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The Era of LLMs
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LLM-Powered Services
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LLM-Powered Services
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Serving LLMs is extremely expensive
• LLMs run on high-end GPUs such as NVIDIA A100
• Each GPU can only serve a handful of requests per second

• For LLaMA-13B and moderate-size inputs, one A100 can process < 1 
requests per second

• A ton of GPUs are required for production-scale LLM services
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Inference process of LLMs
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Inference process of LLMs

• Repeat until the sequence
• Reaches its pre-defined max length (e.g., 4K tokens)
• Generates an EOS (end of sequence) token
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KV Cache
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KV Cache
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KV Cache
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KV Cache

20 KB / layer / token
= 800 KB / token

(LLaMA-13B) 10



KV Cache Animation source: https://medium.com/@joaolages/kv-caching-explained-276520203249
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Key Insight

13B LLM on A100-40GB
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Memory Waste in KV Cache

• Internal fragmentation: over-allocated due to the unknown output length
• Reservation: not used at the current step, but used in the future
• External fragmentation: due to different sequence lengths
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Memory Waste in KV Cache

Only 20% - 40% of KV cache is utilized to store token states
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vLLM: Efficient Memory Management for LLM Inference
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KV Block

• A fixed-size contiguous chunk of memory 
that stores the tokens’ KV states

• Similar to the concept of a memory page
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PagedAttention
• Manages KV cache in block granularity instead of sequence (i.e., request) granularity
• Allows storing logically contiguous KV blocks in non-contiguous physical memory
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Example sequence: “Four score and seven years ago our | fathers brought forth”



Logical-to-Physical KV Block Translation
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Serving Multiple Requests
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Memory Efficiency of vLLM

• Minimizes internal fragmentation
• Only happens at the last block of a sequence
• # wasted tokens per sequence < block size

• Seq len: O(100) – O(1000) tokens
• Block size: 16 or 32 tokens
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Dynamic Block Mapping Enables Sharing
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KV Block Sharing for Parallel Sampling
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KV Block Sharing for Beam Search

23Picture source: https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24. 

https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24


KV Block Sharing for Beam Search
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• Similar to process fork and kill



Shared Prompt

25

• Similar to shared libraries in OS



vLLM System Architecture & Implementation
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Evaluation
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System configuration.



vLLM Improves Inference Throughput by Enabling Larger Batch Size
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vLLM Improves Inference Throughput by Enabling Larger Batch Size
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Memory Saving of vLLM



Takeaways
• Strength

• Interesting observation on the KV cache memory inefficiency
• Analogy between KV cache management and OS paging
• Open-source implementation

• Weakness
• Cannot fundamentally improve inference latency
• For multi-chip execution, vLLM assumes attention heads are sharded

• If even a single attention head is too large, or we want to split it across multiple chips to 
improve latency, how can vLLM support sharding the KV cache?

• The fundamental bottlenecks faced by LLM serving, memory capacity due to 
large model weights, and memory bandwidth due to low compute intensity of 
auto-regressive decoding, remain unsolved.
• Speculative decoding?
• New model architectures? (e.g., SSM, Mamba)
• New hardware/architectural innovations? (e.g., processing-in-memory, NVIDIA’s new patent 

that proposes stacking HBM dies on the processor die to expose a wider mem interface)
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https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2312.00752
https://patents.google.com/patent/US20230275068A1/en?oq=NV-20230275068


Q & A
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