
Efficient Streaming
Language Models with

Attention Sinks

Paper written by:
 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis, (2023)
 (https://arxiv.org/abs/2309.17453)

https://arxiv.org/abs/2309.17453

The problem they’re trying to solve
• Transformer-based LLMs only work with finite context length
• Output quality drops significantly beyond training context length

• (This is a more difficult problem)

• Required computation also grows with increasing input length
• Memory for KV cache also grows rapidly

• Technique for “streaming” input to LLM of possibly infinite length
• LLM doesn’t fail catastrophically while being computationally efficient

In this paper

Recap of the attention layer

• Input is a sequence 𝑥1, 𝑥2, … , 𝑥𝑇
• In traditional transformer, 𝑥𝑖 includes positional encoding: 𝑥𝑖 = 𝑡𝑖 + 𝑓(𝑖)

• For each item 𝑥𝑖, query, key, and value 𝑞𝑖 , 𝑘𝑖 , 𝑣𝑖 are generated
• Output given by

𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗:𝑗<𝑖 𝑞𝑖 ⋅ 𝑘𝑗 𝑣𝑗

• If KV values are cached, needs 𝑂(𝑇) compute for each 𝑖
• Also fails catastrophically if 𝑇 is more than training context length

Sliding window

Simple solution for long inputs:
• Slide the context window so that you only consider last 𝐿 tokens

𝑥1, 𝑥2, … , 𝑥𝑇−𝐿+1, 𝑥𝑇−𝐿+2, … , 𝑥𝑇−1, 𝑥𝑇
Use the last 𝐿 tokens as input to LLM

The downside:
• Need to recompute all the KV values due to positional encoding

• Needs 𝑂(𝐿2) compute

• Very poor performance if we reuse the KV values

Relative positional encoding

• Many models like Llama use relative positional encoding
• Encoding is not directly integrated into the inputs 𝑥𝑖

… , 𝑥𝑇−4 , 𝑥𝑇−3, 𝑥𝑇−2, 𝑥𝑇−1, 𝑥𝑇
Positions: -4 -3 -2 -1 0

… , 𝑥𝑇−4 , 𝑥𝑇−3, 𝑥𝑇−2, 𝑥𝑇−1, 𝑥𝑇 , 𝑥𝑇+1
Positions: -4 -3 -2 -1 0-5

For next token:

KV values cached before
positional encoding
• Apply encoding while

running attention layer
• Llama uses RoPE

• https://arxiv.org/abs/2104.09864

https://arxiv.org/abs/2104.09864

Attention sink

• Current paper manages to reuse KV cache with sliding window
• Without performance loss due to mismatched positional encoding
• Works for LLMs with relative positional encoding

Key observation
• Most of the attention score is held in the first few “sink” tokens

• Preserve these tokens and reuse the KV cache for last 𝐿 tokens
• 𝑂(𝐿) computation without much loss in performance

Pictorial summary of attention sink

Empirical observation of attention sink

Attention scores on longer sequences

Attention sink details

• The first tokens are not semantically important

• Four tokens enough on pre-trained LLMs

Attention sink details (contd.)

• Positional encoding determined w.r.t. cache position
• Positions assigned continuously from 0 to 𝐿 starting from the sink tokens
• Most recent token assigned position 𝐿, not 𝑇

• Can be easily integrated with paged attention
• Just don’t discard the first page

Pre-training with sink token
• As an alternative to storing the first few tokens, a zero token can

be inserted before every sample in training
• Can also have learnable token instead of a zero token

Another alternative is to change the softmax
function:

Experiment results

Experiment results (contd.)

Pre-training with sink token

Experiment results (contd.)
Performance gains

Why does the sink phenomenon happen?
• The first tokens are seen by every attention calculation, while later

tokens are only seen by subsequent tokens
• Similar observations for last tokens in encoder transformers (periods at

the end of sentence, etc.)

Further work to be done?

• This technique doesn’t help extend context length

• Relation with different kinds of positional encoding seems unclear

• Window attention not significantly worse for some LLMs

	Slide 1: Efficient Streaming Language Models with Attention Sinks
	Slide 2: The problem they’re trying to solve
	Slide 3: Recap of the attention layer
	Slide 4: Sliding window
	Slide 5: Relative positional encoding
	Slide 6: Attention sink
	Slide 7: Pictorial summary of attention sink
	Slide 8: Empirical observation of attention sink
	Slide 9: Attention scores on longer sequences
	Slide 10: Attention sink details
	Slide 11: Attention sink details (contd.)
	Slide 12: Pre-training with sink token
	Slide 13: Experiment results
	Slide 14: Experiment results (contd.)
	Slide 15: Experiment results (contd.)
	Slide 16: Why does the sink phenomenon happen?
	Slide 17: Further work to be done?

