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DL Inference

• LLM Quantization

Objective: Understand how LLM quantization reduces memory and compute cost, 
and learn two key methods, ZeroQuant and SmoothQuant, for compressing weights 
and activations.

Today
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Serving Large Language Models Is Expensive
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• Large language models (LLMs) are taking over
every field.

• As the models get larger, serving such models for 
inference becomes expensive and challenging! 



Gap Between the Supply and Demand of LLMs
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• Size of LLMs is increasing faster than 
GPU memory: exponential growth in 
model size vs. linear increase in GPU 
memory

• Memory challenges: 175B 
parameters in GPT-3 requires 350GB 
of memory to store just weights

• Deployment difficulties: Requires 
multiple GPUs, high latency, and 
resource intensive setups

Gap



Can Existing Methods Reduce LLM Memory Consumption? 
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Bridge the Gap through Model Compression 
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Quantization
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• Reduce the bits per weight, saving memory consumption

• Accelerate inference speed on supporting hardware



What is Quantization?
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• Quantization is the process of mapping a large set of continuous or 
high-precision values (typically floating-point numbers) to a smaller 
set of discrete values (typically lower-precision integers) in order to
reduce the computational and memory requirements of a model.

Originate from signal processing and information theory



What is Quantization?
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• Quantization is the process of mapping a large set of continuous or 
high-precision values (typically floating-point numbers) to a smaller 
set of discrete values (typically lower-precision integers) in order to
reduce the computational and memory requirements of a model.

Originate from signal processing and information theory Adapted to computer vision models in ML



Motivation for LLM Quantization
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• LLMs often come in high precision formats such as FP 16 or FP32

• Significant GPU memory requirements (memory capacity and 
bandwidth)



Motivation for LLM Quantization
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• LLMs often come in high precision formats such as FP 16 or BF16

• Significant GPU memory requirements (memory capacity and 
bandwidth)

• Question: Do you know why pre-trained LLMs are often in FP16/BF16?



Key Concepts: Linear Quantization
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• An affine mapping of integers to real numbers r = S(q – Z)



Key Concepts: Linear Quantization
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• An affine mapping of integers to real numbers r = S(q – Z)



Key Concepts: Linear Quantization
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• An affine mapping of integers to real numbers r = S(q – Z)



Key Concepts: Symmetric Linear Quantization

15



Key Concepts: Symmetric Linear Quantization
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Question: How do we apply this to LLMs? 



LLM 8-bit Quantization
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• 8-bit quantization
   
 



LLM 8-bit Weight Quantization
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• 8-bit weight quantization
   
 ≈ 0.05 *

1.1   2.2   0.1   -0.1  -5.5  -6.6

…

…

…

…

1.1  2.1    0.1   -0.1   -4.8 -6.6  

  FP32 weight matrix

21   42      2      -2    -106  -127

…

…

…

…

21   40      2      -2      -92  -127

Scaling
Factor 
1/S

  8-bit quantization



LLM 8-bit Activation Quantization
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• 8-bit activation
 (Input to the linear layer)

x: input, FP32.      
 ≈ 0.05*

1.1   2.2   0.1   -0.1  -5.5  -6.6

…

…

…

…

1.1  2.1    0.1   -0.1   -4.8 -6.6  

  FP32 activation matrix

21   42      2      -2    -106  -127

…

…

…

…

21   40      2      -2      -92  -127

  8-bit quantization

Scaling
Factor 
1/S



LLM Quantization Challenges
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• Standard quantization 
strategy leads to catastrophic 
accuracy drop

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, 2023



LLM Quantization Challenges
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• Standard quantization 
strategy leads to catastrophic 
accuracy drop

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, 2023

Group Discussion: Why do you think 
this happens? How would you begin to 
diagnose this issue?



LLM Quantization Challenges
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Zero-shot evaluation results. WxAy means x-/y-bit for weight/activation.

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, 2023

Question: Take a close look at the performance across different quantization settings in 
the table. Can you identify what causes LLM to loss accuracy? 
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LLM Quantization Challenges
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Zero-shot evaluation results. WxAy means x-/y-bit for weight/activation.

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, 2023

INT8 activation quantization causes the primary accuracy loss



LLM Quantization Challenges
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LLM Quantization Challenges
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Questions: How do we mitigate accuracy loss from dynamic range (outliers)?



Quantization Granularity
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Quantization Granularity
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Quantization Granularity
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Quantization Granularity
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• Weight Quantization: Group-Wise

• Activation: Token-wise Quantization 

• Fine-grained 

• Dynamically calculate the min/max range

ZeroQuant: Fine-Grained Quantization
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• Layer-by-layer distillation (LKD) 

• Teacher model: Original (i.e., unquantized) version
• Use the output of the Lk-1 as the input of Lk 

• Student model: Quantized version

ZeroQuant: LKD
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• Optimized Transformer Kernels

• CUTLASS INT8 GeMM

• Fusing Token-wise Activation Quantization + GeMM

ZeroQuant: Optimized Kernels
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Evaluation Results

35https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
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Evaluation Results
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Evaluation Results
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Evaluation Results: Inference Speed

40https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf



Evaluation Results: Inference Speed
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Limitations



More Observations

• What is the difference between the two figures?
• 1 has lots of outliers

• 3 channels are much higher in value than the surrounding channels

• Range is 0-70

• At the same time, 2 is pretty flat
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SmoothQuant



SmoothQuant



SmoothQuant

• Key idea: Migrating the quantization difficulty from activation to weight



SmoothQuant: Per-Channel Smoothing Factor

• Push all quantization difficulty from activations to weights (all channels have 
same maximum magnitude):

• Push all quantization difficulty from weights to activations:

• Share difficulty according to α:



SmoothQuant: Alpha (α)

• Hyperparameter which controls the extent to which quantization difficulty is 
shifted from activations to weights

• α is b/w 0.4 to 0.6, though larger models or models with more significant 
activation outliers may require higher values. 



Choosing α

• Case-by-case decision

• If α is too large, weights will be hard to quantize. If too small, activations will be 
hard to quantize. 

• Goal: Make activations and weights both easy to quantize.



Example of SmoothQuant

• 1) Applying Smoothing Factor

• 2) Quantize (constant step size)



SmoothQuant Hardware Efficiency

• Applying SmoothQuant to transfer blocks
• Linear layers take up most of the parameter and computation

• Smoothing factor can be fused into previous layers’ parameters offline

• All linear layers are quantized with W8A8, as well as BMM operators in
attention computation



Evaluation: Baselines

• W8A8 is the naïve implementation

• LLM.int8() keeps outliers in FP16

• Outlier suppression uses token-wise clipping



Evaluation: SmoothQuant O1 to O3

• Gradually aggressive and efficient (lower latency) quantization levels



Evaluation: OPT-175B



Evaluation: Results on Different LLMs



Evaluation: Near Lossless W8A8 Quantization for LLaMA 



Hardware Efficiency

• Similar or faster latency with half #GPUs



Limitations



G R A I N G E R  E N G I N E E R I N GC O M P U T E R  S C I E N C E

Questions?

60
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