image

Classification DenseNet 201 2.2x*
Xception 2.1x*
SSD 2.5x**
Detection /
Segmentation Mask R-CNN 1.5x
RetinaNet 2.0x
* 2x batch size ** Larger batch size
Weeks to days

Days to hours
Hours to minutes

COMPUTER SCIENCE

2.3x

- . 2.9x
Translation PARSIOEIIEE 4,9
Convolutional
Seq2Seq 2.5x°
Deep Speech 2 4.5x**
Wav2letter 3.0x*
WaveGlow 1.9x%
el BERT 3.3x
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Mixed Precision Advances DL Research

“This paper shows that reduced mixed precision and large batch training can
speedup training by nearly 5x on a single 8-GPU machine with careful tuning

and implementation. Scaling Neural Machine Translation, Facebook

“We train with mixed precision floating point arithmetic on DGX-1 machines
[...] using 1024 V100 GPUs for approximately one day.”

RoBERTa, Facebook

“leverages mixed precision training [...] largest transformer based language
model ever trained at 24x the size of BERT and 5.6x the size of GPT-2.”

MegatronLM, NVIDIA
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Considerations for Mixed Precision
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Considerations for Mixed Precision Training

e Goal #1: Make FP16 training general purpose, not only for limited
class of applications

e Goal #2: With no changes to hyperparameters or the model
architecture

Three parts:

PRECISION OF OPS MASTER WEIGHTS LOSS SCALING

Decide which operations to Keep an FP32 copy of the Scale the loss value to
compute in FP16 and FP32. model weights. retain small gradients.
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Precision Choices for Different Classes of Operations

Matrix Multiplication
linear, matmul, bmm, conv

8x performance boost from Tensor Cores
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Precision Choices for Different Classes of Operations

Matrix Multiplication
linear, matmul, bmm, conv

8x performance boost from Tensor Cores

Pointwise Reductions
relu, sigmoid, tanh, exp, log batch norm, layer norm, sum, softmax

Loss Functions
cross entropy, |2 loss, weight decay

still get some speedup (e.g. 2x memory savings), but without sacrificing accuracy
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Precision of OPS: Conservative Recommendations

* Operations that can use FP16
* Matrix multiplications
* Most element-wise operations (e.g., relu, tanh, add, sub, mul)
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Precision of OPS: Conservative Recommendations

* Operations that can use FP16
* Matrix multiplications
* Most element-wise operations (e.g., relu, tanh, add, sub, mul)

e Operations that need FP32 mantissa
e Reduction operations
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Precision of OPS: Conservative Recommendations

* Operations that can use FP16
* Matrix multiplications
* Most element-wise operations (e.g., relu, tanh, add, sub, mul)

e Operations that need FP32 mantissa
e Reduction operations

* Operations that need FP32 range
* Element-wise operations where |f(x)| >> |x]|, e.g., exp, log, pow
* Loss functions
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Master Weights

* Problem: in late stages of training, weight updates become too small
for addition in FP16

* Consequence: weight update gets clipped to zero when w>> aV
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Master Weights

* Problem: in late stages of training, weight updates become too small
for addition in FP16

* Consequence: weight update gets clipped to zero when w>> aV

>
|
weights are 1 representable

1 not updated *** 1L+7552 [ FP16 values

* Conservative solution: keep master copy of weights in FP32 so small
updates can accumulate

39
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Master Weights: Illustration

2. Make an FP16 copy and forward/backward propagate in FP16

p . _ 16 )

fl half }—) Weights ——— .

\. Dareha B F16 FWD Hie Activations
Activations ——

.

F16 | IW{iWEi hts
Activation Grad «=—— BWD-Actv E16 5

e—Activation Grad

i Y F16 . .
Weight Grad F16 i «—— Activations
- BWD-Weight  rp
— A ctivation Grad

., A

1. Keep weights in FP32

v

Master-Weights (F32) =2 Weight Update I 22 - Updated Master-Weights

3. Do weight update in FP32
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Loss Scaling: Put All Tensors in FP16 Range

* Range representable in FP16: ~40 powers of 2

64 . FP16 Representable range

-

* Gradients are small:
* |f cast to Fp16, some lost to zero

* Much of fp16 representable ranges was
left unused

: Become zero in FP16 FP16 denorms
[ b - o

- L >

1/4

1/8

1/16

1/32

1/64

Percentage of all activation gradient values

1/128

1/256

1/512
0 -75-60-45-40 -38-36-34-32-30 -28-26-24-22-20-18-16-14 -12-10-8 6 -4 -2 0 2 4 6 B 10 12 14 16

log,(magnitude)

Histogram of activation gradient values
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Loss Scaling: Put All Tensors in FP16 Range

* Range representable in FP16: ~40 powers of 2

64 . FP16 Representable range

* Gradients are small:
* |f cast to Fp16, some lost to zero

* Much of fp16 representable ranges was
left unused

-

: Become zero in FP16 FP16 denorms
[ b - o

- L >

1/4
1/8
1/16

1/32

Question: How can we make better use of FP16
representable range?

1/64

Percentage of all activation gradient values

1/128

1/256

1/512
0 -75-60-45-40 -38-36-34-32-30 -28-26-24-22-20-18-16-14 -12-10-8 6 -4 -2 0 2 4 6 B 10 12 14 16

log,(magnitude)

Histogram of activation gradient values
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Loss Scaling: Put All Tensors in FP16 Range

* Range representable in FP16: ~40 powers of 2
° Gradients are Sma”: ’ Z‘: ‘ :FP — FP16 Representable range
Become zero in FP16 1 enorms

* |f cast to Fp16, some lost to zero
* Much of fp16 representable ranges was
left unused
* Scaling gradients during backpropagation
to prevent underflow
* Gradients are scaled before o ,(m,d) S

backpropagation begins and rescaled Histogram of activation gradient values
before updating weights

* Solution:
* Move small gradients values to fp16 range

1/16
1/32
1/64

1/128

Percentage of all activation gradient values

1/256

1/512
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Loss Scaling: Algorithm 11

2. Remove scale

Apply (+clip, etc.)prmsms
EE @;M:::er _ FP32 Gradients — FP32
- Gradients
Scaled
Copy FP16

Gradients

FP16 FP32 Scaled FP32 /

Weights Loss - Loss %ac,‘(@‘o‘)

Forward Pass 1. Scale loss
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Automatic Loss Scaling: Frees Users from Choosing a Scaling Factor

1. Start with very large scale factor (e.g., 2"24)

e 2. If gradients overflows (with Inf or a Nan): decrease the scale by 2 and
skip the update

* 3. If no overflows have occurred for some time: increase the scale by 2
(e.g., 2000 iterations)

67,108,864
33,554,432
- 16,777,216

8,388,608

4,194.:@'4 I I " I " I

2,097,152 ul-l s
1,048,576 -

524,288

e

Loss sca

Iteration

Train With Mixed Precision - NVIDIA Docs
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https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

Mixed Precision Software
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Mixed Precision Software i

* Goal: Make mixed precision training easy with minimum effort for DL
practitioners

* Available for major DL frameworks
PyTorch|DeepSpeed| Megatron

* Works with all types of optimizers
 SGD, Adam, etc

* Works with multiple models, optimizers, and losses

47
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Enabling Mixed Precision i

* Traditionally a lot of work (recap on methodology)

* Model conversion
- Switch everything to run on FP16 values

- Cast to FP32 for loss functions, normalization, and element-wise ops that need
full precision

* Master weights
- Keep FP32 copy of model parameters
- Make FP16 copies during forward/backward passes

* Loss scaling
- Scale the loss value, unscale the gradients in FP32

- Check gradients at each iteration to adjust loss scale and skip on overflow
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Automatic Mixed Precision (AMP)

Automates everything from the previous slides

* Framework software to run mixed precision automatically

Details vary by framework, but core idea is the same

Automatic Mixed Precision (AMP) does two things:

AUTOMATIC LOSS SCALING AUTOMATIC CASTING

Wraps the optimizer in order to: Wraps model and operations in order to:
scale loss value & unscale gradients - cast data to FP16
adjust scale & skip on gradient overflow - switch everything to run on FP16

- keep certain operations in FP32
- keep master copy of weights in FP32
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Automatic Casting

* Make type decisions for each operation a prior (static graph) or at runtime (eager

execution)

* Define conservative set of rules to replace “by-hand” mixed precision

Divide the universe of operations into three kinds:

WHITELIST BLACKLIST
FP16 enables Tensor Cores. FP32 is needed for accuracy.
e.g. linear, bmm, convs e.g. loss, exp, sum, softmax
Rule: always run in FP16, Rule: always run in FP32,
cast if necessary. cast if necessary.

COMPUTER SCIENCE

EVERYTHING ELSE

Can run in FP16, but only
if inputs already in FP16.

e.g. relu, add, maxpool

Rule: run in existing input
type.

50
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Automatic Casting 1|

BLACKLIST

cast inputs
to FP32 FP32

EVERYTHING ELSE

FP16 cast inputs to

widest type

WHITELIST
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AMP for PyTorch

To control the operations being casted

model, optimizer = amp.initialize(model, optimizer, opt_level="01")

00 0l 02
FP32 Training Mixed Precision Training FP16 Training
Leave everything in FP32. FP16 whitelist and FP32 blacklist ops. FP16 model/data with FP32 batchnorm.
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Questions?
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