

Efficient Memory Management for Large Language Model Serving with PagedAttention

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, Ion Stoica

> Presented by Yuqi Xue Feb 15, 2024

Paper Published at SOSP'23. Many slide pages are borrowed from the MLSys Seminar @SG talk: https://www.youtube.com/watch?v=Oq2SN7uutbQ.

The Era of LLMs

The Rise and Rise of A.I. Size = no. of parameters Open-access Large Language Models (LLMs) & their associated bots like ChatGPT

Amazon-owned OpenAl OpenAl

David McCandless, Tom Evans, Paul Barton Information is Beautiful // UPDATED 27th Jul 23 source: news reports, <u>LifeArchitect.ai</u> * = parameters undisclosed // see <u>the data</u>

2

LLM-Powered Services

LLM-Powered Services

Serving LLMs is extremely expensive

- LLMs run on high-end GPUs such as NVIDIA A100
- Each GPU can only serve a handful of requests per second
 - For LLaMA-13B and moderate-size inputs, one A100 can process < 1 requests per second
- A ton of GPUs are required for production-scale LLM services

...

Inference on LLMs is slow (frustratingly high latency), expensive (multiple GPUs or TPUs), & engineering intensive (requires specialized skills to do it well)

Is local LLM cheaper than ChatGPT API?

ChatGPT api only costs 0.002 dollar for 1k token. I found that LLMs like llama output only 10-20 tokens per second, which is very slow. And such machines costs over 1 dollar per hour. It seems that using api is much cheaper. Based on these observations, it seems that utilizing the ChatGPT API might be a more affordable option.

Output

nput Artificial Intelligence is

Output

- Repeat until the sequence
 - Reaches its pre-defined max length (e.g., 4K tokens)
 - Generates an EOS (end of sequence) token

Values that will be taken from cache Values that will be masked

Key Insight

13B LLM on A100-40GB

Memory Waste in KV Cache

- Internal fragmentation: over-allocated due to the unknown output length
- **Reservation:** not used at the current step, but used in the future
- External fragmentation: due to different sequence lengths

Memory Waste in KV Cache

Only **20% - 40%** of KV cache is utilized to store token states

vLLM: Efficient Memory Management for LLM Inference

Memory management in OS

Memory management in vLLM

KV Block

- A fixed-size contiguous chunk of memory that stores the tokens' KV states
- Similar to the concept of a memory page

KV blocks

PagedAttention

- Manages KV cache in block granularity instead of sequence (i.e., request) granularity
- Allows storing logically contiguous KV blocks in non-contiguous physical memory

Key and value vectors

Example sequence: "Four score and seven years ago our fathers brought forth"

Logical-to-Physical KV Block Translation

Physical KV blocks (on GPU DRAM)

Serving Multiple Requests

Physical KV blocks

Memory Efficiency of vLLM

• Minimizes internal fragmentation

- Only happens at the last block of a sequence
- # wasted tokens per sequence < block size
 - Seq len: O(100) O(1000) tokens
 - Block size: 16 or 32 tokens

Alan	Turing	is	а		
computer	scientist	and	mathemati cian		
renowned					
	Internal fragmentation				

Dynamic Block Mapping Enables Sharing

Multiple outputs

KV Block Sharing for Parallel Sampling

KV Block Sharing for Beam Search

Picture source: https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24.

KV Block Sharing for Beam Search

• Similar to process fork and kill

Shared Prompt

Sequence A Prompt

Shared prefi

ared prefix	Translate English to French: "sea otter" => "loutre de mer" "peppermint" => "menthe poivrée" "plush girafe" => "girafe en peluche"
Task input	"cheese" =>

Sequence A LLM output

Task output

"fromage"

Similar to shared libraries in OS

Sequence B Prompt

Translate English to French: "sea otter" => "loutre de mer" "peppermint" => "menthe poivrée" "plush girafe" => "girafe en peluche"

"I love you" =>

Sequence B LLM output

"Je t'amie"

vLLM System Architecture & Implementation

Evaluation

System configuration.						
Model size	13 B	66B	175B			
GPUs	A100	4×A100	8×A100-80GB			
Total GPU memory	40 GB	160 GB	640 GB			
Parameter size	26 GB	132 GB	346 GB			
Memory for KV cache	12 GB	21 GB	264 GB			
Max. # KV cache slots	15.7K	9.7K	60.1K			

Figure 11. Input and output length distributions of the (a) ShareGPT and (b) Alpaca datasets.

vLLM Improves Inference Throughput by Enabling Larger Batch Size

Figure 12. Single sequence generation with OPT models on the ShareGPT and Alpaca dataset

vLLM Improves Inference Throughput by Enabling Larger Batch Size

Figure 13. Average number of batched requests when serving OPT-13B for the ShareGPT (2 reqs/s) and Alpaca (30 reqs/s) traces.

Memory Saving of vLLM

Figure 15. Average amount of memory saving from sharing KV blocks, when serving OPT-13B for the Alpaca trace.

Takeaways

- Strength
 - Interesting observation on the KV cache memory inefficiency
 - Analogy between KV cache management and OS paging
 - Open-source implementation
- Weakness
 - Cannot fundamentally improve inference latency
 - For multi-chip execution, vLLM assumes attention heads are sharded
 - If even a single attention head is too large, or we want to split it across multiple chips to improve latency, how can vLLM support sharding the KV cache?
 - The fundamental bottlenecks faced by LLM serving, **memory capacity** due to large model weights, and **memory bandwidth** due to low compute intensity of auto-regressive decoding, remain unsolved.
 - Speculative decoding?
 - New model architectures? (e.g., <u>SSM</u>, <u>Mamba</u>)
 - New hardware/architectural innovations? (e.g., processing-in-memory, <u>NVIDIA's new patent</u> that proposes stacking HBM dies on the processor die to expose a wider mem interface)

