
Efficient Memory Management for Large 
Language Model Serving with PagedAttention

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, 
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, Ion Stoica

Presented by Yuqi Xue
Feb 15, 2024

Paper Published at SOSP’23. Many slide pages are borrowed from the MLSys Seminar @SG talk: https://www.youtube.com/watch?v=Oq2SN7uutbQ. 

https://www.youtube.com/watch?v=Oq2SN7uutbQ


The Era of LLMs

2



LLM-Powered Services

3



LLM-Powered Services

3



Serving LLMs is extremely expensive
• LLMs run on high-end GPUs such as NVIDIA A100
• Each GPU can only serve a handful of requests per second

• For LLaMA-13B and moderate-size inputs, one A100 can process < 1 
requests per second

• A ton of GPUs are required for production-scale LLM services

4



Inference process of LLMs

Input

Output

5



Inference process of LLMs

Input

Output

5



Inference process of LLMs

Input

Output

6



Inference process of LLMs

• Repeat until the sequence
• Reaches its pre-defined max length (e.g., 4K tokens)
• Generates an EOS (end of sequence) token

Input

Output

7



KV Cache

Input

Output

8



KV Cache

Input

Output

9



KV Cache

Input

Output

KV Cache

9



KV Cache

20 KB / layer / token
= 800 KB / token

(LLaMA-13B) 10



KV Cache Animation source: https://medium.com/@joaolages/kv-caching-explained-276520203249

11



Key Insight

13B LLM on A100-40GB

12



Memory Waste in KV Cache

• Internal fragmentation: over-allocated due to the unknown output length
• Reservation: not used at the current step, but used in the future
• External fragmentation: due to different sequence lengths

13



Memory Waste in KV Cache

Only 20% - 40% of KV cache is utilized to store token states
14



vLLM: Efficient Memory Management for LLM Inference

15



KV Block

• A fixed-size contiguous chunk of memory 
that stores the tokens’ KV states

• Similar to the concept of a memory page

16



PagedAttention
• Manages KV cache in block granularity instead of sequence (i.e., request) granularity
• Allows storing logically contiguous KV blocks in non-contiguous physical memory

17
Example sequence: “Four score and seven years ago our | fathers brought forth”



Logical-to-Physical KV Block Translation

18



Serving Multiple Requests

19



Memory Efficiency of vLLM

• Minimizes internal fragmentation
• Only happens at the last block of a sequence
• # wasted tokens per sequence < block size

• Seq len: O(100) – O(1000) tokens
• Block size: 16 or 32 tokens

20



Dynamic Block Mapping Enables Sharing

21



KV Block Sharing for Parallel Sampling

22



KV Block Sharing for Beam Search

23Picture source: https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24. 

https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24


KV Block Sharing for Beam Search

24

• Similar to process fork and kill



Shared Prompt

25

• Similar to shared libraries in OS



vLLM System Architecture & Implementation

26



Evaluation

27

System configuration.



vLLM Improves Inference Throughput by Enabling Larger Batch Size

28



29

vLLM Improves Inference Throughput by Enabling Larger Batch Size



30

Memory Saving of vLLM



Takeaways
• Strength

• Interesting observation on the KV cache memory inefficiency
• Analogy between KV cache management and OS paging
• Open-source implementation

• Weakness
• Cannot fundamentally improve inference latency
• For multi-chip execution, vLLM assumes attention heads are sharded

• If even a single attention head is too large, or we want to split it across multiple chips to 
improve latency, how can vLLM support sharding the KV cache?

• The fundamental bottlenecks faced by LLM serving, memory capacity due to 
large model weights, and memory bandwidth due to low compute intensity of 
auto-regressive decoding, remain unsolved.
• Speculative decoding?
• New model architectures? (e.g., SSM, Mamba)
• New hardware/architectural innovations? (e.g., processing-in-memory, NVIDIA’s new patent 

that proposes stacking HBM dies on the processor die to expose a wider mem interface)
31

https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2312.00752
https://patents.google.com/patent/US20230275068A1/en?oq=NV-20230275068


Q & A


	Slide 1: Efficient Memory Management for Large Language Model Serving with PagedAttention
	Slide 2: The Era of LLMs
	Slide 3: LLM-Powered Services
	Slide 4: LLM-Powered Services
	Slide 5: Serving LLMs is extremely expensive
	Slide 6: Inference process of LLMs
	Slide 7: Inference process of LLMs
	Slide 8: Inference process of LLMs
	Slide 9: Inference process of LLMs
	Slide 10: KV Cache
	Slide 11: KV Cache
	Slide 12: KV Cache
	Slide 13: KV Cache
	Slide 14: KV Cache
	Slide 15: Key Insight
	Slide 16: Memory Waste in KV Cache
	Slide 17: Memory Waste in KV Cache
	Slide 18: vLLM: Efficient Memory Management for LLM Inference
	Slide 19: KV Block
	Slide 20: PagedAttention
	Slide 21: Logical-to-Physical KV Block Translation
	Slide 22: Serving Multiple Requests
	Slide 23: Memory Efficiency of vLLM
	Slide 24: Dynamic Block Mapping Enables Sharing
	Slide 25: KV Block Sharing for Parallel Sampling
	Slide 26: KV Block Sharing for Beam Search
	Slide 27: KV Block Sharing for Beam Search
	Slide 28: Shared Prompt
	Slide 29: vLLM System Architecture & Implementation
	Slide 30: Evaluation
	Slide 31: vLLM Improves Inference Throughput by Enabling Larger Batch Size
	Slide 32: vLLM Improves Inference Throughput by Enabling Larger Batch Size
	Slide 33: Memory Saving of vLLM
	Slide 34: Takeaways
	Slide 35: Q & A

