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Pipeline Parallelism
Multi-Dimensional Parallelism

First assignment (due in two weeks Mar 25 EOD)
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Data Parallelism Cannot Train Large Models

H,-"'.H ;'. "
— ] —H P
GPU 1
—| et
- , :. " ;.
e e
GPU 2

175B * 16 Bits
= 350GB Memory

Nvidia H100 94 GB

Even the best GPU CANNOT fit the model into memory!
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Model Parallelism

Inter-layer (Pipeline) parallelism Q- oo
- Split sets of layers across multiple

devices X >

- Layer O, 1, 2 and layer 3, 4, 5 are on \

different devices e\ v AV

Intra-layer (Tensor) parallelism

_ Sp!it individual layers across multiple . ,///A\\o’/k\\ -
devices »,!7/}\\\3 “@\f\x W/e\\\: /,5\\‘ 7

-\\Vﬁ‘u A /z/, Sy \\\ ﬁ'e:‘}\
'\.’evw "“ “" "‘ 0% '5\" f»‘r/ Vov g
S '§ .;omv «043:‘« SRR /9'9 (XK
.//‘?‘ \\ l":; \‘:\\\ u’ '\\./‘/ Q\‘ "$~\\.

W, 'I' AN
é\‘ 7&‘%“’ .) I}

oS o\ PN //"li‘v \\
\\V%"\V/ \W \\V//

- Both devices compute different parts
of layerO, 1, 2,3,4,5
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Model Parallelism

Inter-layer (Pipeline) parallelism Q- > o
- Split sets of layers across multiple
" devices 3 5
- Layer O, 1, 2 and layer 3, 4, 5 are on \
different devices NIRRT A

______________________________________________________________________________________________________________________

Intra-layer (Tensor) parallelism
- Split individual layers across multiple

- //A\\Q//A\\ ~
devices Vc/!g\\‘g/«/e\;\‘ W/e\\\: /}k 7

-\\Vﬁ‘u A /z/, W «h 7, \\\ ﬁ'e:‘}\
'\.’evw "“ “" "‘ 0% '5\" f»‘r/ Vov g
S '§ .;omv «043:‘« SRR /9'9 (XK
.//A‘ v 'q;a \‘2\\\ ’ '\\.4/ &\\ l'§~\\.

AN e

oS o\ PN //"li‘v \\
\\V%"\V/ \W \\V//

- Both devices compute different parts
of layerO, 1, 2,3,4,5
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Inter-Layer Model Parallelism

H,.H ,-f"‘.‘“x - a-"'n.m"“'x

— O
P —Kor— e o e e
\ “-..,-f"# “x..,-" i x‘«\‘.’; S H*f
GPU 1 GPU 2 GPU 3 GPU 8
b Lad Lal Ll

350GB / 8 cards = 43.75G < 80G

With model parallelism, large ML models can be placed and trained on GPUs.
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Inter-Layer Model Parallelism

.-f""f,.xxu .-"'f‘.‘\"x - J_.a-".‘h.x

— N

s S .S
\ “-..,-f"# M“‘*«l..,--" i x‘«\‘.’; S H.,‘ff
GPU 1 ~ GPU2 GPU 3 GPU 8

350GB / 8 cards = 43.75G < 80G

With model parallelism, large ML models can be placed and trained on GPUs.

Question: How to achieve high training throughput through
inter-layer model parallelism?
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Simple Inter-Layer Parallelism

Worker 1 .

Worker 1 w§
Worker 2 Worker 2 | \

Worker 3
Worker 3 |

Worker 4

orker N\
Worker 4 =
’ Forward Backward
N
loss — Pass Pass Y [dle

DNN training involves a bi-directional execution
- The forward pass for a minibatch starts at the input layer
- The backward pass ends at the input layer

8
COMPUTER SCIENCE GRAINGER ENGINEERING



&
o
[
(©

| -

()
oo

| -

Q

>

(qV)
—

L

Q
)
=
@

Q.
E
V)

77 =
77 -
m
v\\\ql MS
778
\\\&\\\\\\\\ - 7
\\\\ \\ €&

loss

Worker 1] HesJs u
op4

Worker 2
Worker 3
Worker 4



10
INEERI

Pass

4% w

\
i .
7 - s
\\\\ \\ &

Worker 2 Epa
op4

Worker 1
Worker 3
Worker 4

&
o
[
(©

| -

()
oo

| -

Q

>

(qV)
—

L

Q
)
=
@

Q.
E
V)

Pass

0SS



&
o
[
(©

| -

()
oo

| -

Q

>

(qV)
—

L

Q
)
=
@

Q.
E
V)

27

NNy dle

—

Backward
Pass

‘\\

Time

-

7

- 7

7=

77
77/

\\\“\\\u\\z\\

1\\\\\

Forward
Pass

(o}
_3- <

Q. Q.
-0— @)

™

[

Q

"

o

O

=

4
-
O

R4
—
O

=

Worker 1
Worker 2

11
NE



&
o
[
(©

| -

()
oo

| -

Q

>

(qV)
—

L

Q
)
=
@

Q.
E
V)

27

NNy dle

—

Backward
Pass

‘\\

Time

-

7
__»
7 - 7
\\ \\\\

Forward
Pass

Worker 4

> (Q\| (4p)]
— | - S
Q () ()
N N -
S o S
= < =

12
INE



77 =
77 e

m
Kk Ms
- ) |Es<
e )
77

\\\\\\A.. g
7 77 - 7 -
\\ \\\\ -

-
%
[
(0

S

(q0)
(o

S

QD

3

(q0)
—

J

QD
)
=

- N o™
@ T & @5
(@} x X x

& & iD
£ = 2 =2
V)

13
INE



Simple Inter-Layer Parallelism

Worker 1 NN NN
B [
Worker 1 w%&& w%
Waiikar 2 Worker 2 | 111 \
N
Worker 3 101
Worker 3
Worker 4
orker 11 N
Worker 4 Time
Forward Backward e
- Pass Pass N\
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Issues with Simple Inter-Layer Parallelism

Worker 1 [ReskM—» o DA N i NN

. Worker 1 §§ dle \ w%

Worker 2 [s]e Worker.2 3 AN \
Worker 3

Worker 3 NeJek] obS |

Worker 4 ez ﬁ op4

Backward
Pass

NNy dle

e Under-utilization of compute resources

* Only one device is computing at a time and others are idling
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Issues with Simple Inter-Layer Parallelism

Worker 1 Msjek 111 NN
Worker 1 w%
Worker 2 [ejey o2 . \
: Worker 3
Worker 3 -~ op3 >
orker op3 op3 o Idle
Worker 4 [ejo! »—‘ op4 Time
[— Forward Backward NN
Pass Pass X .

loss

Question: How to improve the utilization and let multiple
workers work simultaneously?
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Pipeline Model Parallelism 1

Model Parallelism
MR N
« Mini-batch: th b ¢ | Worker 1 §§§§§ 1)1 \§
ini-batch: the number of samples N X R
. . . Worker 2 \\\§\\\ 111 \ \
processed in each iteration “\\N BN |
Worker 3 \\ 1\ 1\&&
Worker 4 111 §§\\
* Divide a mini-batch into multiple — >
smaller micro-batches Forward Backward
- S
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Pipeline Model Parallelism

* Mini-batch: the number of samples
processed in each iteration

* Divide a mini-batch into multiple
smaller micro-batches

* Pipeline execution:

* Micro-batches flow through the pipeline
from one stage to the next.

e As soon as a stage completes its work, it
passes the micro-batch to the next stage
and starts working on the next micro-
batch

COMPUTER SCIENCE

Worker 1
Worker 2
Worker 3

Worker 4

o)
)

h =

%%

-

Forward Backward
. . Y Idle
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Pipeline Model Parallelism

Model Parallelism
Tt W
. . Worker 1 1(1
* Mini-batch: the number of samples \§§§§\\ X w%
. . . Worker 2 \\\\\ 1(1 \ \
processed in each iteration %\k BN |
Worker 3 N\ 1\ 1\§x
Worker 4 y Sl §§\
* Divide a mini-batch into multiple — g
smaller micro-batches oy Beckvard Y ldle
* Pipeline execution:
* Micro-batches flow through the pipeline vipaine:stostel Famliosem
from one stage to the next. AN Topits oo ORI fTum gy ook 36l gradients
* As soon as a stage completes its work, it N 4| LD
passes the micro-batch to the next stage N\REIRERE |\ N\ 2|2 BN\
and starts working on the next micro- )l \\§§§§§
batch i b AN

Time
I ForwardPass [ | Backward Pass Y Idle
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Pipeline Model Parallelism: Device Utilization

Pipeline flush

Rl 2345678 213|456/ 7 |8 ERLISRPREMAEAL
Device 2 ERERELRA: 3|a|5|6([7]8 9 10111213141516
Device 3 12345678 45|67 9 10111213141516 E
Device 4 123456738k 5 6|78 910111213141516nﬂ
Time Devices idle
I Forward Pass Backward Pass

Still have bubbles in the pipeline

Question: How do we quantify bubbles?
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Pipeline Model Parallelism: Device Utilization

(Device 1

Device 2
P < Device 3
Device 4

Time

123456738
12345678

123456738

1234567 8

m = #microbatches (8)
p = pipeline stages (4)
t, = time of forward

t, = time of backward

Pipeline flush

5 (6 | 7 | 8 EEUEREVARNEYEN[

910111213141516

910111213141516 E

2 |3 |4
3(4|5|6 |7 )8
4 | § |6 |7

5|16 |7 |8

9 10111213141516nm

COMPUTER SCIENCE

Forward Pass

Devices idle

Backward Pass

24
GRAINGER ENGINEERING



Pipeline Model Parallelism: Device Utilization

(Device 1

Device 2
P < Device 3
Device 4

Time

123456738
12345678

123456738

1234567 8

m = #microbatches (8)
p = pipeline stages (4)
t, = time of forward

t, = time of backward

Pipeline flush

5 (6 | 7 | 8 EEUEREVARNEYEN[

910111213141516

910111213141516 E

2 |3 |4
3(4|5|6 |7 )8
4 | § |6 |7

5|16 |7 |8

9 10111213141516nm

COMPUTER SCIENCE

Forward Pass

Devices idle

Backward Pass
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Pipeline Model Parallelism: Device Utilization

(Device 1

Device 2
P < Device 3
Device 4

Time

N
4 N/

m*t  (p-1)*(t +tp)
A

123456738
12345678

123456738

1234567 8

m = #microbatches (8)
p = pipeline stages (4)
t, = time of forward

t, = time of backward

Pipeline flush

5 (6 | 7 | 8 EEUEREVARNEYEN[

910111213141516

910111213141516 E

~N
2 |3 |4
3(4|5|6 |7 )8
4 | § |6 |7
5|16 |7 |8

9 10111213141516nm

COMPUTER SCIENCE

Forward Pass

Devices idle

Backward Pass
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Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t, = time of forward

t, = time of backward

m*t  (p-1)*(t +tp) m*t, o
AL PN AL Pipeline flush
4 N/ Y4 A
(Device 1 EPEEEICERA: 2 (3|4|5|6]7

Device 2 EFEREERA: 3/4|5|6|7]|8 9 10111213141516
P4 Device 3 12345678 4|5 (6|7 910111213141516 E

Device 4 12345678l 56|78 910111213141516nm

Time Devices idle
I Forward Pass Backward Pass
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Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t, = time of forward

t, = time of backward

m*t  (p-1)*(t +tp) m*t, o
AL AL AL Pipeline flush
4 N/ Y4 A
Device 1 EFEEELEA: 213 (#4567

Device 2 12345678 3/4|5|6|7]|8 9 10111213141516
P4 Device 3 12345678 4|5 (6|7 910111213141516 E

Device 4 12345678l 56|78 910111213141516nm

Time Devices idle
I Forward Pass Backward Pass

(p— 1) * (tf+tb) _ p—1

BubbleFraction =
mxty +mxtg m

28
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Pipeline Model Parallelism: Device Utilization

m = #microbatches (8)
p = pipeline stages (4)
t, = time of forward

t, = time of backward

m*t  (p-1)*(t +tp) m*t, o
AL AL AL Pipeline flush
4 N/ Y4 A
Device 1 EFEEELEA: 213 (#4567

Device 2 12345678 3/4|5|6|7]|8 9 10111213141516
P4 Device 3 12345678 4|5 (6|7 910111213141516 E

Device 4 12345678l 56|78 910111213141516nm

Time Devices idle
I Forward Pass Backward Pass

(p—l)*(tf+tb) _p—l
mxty +mxt, m

BubbleFraction =

Question: How do we reduce the bubble fraction?
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Improving Pipeline Parallelism Efficiency

* m : number of micro-batches in a mini-batch
+ Increase mini-batch size or reduce micro-batch size
« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization
» p: number of pipeline stages
* Decrease pipeline depth
« Caveat: increase stage size
mxty (P—1)*(tr+tp) mxt,

l:Te- 1 2345678 12 |3 |a
Device 2 12345678 23|45 5 10111213141516

b Device 3 12345678 3|4|5]|6 910111213141516 E
Device 4 12345678k 45|67 9 1u11121314151anﬂ

Devices idle

B rorward Pass [ | Backward Pass
(p — 1) * (tf+tb) N 1
mxt; +mxt, m

Time

BubbleFraction =
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Desigh More Advanced Pipeline Schedule

* Each machine makes a choice between two options:

* Perform the forward pass for a micro-batch, pushing the micro-batch
to downstream workers

* Perform the backward pass for a different micro-batch, ensuring
forward progress in learning

31
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Improving Pipeline Parallelism Efficiency

* An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

Pipeline flush

Device 1 R EEAE:
Device 2 12345678

Device 3 12345678

6 | 7 | 8 REIIRRFAENENED]]

910111213141516

910111213141516 H

9 1n111213141515nﬁ
Time — Devices idle

- Forward Pass Backward Pass

= | o | oen | I
@ |~ | & | th
|
=]

Device 4 12345678

Question: Can we improve the pipeline schedule to reduce memory
requirements?
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Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

# in-flight mciro-batches = 8 Pipelineflush

Device 1 REEEELEE: RN 9 10111213141516

Device 2 12345678 7|8 9 10111213141516 De""'im1

Device 3 12345678 9 10111213141516 H DE""IQEE

Device 4 12345678 RN ] 3 910111213141516 LR T Device 3
Device 4

Time Devices idle —
B Forward Pass [ ] Backward Pass
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training
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Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

# in-flight mciro-batches = 8 Pipelineflush

# in—flight mciro-batches = 4

Device 1 123456748 & T [ 9 10111213141516 .
Device 2 [PREEEELRE 7|8 9 1011213141516 Deu!ce‘l '
Device 3 123456748 % 1011213141518 H DE"'"IDEE
Device 4 12345678 RN ] 3 910111213141516 LR T Device 3

Device 4
Time Devices idle —

B Forward Pass [ | Backward Pass
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule
PipeDream: Fast and Efficient Pipeline Parallel DNN Training

COMPUTER SCIENCE
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Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

# in-flight mciro-batches = 8 Freimien # |n—fI|ght mciro-batches

Device 1 HEEEELEE: LR RN 5 10111213141516
P 12345678 7|8 8 10111213141516 Device 1 n
Device 3 12345678 9 10111213141516 H Device 2
. Device 3
Device 4 1234567 8l 2 ] - | 9101112731471576 gL
Device 4
Time Devices idle —

B Forward Pass [ | Backward Pass

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training
COMPUTER SCIENCE
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Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

# in-flight mciro-batches = 8 Pipelineflush

# in-flight mciro-batches = 4

T 1 2 345678 AN 9 10111213141516 -

Device 2 12345678 7|8 9 10111213141516 De""im1 - "5“““?”“ .‘ n““'““

Device 3 12345678 9 1011213141516 H DE""'IQEE 1 n ﬂﬂn*n-’ﬂ“n ﬂ ﬂ o A

Device 4 1234567 s[f z]: 910111213141516 L Device 3 N n ﬂﬁﬂﬁﬂ’ﬂ“ ﬂ
Device 4 2 3 3 s 1kl 7 B

Time Devices idle —

B Forward Pass [ | Backward Pass
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule
PipeDream: Fast and Efficient Pipeline Parallel DNN Training
COMPUTER SCIENCE
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Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

# in-flight mciro-batches = 8 Freimfuer # in-flight mciro-batches = 4

De”d'i(:E1 12345678 3 4 5 -] r 9 101112131415716
ce2 B HH- oevice 1 [IEE GO E-E N B
Device 2 12345678 4 (8|6 |7 |8 9 10111213141516
Device 2 BB I I IR
Device 3 12345678 5|6 |7 9 10111213141516 H
) Device 3 1234 B g 2
Device 4 123456780 z]: 6| 7|8 9 10111213141516 BERN [ - n ﬂ n H ﬂ . n
Device 4

Devices idle —

B Forward Pass [ | Backward Pass

Time

hd Y
Warmup state Steady state
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training
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Pipeline Parallelism with 1F1B Schedule

* One-Forward-One-Backward in the steady state

* Reduce memory footprint of pipeline parallelism
* Doesn’t reduce pipeline bubble

Can we reduce pipeline bubble?

# in-flight mciro-batches = 8 Pipelineflush

De!ﬂce‘l 12345678 1 x 3 4 5 -] 9 1017112713141576
: . 9 Device 1 R
Device 2 12345678 2|3 |4|5|[6]|7 9 10111213141516
: : Device2 EIFER n ns 6
Device 3 3|4 |58 |7 § 10111213141518 H . .
Device 4 4|s5|s|7]8 910111213141516 L0, Device 3 1l "'- ﬂ ﬂ5ﬂ=
Device 4 f
Time Devices idle — w VAN )
F dP Backward P e Y
B Forward Pass ] ward Pass Warmup state Steady state
Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training 38
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Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

Device 1 9 101112
Device 2 9 101112
Device 3

Device 4

Each device is assigned two chunks (subset of noncontiguous
layers). Dark colors: First chunk. Light colors: Second chunk.

) B 1111 1 1 1R
Device 1 12340LEs 452539 Rk 4 AR 5 6 7 B 35400, 9“‘3" “5 470 g1
Device 2 1234!%5’ H-E’ 8- HH - 3ﬂ* E o|7 = ECIER RS HH < HioBi B HE“EWIHEH
. _ 111 Nall 1 1
Device 3 manua 1 H = 718 EHE 4 3| 6 J5 6 7 8 9,126 [ HE 34E5 5 10 11H12
. n 111 1.1 o 1101117 12 HFE
Device 4 12315-511:.2 8 4 su‘u??a 951 2 SEAMLIEPIE s 9 4 10 5 11 5 12 MEEIIES

Time ——

B Forward Pass Backward Pass

COMPUTER SCIENCE Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21) GRAINGER ENGINEERING




Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

[1-4] Device 1 9 101112

[5-8] Device 2 ?ﬂan n “ 9 101112
9

[9-12] Device 3 n H na ﬂ
[13-16] Device 4

Each device is assigned two chunks (subset of noncontiguous
layers). Dark colors: First chunk. Light colors: Second chunk.

111G 1 1 1
6 7 8 3542e NPz 9“‘ n “5

4
111
XE EH4H 7 8 [ |o5 12 gl MM
EHE é4 3| 6 7 B ”1 ‘m E
B

EIIE
i

'II 3 (6| 4 [TRNER

1
H108n
E g EmInEu
1 1
&m 11H12
1 1 1 1
5 3 4

13

[112]1 [9110] DE?iCE 1 123‘1E ]
[3,41,[11,12] Device 2 1:34HHI
[5,61,[13,14] Device 3 123 uua

[7,8],[15,16] Device 4 12344

Time ?’

1
718 19' 5
1

E13 9 4 10

1

111
012

1
1

z Kl 5 6 7 g

<IE=RCIENE 1 6 2 7 5 g9 | |10 11 14

'

ﬁ\m

B Forward Pass Backward Pass
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Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

(p—1)+

BubbleFraction =

(tr+tp)

v

m*tf +mx*g,

Device 1 125364 7Rlle 3

X’
vevice 2 [ 1% AR
[l
120 Q81 AR Hanmzaap "
B

1231!- 4

1231&'-56

Device 3

Device 4

95 1627

Time ——

Forward Pass

COMPUTER SCIENCE

6 7 B 3

/B

B

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21)

-1
m

1 p
— %k
v

1116811 1 1N IR
012600IF3 4 9“’ Ma12|5

111
ﬂ'lE
'I11
. ﬁ

1
IDIE 1 5

111 L P ) | . 1
9012 9 4"} 11].[12

1
6k

E 9 E'I{II'II
1

&'IIL'I 'I'IH']E
1 1 1
5 3

13

9 13

EII
1
5
1
4

14

8?4l i

Backward Pass
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Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

(t +tb)
- 1 poa
BubbleFraction = = _ x
mx*ty +mxt, v m

Question: Increasing v improves pipeline efficiency?

Device 1 [ 2s: d 1 Q253 e[« 7RloK 6 7 8 35, KN sl 6 IMEMEERH o M0 11
pevice2 (IR, AW 7 ol oo R e ok
i _ g111 1 1 1
Device 3 lzsnua 1 H Hu 7 8 1] HEIMIL 4H5 £ 10 11Hu
: : | 111 IR 1 a0 (I
Device 4 12315-511:.2?3 ‘ 788§ “94""1" (i3 9 410 511 ¢ 12 FREIPIE

Time ——

- Forward Pass Backward Pass

COMPUTER SCIENCE Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC’21) GRAINGER ENGINEERING




Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stages into v sub-stages
* The forward (backward) time of each sub-stage is t/v

(t +tb)
- 1 poa
BubbleFraction = = _ x
mx*ty +mxt, v m

Reduce bubble time at the cost of increased communication

Device 1 [ 2s: g1 Q253 ]el4 Rl 6 7 8 997,z H o B3 1112 RN LR
pevice2 (IR, AW 7 ol oo R e ok
. : g111 1 1 1
Device 3 manua 1 H E u : 7 8 1l J|® m 4E5 6 10 11H1:
: , | 111 IR 1 a0 (I
Device 4 PP 1 22 3] 3 4 2 ‘ 7Bk “94‘“1" i3 9 41051 ¢ 12 IEIPIG

Time ——
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Backward Pass
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Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with
1F1B Schedule

p—1
m

BubbleFraction =

Pipeline parallelism with

interleaved 1F1B Schedule

) 1 p-—-1
BubbleFraction = — #
U m

COMPUTER SCIENCE

Device 1
Device 2
Device 3
Device 4
Time

Device 1
Device 2
Device 3
Device 4
Time

—_—

2 (5(3 64
3[4 5
4 = 3 (8

9 1017112

9 1017112

Assign multiple stages
to each device

7

Forward Pass

7

1 2 Y ; ECJMRRIREEIH o Mo
212 o W Wz R ALY RN
ol M| o PlroM11 12 FERRTL RRE:RFY: 13
01 2 SEANREHRRIMEEY; o 310 EINE

Backward Pass
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Combining Multiple Parallelism

45
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Combining Multiple Parallelism

* Model_Parallelism = Tensor_Parallelism X Pipeline_Parallelism

PP Rank
TP Rank

r Pl N
Y o So Attesthond X) S ) :
4 ¥ = GelU(XA)
! |
. JIR L ! ! = | R L |
; > ;'S SN AT ER i R A B 1 \ 1M1 Ay
AR i ‘ '

COMPUTER SCIENCE

J‘A

GPU[1] [O] I

GPU[1] [1]

’**-ﬂ--/
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Performance Analysis of Combined Parallelism

e (p. t,d): Parallelization dimensions, where p is the pipeline-model-parallel

o Te nsor and Plpe“rle MDdEl Paral |E| ISIT] size, t is the tensor-model-parallel size, and d is the data-parallel size.
t1}, pipeline bubble ||

n: Number of GPUs, satisfying p-£-d = n.
B: Global batch size.

B Microbatch size.

p—-1 nft-1

m = %: Number of microbatches per pipeline.

m m

e (Communication overhead

All-reduce communication for tensor model parallelism is expensive!
Especially when cross servers

Takeaway #1: Use tensor model parallelism within a server and pipeline model
parallelism to scale to multiple servers.
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Evaluation — TP vs. PP

e [ensor versus Pipeline Parallelism
161-billion param. GPT
o Peak performance achieved whent=p =28
Need a conjunction of both types of model parallelisms

& 200

& .

= _ 1501 i Real
=) —_—

oo ———

T O ,

Qo 50 - -8 Batch size =32

f—:) ~&— Batch size = 128

O

< 0 1} T T 1 1

(2,32) (4,16) (8, 8) (16, 4) (32, 2)

(Pipeline-parallel size, Tensor-parallel size)

COMPUTER SCIENCE
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Performance Analysis of Combined Parallelism

—&— n=32,b'=32 —&— nN=128,b'=128

e Data versus Pipeline Parallelism —9— n=32,b'=128 —@— n=128,b'=512
b}
N 1.004
p—-1 n/d-1 n-d :
— — g 0.751
/ /=R 2 nead
m b /d b’=Bl/b Bom
m=B/(d*b)=b"/d 'E-,lo.zs- -
e Data versus Tensor Parallelism & 0.00

. o 1 2 4 8 16 32 64
DP is less communication heavy than TP Data-parallel size (d)
m All-reduce once per batch vs. All-reduce once per microbatch

Tensor parallelism can lead to hardware underutilization

Takeaway #2: Decide tensor-parallel size and pipeline-parallel size based on the
GPU memory size; data parallelism can be used to scale to more GPUs.
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Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism e Tensor-parallelism vs. Data-parallelism

5.9-billion param. GPT > 5.9-billion param. GPT
Throughput decreases as > Throughput decreases as
pipeline-parallel size increases tensor-parallel size increases
@ 200
£ 200- o T
% ——8— Batch size = 32 < 1504 — BEmE S!EE : 32
I, 188 —— Batch size = 512 SR Peatvagf AR SO = 15
@ 7 2O 1004 —a— Batch size = 512
291001 T D
= QO LA =
z = s0{® . . e - g 50 ‘ .
S < 0
< 0-— - - - - : ' ' ' '
(2, 32) (4, 16) (8,8) (16, 4) (32.2) (2, 32) (4, 16) (8, 8) (16, 4) (32, 2)

(Pipeline-parallel size, Data-parallel size) (Tensor-parallel size, Data-parallel size)
Limitations of data-parallelism:

1.  Memory capacity
2. Scaling limitation proportional to the batch size
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Evaluation - Pipeline Parallelism 11

e Weak Scaling - increase the #layers while increasing PP size
e Higher batch size scales better (p-1)/m

-&— Batch size =8
-&— Batch size = 128

Achieved teraFLOP/s
per GPU
o
o

0 T T T T
1 2 4 8

Pipeline-parallel size
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Evaluation - Pipeline Parallelism

e |Interleaved schedule with scatter/gather optimization has higher throughput

o The gap closes as the batch size increases
m Bubble size decreases when batch size increases (i.e., more micro-batches)
m Interleaved schedule features more communication cost per sample

1504

—l

N

(&)
I

-8 Non-interleaved
- |Interleaved

Achieved teraFLOP/s
per GPU
=
({1 e ]

o
o

12 24 36 48 60
Batch size
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Evaluation - Selection of Microbatch size

e Optimal microbatch size is model dependent

Arithmetic intensity
Pipeline bubble size

= 1.254

= i —
21.00{ = = \\
O

£ 0.75-

©

© 0.504

N —&— Batch size = 128

c 0.251 —¢— Batch size = 512

6 T ] X - ;
b 0.00

1 2 4 8 16
Microbatch size

COMPUTER SCIENCE
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Evaluation - Scatter-gather optimization

e GPT model with 175 billion parameters using 96 A100 GPUs
e Up to 11% in throughput

Large batch size with interleaved schedules
Reduce cross-node communication cost

150 - ———
I

,f""&“ ® —D— ®

129 V

| —@— Unoptimized
—&— Scatter/gather optimization

Achieved teraFLOP/s
per GPU
=
e

12 24 36 48 60
Batch size

54
COMPUTER SCIENCE GRAINGER ENGINEERING



Evaluation - End-to-end Performance

e Superlinear scaling of throughput
o Per-GPU utilization improves as the model get larger
o Communication overhead is not significant

32 512 137 44% 44

1.7 24 2304 24 1 1

3.6 32 3072 30 2 1 64 512 138 44% 8.8

7.5 32 4096 36 4 1 128 512 142 46% 18.2
18.4 48 6144 40 8 1 256 1024 135 43% 34.6
39.1 64 8192 48 8 2 512 1536 138 44% 70.8
76.1 80 10240 60 8 Bl 1024 1792 140 45% 143.8
145.6 96 12288 80 8 8 1536 2304 148 47% 2271
310.1 128 16384 96 8 16 1920 2160 155 50% 297.4
529.6 128 20480 105 8 35 2520 2520 163 52% 410.2
1008.0 160 25600 128 8 64 3072 3072 163 52% 502.0
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Evaluation - End-to-end Performance

e Estimated Training Time

o T: number of tokens
P: number of parameters 8T P

2 . . .
o n number of GPUs End-to-end training time ~ —
' nX
o  X:throughput
o E.g. GPT3
T (billion) P (billion) n X (teraFLOPs/s per GPU) @ #Days
300 175 1024 140 34 288 years with

a single V100
1000 450 3072 163 84 NVIDIA GPU
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Questions?

57
COMPUTER SCIENCE GRAINGER ENGINEERING



Scatter/gather Communication Optimization

e Scatter/gather optimization as an extension to the Megatron-LM
o  This reduced pipeline bubble size does not come for free
The output of each transformer layer is replicated (after g in MLP block)

O
o They are sending and receiving the exact same set of tensors
o Split the sending message to equal size of chunk and perform an all-gather on receivers

Y =GelU(XA) ™ /°  Z=Dropout(YB)

]

=X = XAI =

— N |

=¥y o Y1B: QE = g

=G Op=ap | e

. i o E =X |= XA = - ».j ; = Y B r-;E —_ E
wunk | gt iR g i N
e gy | 8T ey Rl

s A = [Ay, Az B 1]

B,

Infiniband Scatter of  All-gather of ]
o | B

1hodoig

J
=
[

=
| |
N199 | [N199 |

(a) MLP.
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