

CS 498: Machine Learning System Spring 2025

Minjia Zhang

The Grainger College of Engineering

Today

Pipeline Parallelism

Multi-Dimensional Parallelism

First assignment (due in two weeks Mar 25 EOD)

Data Parallelism Cannot Train Large Models

Even the best GPU **CANNOT** fit the model into memory!

Model Parallelism

Inter-layer (Pipeline) parallelism

- Split sets of layers across multiple devices
- Layer 0, 1, 2 and layer 3, 4, 5 are on different devices

Intra-layer (Tensor) parallelism

- Split individual layers across multiple devices
- Both devices compute different parts of layer 0, 1, 2, 3, 4, 5

Model Parallelism

Inter-layer (Pipeline) parallelism

- Split sets of layers across multiple devices
- Layer 0, 1, 2 and layer 3, 4, 5 are on different devices

Intra-layer (Tensor) parallelism

- Split individual layers across multiple devices
- Both devices compute different parts of layer 0, 1, 2, 3, 4, 5

Inter-Layer Model Parallelism

350GB / 8 cards = 43.75G < 80G

With model parallelism, large ML models can be placed and trained on GPUs.

Inter-Layer Model Parallelism

350GB / 8 cards = 43.75G < 80G

With model parallelism, large ML models can be placed and trained on GPUs.

Question: How to achieve high training throughput through inter-layer model parallelism?

DNN training involves a bi-directional execution

- The forward pass for a minibatch starts at the input layer
- The backward pass ends at the input layer

Question: What is the limitation of this execution?

Issues with Simple Inter-Layer Parallelism

- Under-utilization of compute resources
- Only one device is computing at a time and others are idling

Issues with Simple Inter-Layer Parallelism

Question: How to improve the utilization and let multiple workers work simultaneously?

Pipeline Model Parallelism

• Mini-batch: the number of samples processed in each iteration

 Divide a mini-batch into multiple smaller micro-batches

COMPUTER SCIENCE GRAINGER ENGINEERING

Pipeline Model Parallelism

 Mini-batch: the number of samples processed in each iteration

 Divide a mini-batch into multiple smaller micro-batches

Pipeline execution:

- Micro-batches flow through the pipeline from one stage to the next.
- As soon as a stage completes its work, it passes the micro-batch to the next stage and starts working on the next microbatch

Pipeline Model Parallelism

 Mini-batch: the number of samples processed in each iteration

 Divide a mini-batch into multiple smaller micro-batches

Pipeline execution:

- Micro-batches flow through the pipeline from one stage to the next.
- As soon as a stage completes its work, it passes the micro-batch to the next stage and starts working on the next microbatch

Still have bubbles in the pipeline

Question: How do we quantify bubbles?

m = #microbatches (8) p = pipeline stages (4) t_f = time of forward t_b = time of backward

m = #microbatches (8) p = pipeline stages (4) t_f = time of forward t_b = time of backward

m = #microbatches (8) p = pipeline stages (4) t_f = time of forward t_b = time of backward

m = #microbatches (8) p = pipeline stages (4) t_f = time of forward t_h = time of backward

BubbleFraction = $\frac{(p-1)*(t_f+t_b)}{m*t_f+m*t_b} = \frac{p-1}{m}$

m = #microbatches (8) p = pipeline stages (4) t_f = time of forward t_h = time of backward

m = #microbatches (8) p = pipeline stages (4) t_f = time of forward t_h = time of backward

Question: How do we reduce the bubble fraction?

BubbleFraction = $\frac{(p-1)*(t_f+t_b)}{m*t_f+m*t_b} = \frac{p-1}{m}$

Improving Pipeline Parallelism Efficiency

- m: number of micro-batches in a mini-batch
 - Increase mini-batch size or reduce micro-batch size
 - Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization
- p: number of pipeline stages
 - Decrease pipeline depth
 - Caveat: increase stage size

30 GRAINGER ENGINEERING

Design More Advanced Pipeline Schedule

- Each machine makes a choice between two options:
 - Perform the forward pass for a micro-batch, pushing the micro-batch to downstream workers
 - Perform the backward pass for a different micro-batch, ensuring forward progress in learning

Improving Pipeline Parallelism Efficiency

 An issue: we need to keep the intermediate activations of all microbatches before back propagation

Question: Can we improve the pipeline schedule to reduce memory requirements?

One-Forward-One-Backward in the steady state

Pipeline parallelism with GPipe's schedule

Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training

One-Forward-One-Backward in the steady state

Pipeline parallelism with GPipe's schedule

Pipeline parallelism with 1F1B schedule

GRAII

One-Forward-One-Backward in the steady state

Pipeline parallelism with GPipe's schedule

Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training

One-Forward-One-Backward in the steady state

Pipeline parallelism with GPipe's schedule

Pipeline parallelism with 1F1B schedule

PipeDream: Fast and Efficient Pipeline Parallel DNN Training

Pipeline Parallelism with 1F1B Schedule

One-Forward-One-Backward in the steady state

Pipeline parallelism with GPipe's schedule

Pipeline Parallelism with 1F1B Schedule

- One-Forward-One-Backward in the steady state
- Reduce memory footprint of pipeline parallelism
- Doesn't reduce pipeline bubble

Can we reduce pipeline bubble?

Pipeline parallelism with GPipe's schedule

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is t/v

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is t/v

GRAINGER ENGINEERING

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is t/v

$$BubbleFraction = \frac{(p-1)*\frac{(t_f+t_b)}{v}}{m*t_f + m*t_b} = \frac{1}{v}*\frac{p-1}{m}$$

Forward Pass

Backward Pass

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is t/v

$$BubbleFraction = \frac{(p-1)*\frac{(t_f+t_b)}{v}}{m*t_f + m*t_b} = \frac{1}{v}*\frac{p-1}{m}$$

Question: Increasing v improves pipeline efficiency?

Backward Pass

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is t/v

$$BubbleFraction = \frac{(p-1)*\frac{(t_f+t_b)}{v}}{m*t_f + m*t_b} = \frac{1}{v}*\frac{p-1}{m}$$

Reduce bubble time at the cost of increased communication

Pipeline parallelism with 1F1B Schedule

$$BubbleFraction = \frac{p-1}{m}$$

Pipeline parallelism with interleaved 1F1B Schedule

$$BubbleFraction = \frac{1}{v} * \frac{p-1}{m}$$

Today

Combining Multiple Parallelism

Combining Multiple Parallelism

Model_Parallelism = Tensor_Parallelism × Pipeline_Parallelism

Performance Analysis of Combined Parallelism

- Tensor and Pipeline Model Parallelism
 - t ↑, pipeline bubble ↓

$$\frac{p-1}{m} = \frac{n/t - 1}{m}$$

- (p, t, d): Parallelization dimensions, where p is the pipeline-model-parallel size, t is the tensor-model-parallel size, and d is the data-parallel size.
- n: Number of GPUs, satisfying $p \cdot t \cdot d = n$.
- B: Global batch size.
- b: Microbatch size.
- m = B/b·d: Number of microbatches per pipeline.

- Communication overhead
 - All-reduce communication for tensor model parallelism is expensive!
 - Especially when cross servers

Takeaway #1: Use tensor model parallelism within a server and pipeline model parallelism to scale to multiple servers.

Evaluation – TP vs. PP

- Tensor versus Pipeline Parallelism
 - 161-billion param. GPT
 - Peak performance achieved when t = p = 8
 - Need a conjunction of both types of model parallelisms

Performance Analysis of Combined Parallelism

Data versus Pipeline Parallelism

$$\frac{p-1}{m} = \frac{n/d-1}{b'/d} = \frac{n-d}{b'=B/b}$$
 $m = B/(d * b) = b'/d$

- Data versus Tensor Parallelism
 - DP is less communication heavy than TP
 - All-reduce once per batch vs. All-reduce once per microbatch
 - Tensor parallelism can lead to hardware underutilization

Takeaway #2: Decide tensor-parallel size and pipeline-parallel size based on the GPU memory size; data parallelism can be used to scale to more GPUs.

Evaluation - DP vs. Model Parallelism

- Pipeline-parallelism vs. Data-parallelism
 - 5.9-billion param. GPT
 - Throughput decreases as pipeline-parallel size increases

- Tensor-parallelism vs. Data-parallelism
 - 5.9-billion param. GPT
 - Throughput decreases as tensor-parallel size increases

Limitations of data-parallelism:

- Memory capacity
- 2. Scaling limitation proportional to the batch size

Evaluation - Pipeline Parallelism

- Weak Scaling increase the #layers while increasing PP size
- Higher batch size scales better (p-1)/m

Evaluation - Pipeline Parallelism

- Interleaved schedule with scatter/gather optimization has higher throughput
 - The gap closes as the batch size increases
 - Bubble size decreases when batch size increases (i.e., more micro-batches)
 - Interleaved schedule features more communication cost per sample

Evaluation - Selection of Microbatch size

- Optimal microbatch size is model dependent
 - Arithmetic intensity
 - Pipeline bubble size

Evaluation - Scatter-gather optimization

- GPT model with 175 billion parameters using 96 A100 GPUs
- Up to 11% in throughput
 - Large batch size with interleaved schedules
 - Reduce cross-node communication cost

Evaluation - End-to-end Performance

Superlinear scaling of throughput

- Per-GPU utilization improves as the model get larger
- Communication overhead is not significant

Number of parameters (billion)	Attention heads	Hidden size	Number of layers	Tensor model- parallel size	Pipeline model- parallel size	Number of GPUs	Batch size	Achieved teraFIOP/s per GPU	Percentage of theoretical peak FLOP/s	Achieved aggregate petaFLOP/s
1.7	24	2304	24	1	1	32	512	137	44%	4.4
3.6	32	3072	30	2	1	64	512	138	44%	8.8
7.5	32	4096	36	4	1	128	512	142	46%	18.2
18.4	48	6144	40	8	1	256	1024	135	43%	34.6
39.1	64	8192	48	8	2	512	1536	138	44%	70.8
76.1	80	10240	60	8	4	1024	1792	140	45%	143.8
145.6	96	12288	80	8	8	1536	2304	148	47%	227.1
310.1	128	16384	96	8	16	1920	2160	155	50%	297.4
529.6	128	20480	105	8	35	2520	2520	163	52%	410.2
1008.0	160	25600	128	8	64	3072	3072	163	52%	502.0

Evaluation - End-to-end Performance

Estimated Training Time

- T: number of tokens
- P: number of parameters
- o n: number of GPUs
- X: throughput
- o E.g. GPT3

End-to-end training time $\approx \frac{8}{100}$
--

T (billion)	P (billion)	n	X (teraFLOPs/s per GPU)	#Days	
300	175	1024	140	34	288 years with
1000	450	3072	163	84	a single V100 NVIDIA GPU

Questions?

Scatter/gather Communication Optimization

- Scatter/gather optimization as an extension to the Megatron-LM
 - This reduced pipeline bubble size does not come for free
 - The output of each transformer layer is replicated (after g in MLP block)
 - They are sending and receiving the exact same set of tensors
 - Split the sending message to equal size of chunk and perform an all-gather on receivers

