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Megatron-v2

COMPUTER SCIENCE

Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM

Deepak Narayanan*, Mohammad Shoeybi’, Jared Casper?, Patrick LeGresley’,
Mostofa Patwary®, Vijay Korthikanti’, Dmitri Vainbrand®, Prethvi Kashinkunti’,
Julie Bernauer’, Bryan Catanzaro’, Amar Phanishayee*, Matei Zaharia*
"NVIDIA *Stanford University * Microsoft Research

ABSTRACT

Large language models have led to state-of-the-art accuracies across
several tasks. However, training these models efficiently is chal-
lenging because: a) GPU memory capacity is limited, making it
impossible to fit large models on even a multi-GPU server, and
b) the number of compute operations required can result in un-
realistically long training times. Consequently, new methods of
model parallelism such as tensor and pipeline parallelism have
been proposed. Unfortunately, naive usage of these methods leads
to scaling issues at thousands of GPUs. In this paper, we show how
tensor, pipeline, and data parallelism can be composed to scale
to thousands of GPUs. We propose a novel interleaved pipelining
schedule that can improve throughput by 10+% with memory foot-
print comparable to existing approaches. Our approach allows us
to perform training iterations on a model with 1 trillion parameters
at 502 petaFLOP/s on 3072 GPUs (per-GPU throughput of 52% of
theoretical peak).
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Figure 1: Trend of sizes of state-of-the-art Natural Language Pro-
cessing (NLP) models with time. The number of floating-point op-
erations to train these models is increasing at an exponential rate.

Various model parallelism techniques have been proposed to
address these two challenges. For example, recent work [39, 40] has
shown how tensor (intra-layer) model parallelism, where matrix
multiplications within each transformer layer are split over multiple
GPTIs can he nged to avercame these limitatione Althanoh this
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Combining Multiple Parallelism
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Combining Model Parallelism

* Model_Parallelism = Tensor_Parallelism X Pipeline_Parallelism
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3D Parallelism

wsi|9||esed Suldi|s-10sual

y
Pipeline parallelism
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3D Parallelism

wsi|9||esed Suldi|s-10sual

y
Pipeline parallelism

Question: How do we know which parallelism to choose?
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Performance Analysis of Combined Parallelism

{p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel
size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-£-d = n.

B: Global batch size.

B Microbatch size.

m = 2:: Number of microbatches per pipeline.
bed
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Performance Analysis of Combined Parallelism

e (p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel

o Te nsor and Plpe“rle MDdEl Paral |E| ISIT] size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-£-d = n.

B: Global batch size.

B Microbatch size.

p (BubbleFraction)
m

m = 2:: Number of microbatches per pipeline.
bed
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Performance Analysis of Combined Parallelism

e (p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel

o Te nsor and PlpE“nE MDdEl Paral |E| ISIT] size, t is the tensor-model-parallel size, and d is the data-parallel size.

Assumed=1,n= D * ¢ n: Number of GPUs, satisfying p-£-d = n.

p—-1 nft-1

m m

B: Global batch size.

B Microbatch size.

m = 2:: Number of microbatches per pipeline.
bed
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Performance Analysis of Combined Parallelism

e (p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel

o Te nsor and Plpe“rle MDdEl Paral |E| ISIT] size, t is the tensor-model-parallel size, and d is the data-parallel size.
t1}, pipeline bubble ||

n: Number of GPUs, satisfying p-£-d = n.

B: Global batch size.

B Microbatch size.

p—-1 nft-1

m m

m = 2:: Number of microbatches per pipeline.
bed
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Performance Analysis of Combined Parallelism

e (p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel

o Te nsor and Plpe“rle MDdEl Paral |E| ISIT] size, t is the tensor-model-parallel size, and d is the data-parallel size.
t1}, pipeline bubble ||

n: Number of GPUs, satisfying p-£-d = n.
B: Global batch size.

B Microbatch size.

p—-1 nft-1

m m

e (Communication overhead

All-reduce communication for tensor model parallelism is expensive!
Especially when cross servers

m = %: Number of microbatches per pipeline.
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Performance Analysis of Combined Parallelism

e (p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel

o Te nsor and Plpe“rle MDdEl Paral |E| ISIT] size, t is the tensor-model-parallel size, and d is the data-parallel size.
t1}, pipeline bubble ||

n: Number of GPUs, satisfying p-£-d = n.
B: Global batch size.

B Microbatch size.

p—-1 nft-1

m = %: Number of microbatches per pipeline.

m m

e (Communication overhead

All-reduce communication for tensor model parallelism is expensive!
Especially when cross servers

Takeaway #1: Use tensor model parallelism within a server and pipeline model
parallelism to scale to multiple servers.
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Scatter/gather Communication Optimization

e Scatter/gather optimization as an extension to the Megatron-LM
o  This reduced pipeline bubble size does not come for free
The output of each transformer layer is replicated (after g in MLP block)

O
o They are sending and receiving the exact same set of tensors
o Split the sending message to equal size of chunk and perform an all-gather on receivers
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Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT

8 Nvidia 80GB A100
cards per node, 8
nodes are connected
through fat-tree
topology

-8 Batch size =32
-&— Batch size = 128

Achieved teraFLOP/s
per GPU
>
o

(2,32)  (4,16) (8, 8) (16,4)  (32,2)
(Pipeline-parallel size, Tensor-parallel size)

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al. SC’21
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Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT

Question: Why does the performance peak att=p = 8?

<L 2001 .-
% ‘ : 8 Nvidia 80GB A100
= =z — cards per node, 8
© nodes are connected
L9 1004 through fat-tree
§ a sg —®— Batchsize =32 topology
f—:) ~&— Batch size = 128
3]
< 0-— v T ' ?
(2,32) (4,16) (8, 8) (16, 4) (32,2)

(Pipeline-parallel size, Tensor-parallel size)

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al. SC’21

17
COMPUTER SCIENCE GRAINGER ENGINEERING



Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT

Question: Why does the performance peak att=p = 8?

g 200 -
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T _ 1501 t > 3, expensive Cross- t——_4
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(Pipeline-parallel size, Tensor-parallel size)

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al. SC’21
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8 Nvidia 80GB A100
cards per node, 8
nodes are connected
through fat-tree
topology
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Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT

Question: Why does the performance peak att=p = 8?
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°g . server allreduce
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(Pipeline-parallel size, Tensor-parallel size)

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al. SC’21
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8 Nvidia 80GB A100
cards per node, 8
nodes are connected
through fat-tree
topology
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Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT
o Peak performance achieved whent=p =28
Need a conjunction of both types of model parallelisms

o _ 8 Nvidia 80GB A100
e S cards per node, 8

T
nodes are connected
through fat-tree

topology

S e

-8 Batch size =32
-&— Batch size = 128

Achieved teraFLOP/s
per GPU
>
o

(2,32)  (4,16) (8, 8) (16,4)  (32,2)
(Pipeline-parallel size, Tensor-parallel size)

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Narayanan et al. SC’21
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Evaluation - Scatter-gather optimization

e GPT model with 175 billion parameters using 96 A100 GPUs
e Up to 11% in throughput

Large batch size with interleaved schedules
Reduce cross-node communication cost

150 - ———
I

,f""&“ ® —D— ®

129 V

| —@— Unoptimized
—&— Scatter/gather optimization

Achieved teraFLOP/s
per GPU
=
e

12 24 36 48 60
Batch size
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Performance Analysis of Combined Parallelism

(p, t,d): Parallelization dimensions, where p is the pipeline-model-parallel

(] Data versus P | pe“ne Para “el | SMm size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-t-d = n.

p y = 1 e B: Global batch size.

e b: Microbatch size.
m e m= “L’l, Number of microbatches per pipeline.

22
COMPUTER SCIENCE GRAINGER ENGINEERING



Performance Analysis of Combined Parallelism

(p, t,d): Parallelization dimensions, where p is the pipeline-model-parallel

(] Data versus P | pe“ne Para “el | SMm size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-t-d = n.
p ro= 1 e B: Global batch size.

b: Microbatch size.

m m = }L’, Number of microbatches per pipeline.
Assume t=1, n =d*p

m=B/(d*b)

Assume b’ = B/b (ratio of batch size to microbatch size)

m=b’/d
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Performance Analysis of Combined Parallelism

(p, t,d): Parallelization dimensions, where p is the pipeline-model-parallel

(] Data versus P | pe“ne Para “el | SMm size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-t-d = n.

p y = 1 n/d = 1 e B: Global batch size.

b: Microbatch size.

m b / /d m = }L’, Number of microbatches per pipeline.
Assume t=1, n =d*p

m=B/(d*b)

Assume b’ = B/b (ratio of batch size

to microbatch size)

m=b’/d

24
COMPUTER SCIENCE GRAINGER ENGINEERING



Performance Analysis of Combined Parallelism

(p, t,d): Parallelization dimensions, where p is the pipeline-model-parallel

(] Data versus P | pe“ne Para “el | SMm size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-t-d = n.

p a= 1 n / d == 1 n — d e B: Global batch size.

b: Microbatch size.

/ /=R
m b _B/b e m= }L’, Number of microbatches per pipeline.

Assume t=1, n =d*p

m=B/(d*b)

Assume b’ = B/b (ratio of batch size
to microbatch size)

m=b’/d
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Performance Analysis of Combined Parallelism

(p, t,d): Parallelization dimensions, where p is the pipeline-model-parallel

2] Data VerSUS P | pe“ne Para ”ellsm size, t is the tensor-model-parallel size, and d is the data-parallel size.

n: Number of GPUs, satisfying p-t-d = n.

p a= 1 n / d == l n — d e B: Global batch size.

b: Microbatch size.

/ /=R
m b _B/b e m= ,L’{ Number of microbatches per pipeline.

e Data versus Tensor Parallelism

DP is less communication heavy than TP
m All-reduce once per batch vs. All-reduce once per microbatch
Tensor parallelism can lead to hardware underutilization
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Performance Analysis of Combined Parallelism

—&— n=32,b'=32 —&— nN=128,b'=128

e Data versus Pipeline Parallelism —&— n=32,b'=128 —@— n=128 b'=512
«b]
N 1.001
p—1 n/d-1 n-d :
- — g 0.754
/ /=R a ]
m b /d b’=B/b Eo.so
5 0.25 | Sr———l——
. Q. -
e Data versus Tensor Parallelism & 0.001— : : : , .
1 2 4 8 16 32 64

DP is less communication heavy than TP Data-parallel size (d)
m All-reduce once per batch vs. All-reduce once per microbatch
Tensor parallelism can lead to hardware underutilization
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Performance Analysis of Combined Parallelism

—&— n=32,b'=32 —&— nN=128,b'=128

e Data versus Pipeline Parallelism —&— n=32,b'=128 —@— n=128 b'=512
b}
N 1,00
p—-1 n/d-1 n-d :
— = 5 0751
/ /=R 3 0504
m b /d b’=Bl/b Bom
?’10'25' —s—5
e Data versus Tensor Parallelism & 0001~ : , ' , x
. - 1 2 4 8 16 32 64
DP is less communication heavy than TP Data-parallel size (d)

m All-reduce once per batch vs. All-reduce once per microbatch
Tensor parallelism can lead to hardware underutilization

Question: How do n, b’, d affect the bubble fraction?
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Performance Analysis of Combined Parallelism

—&— n=32,b'=32 —&— nN=128,b'=128

e Data versus Pipeline Parallelism —9— n=32,b'=128 —@— n=128,b'=512
«b]
N 1.001
p—-1 n/d-1 n-d :
— — g 0.751
/ /=R = —
m b /d b’=Bl/b Bom
5 0.25| Sy
. o
e Data versus Tensor Parallelism & 0.00

. o 1 2 4 8 16 32 64
DP is less communication heavy than TP Data-parallel size (d)
m All-reduce once per batch vs. All-reduce once per microbatch

Tensor parallelism can lead to hardware underutilization

Takeaway #2: Decide tensor-parallel size and pipeline-parallel size based on the
GPU memory size; data parallelism can be used to scale to more GPUs.
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Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism
5.9-billion param. GPT

& 200-
% —&— Batch size = 32
T o 1907 )— Batch size = 512
o .
29100
23 o
3 50 . =g -
-
]
"-'-'-T: CI T T T T
(2, 32) (4,16) (8, 8) (16, 4) (32, 2)

(Pipeline-parallel size, Data-parallel size)

Question: Why does throughput decrease
as pipeline parallel size increase?
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Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism
5.9-billion param. GPT
Throughput decreases as
pipeline-parallel size increases

£ 2001
% —&— Batch size = 32
R e —4—__, —#— Batchsize =512
o I
292100 ~——
2 & -— ”
@ 501 - ® — —
o =
[ ]
"-'-'-T: CI T T T T

(2,32) (4, 16) (8, 8) (16, 4) (32, 2)

(Pipeline-parallel size, Data-parallel size)

p—1 n/d-1 n-d

m  b'/d  b’=Bb

COMPUTER SCIENCE
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Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism
5.9-billion param. GPT
Throughput decreases as
pipeline-parallel size increases

$  200-
% —&— Batch size = 32
E 2 | e —¢—— Batchsize =512
£ 9 100 e
28 o~
3 90 - . —e- -
-
[
"-'-'-T: CI T T T T

(2,32) (4, 16) (8, 8) (16, 4) (32, 2)

(Pipeline-parallel size, Data-parallel size)

Limitations of data-parallelism:
1.  Memory capacity
2. Scaling limitation proportional to the batch size

COMPUTER SCIENCE
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Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism e

5.9-billion param. GPT

Throughput decreases as

pipeline-parallel size increases

L7y
£ 200- o
% —&— Batch size = 32 =
1501 & —— Batch size = 512 I
oo @
2 S 100- \‘\’\\* =
32 | :
= &
< 0 . . . <
(2,32) (4,16) (8, 8) (16, 4) (32, 2)

(Pipeline-parallel size, Data-parallel size)

Limitations of data-parallelism:

1.  Memory capacity
2. Scaling limitation proportional to the batch size

COMPUTER SCIENCE

Tensor-parallelism vs. Data-parallelism
5.9-billion param. GPT

200
—&— Batch size = 32
- 1907 —#— Batch size = 128
% 100- —&— Batch size = 512
g
501 @ ®
D ] ] ] 1 T
(2, 32) (4, 16) (8, 8) (16, 4) (32, 2)

(Tensor-parallel size, Data-parallel size)

Question: Why does throughput decrease
as tensor-parallel size increase?
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Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism e Tensor-parallelism vs. Data-parallelism

5.9-billion param. GPT > 5.9-billion param. GPT
Throughput decreases as > Throughput decreases as
pipeline-parallel size increases tensor-parallel size increases
@ 200
£ 200- o T
% —&— Batch size = 32 9 150 - - BEtEE S!EE : -
1501 & —— Batch size = 512 S E P (BRIl EEE = L
@ 7 2O 1004 —a— Batch size = 512
L O 1001 T D
T o S e 1 ® *
_% =1 50 ® * ° _— - % 50
= Q
< ' ' ' ' < % 32) (4,16 (8, 8 (16, 4 32,2
(2,32)  (416) (88  (164)  (32,2) 2 . ) o i }||:1 - }l L
(Pipeline-parallel size, Data-parallel size) (Tensor-parallel size, Data-parallel size)
Limitations of data-parallelism: Limitations of tensor-parallelism:
1. Memory capacity 1. More frequent Allreduce
2. Scaling limitation proportional to the batch size 2. Allreduce is on critical path
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Evaluation - Pipeline Parallelism (Non-Interleaved)

e Weak Scaling - increase the #layers while increasing PP size

GPT-3 style:
#heads: 128
hidden_dim: 20480
micro-batchsize: 1

0
S~

% i ~ PP =1, 3-layer Transformer 15B
— . —® pp-3, 24-layer Transformer 121B
L. D

Ca

2 CE 100 \ TP= 8 fixed, #GPUs from 8 to 64
T O

Yo 50 —&— Batch size=8

%’ —&— Batch size = 128

3]

< O T T T Y

1 2 4 8
Pipeline-parallel size
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Evaluation - Pipeline Parallelism (Non-Interleaved)

e Weak Scaling - increase the #layers while increasing PP size

GPT-3 style:

Question: Why does larger batch size scale better? #heads: 128
hidden_dim: 20480

micro-batchsize: 1

L 200"

% S ~ PP =1, 3-layer Transformer 15B
—J  150- ' “ pp= 8, 24-layer Transformer 121B
g

& 0L

2 CE 100 \ TP= 8 fixed, #GPUs from 8 to 64
T O

Yo 50 —&— Batchsize=8

%’ —&— Batch size = 128

O

< O ! T T

1 2 4 8
Pipeline-parallel size
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Evaluation - Pipeline Parallelism (Non-Interleaved)

e Weak Scaling - increase the #layers while increasing PP size

e Higher batch size scales better (p-1)/m GPT-3 style:
#heads: 128

hidden_dim: 20480
micro-batchsize: 1

PP =1, 3-layer Transformer 15B
PP =8, 24-layer Transformer 121B

oo

o

© 100+ \ TP= 8 fixed, #GPUs from 8 to 64
@

Q

-&— Batch size =8
-&— Batch size = 128

O T T T T
1 2 4 8

Pipeline-parallel size

e £ E-
-‘. &

Achieved teraFLOP/s
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Evaluation — Non-Interleaved vs. Interleaved

e |Interleaved schedule with scatter/gather optimization has higher throughput

o The gap closes as the batch size increases
m Bubble size decreases when batch size increases (i.e., more micro-batches)
m Interleaved schedule features more communication cost per sample

1504

—l

N

(&)
I

-8 Non-interleaved
- |Interleaved

Achieved teraFLOP/s
per GPU
=
({1 e ]

o
o

12 24 36 48 60
Batch size
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Evaluation - Selection of Microbatch size

e Optimal microbatch size is model dependent

Arithmetic intensity
Pipeline bubble size

= 1.254

= i —
21.00{ = = \\
O

£ 0.75-

©

© 0.504

N —&— Batch size = 128

c 0.251 —¢— Batch size = 512

6 T ] X - ;
b 0.00

1 2 4 8 16
Microbatch size
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Evaluation - End-to-end Performance

e Superlinear scaling of throughput
o Per-GPU utilization improves as the model get larger
o Communication overhead is not significant

32 512 137 44% 44

1.7 24 2304 24 1 1

3.6 32 3072 30 2 1 64 512 138 44% 8.8

7.5 32 4096 36 4 1 128 512 142 46% 18.2
18.4 48 6144 40 8 1 256 1024 135 43% 34.6
39.1 64 8192 48 8 2 512 1536 138 44% 70.8
76.1 80 10240 60 8 Bl 1024 1792 140 45% 143.8
145.6 96 12288 80 8 8 1536 2304 148 47% 2271
310.1 128 16384 96 8 16 1920 2160 155 50% 297.4
529.6 128 20480 105 8 35 2520 2520 163 52% 410.2
1008.0 160 25600 128 8 64 3072 3072 163 52% 502.0
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Models Trained with 3D Parallelism

a BigScience initiative

176B params ' 59 languages  Open-access

First open-source project on LLM training through collaboration of Al researchers around the world
Combined multi-dimensional parallelism on Jean Zay cluster in France (estimated cost €3 M)
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Models Trained with 3D Parallelism

GPUs TP CP PP DP Seq.LlLen. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU
8,192 8 1 16 64 8,192 32 16M 430 43%
16,384 8§ 1 16 128 8,192 16 16M 400 41%
16,384 8§ 16 16 5 131,072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.
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Questions?
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Evaluation - End-to-end Performance

e Estimated Training Time

o T: number of tokens
P: number of parameters 8T P

2 . . .
o n number of GPUs End-to-end training time ~ —
' nX
o  X:throughput
o E.g. GPT3
T (billion) P (billion) n X (teraFLOPs/s per GPU) @ #Days
300 175 1024 140 34 288 years with

a single V100
1000 450 3072 163 84 NVIDIA GPU
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