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The problem they’re trying to solve

* Transformer-based LLMs only work with finite context length

* OQutput quality drops significantly beyond training context length
* (This is a more difficult problem)

* Required computation also grows with increasing input length
* Memory for KV cache also grows rapidly
In this paper

* Technique for “streaming” input to LLM of possibly infinite length
* LLM doesn’t fail catastrophically while being computationally efficient



Recap of the attention layer

* Inputis a sequence x{, X5, ..., X
* In traditional transformer, x; includes positional encoding: x; = t; + f (i)

* For each item x;, query, key, and value q;, k;, v; are generated
* Qutput given by
a; = Softmaxj:j<i(qi - kj)vj
* If KV values are cached, needs O(T) compute foreach i
* Also fails catastrophically if T is more than training context length



Sliding window

Simple solution for long inputs:
* Slide the context window so that you only consider last L tokens

X1r X2 e »IxT—L+1r XT—L42s =y XT—1, XT
Use the last L tokens as inputto LLM

The downside:

* Need to recompute all the KV values due to positional encoding
« Needs 0(L?) compute

* Very poor performance if we reuse the KV values



Relative positional encoding

* Many models like Llama use relative positional encoding
* Encoding is not directly integrated into the inputs Xx;

KV values cached before

vy XT84y XT3, XT-2, XT—-1, XT positional encoding
Positions: -4 -3 -2 -1 0 * Apply encoding while
running attention layer
For next token: * Llama uses RoPE

https://arxiv.org/abs/2104.09864

vy XT =4y XT3, XT-2, XT—1, XT) XT 41
Positions: 5 -4 3 ) 1 0
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Attention sink

* Current paper manages to reuse KV cache with sliding window

* Without performance loss due to mismatched positional encoding
* Works for LLMs with relative positional encoding

Key observation

e Most of the attention score is held in the first few “sink” tokens

 Preserve these tokens and reuse the KV cache for last L tokens
* O(L) computation without much loss in performance



Pictorial summary of attention sink
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Empirical observation of attention sink
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Figure 2 Visualization of the average attention leglts in Llama-2-7B over 256 sentences eaeh w1th a length
of 16. Observations include: (1) The attention maps in the first two layers (layers 0 and 1) exhibit the "local”
pattern, with recent tokens receiving more attention. (2) Beyond the bottom two layers, the model heavily attends
to the 1nitial token across all layers and heads.

[£] 2 4 3 g 0 12 14



Attention scores on longer sequences

Llama-2-7B Attention Score on the First Token in Each Layer (SeglLen = 4096)
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Attention sink details

* The first tokens are not semantically important

* Four tokens enough on pre-trained LLMs

Table 2: Effects of reintroduced initial token numbers on
StreamingLLM. (1) Window attention (0+y) has a dras-
tic increase in perplexity. (2) Introducing one or two ini-
tial tokens usually doesn’t suffice to fully restore model
perplexity, indicating that the model doesn’t solely use
the first token as the attention sink. (3) Introducing four
initial tokens generally suffices; further additions have
diminishing returns. Cache config x+y denotes adding x
initial tokens to y recent tokens. Perplexities are evalu-
ated on 400K tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046 4+2044 8+2040

Falcon-7B 1790 12,12 12,12 12.12 12.12
MPT-7B 460.29 1499 15.00 1499 14.98
Pythia-12B 21.62 1195 12.09 12.09 12.02

Cache Config 0+4096 1+4095 2+4094 4+4092 8+4088
Llama-2-7B 335995 11.88 10.51 9.59 9.54

Table 1: Window attention has poor per-
formance on long text. The perplexity is
restored when we reintroduce the initial
four tokens alongside the recent 1020 to-
kens (4+1020). Substituting the original
four initial tokens with linebreak tokens
“\n" (4"\n"+1020) achieves comparable per-
plexity restoration. Cache config x+y de-
notes adding x initial tokens with y recent
tokens. Perplexities are measured on the
first book (65K tokens) in the PG19 test set.

Llama-2-13B PPL (])
0 + 1024 (Window) 5158.07
4 +1020 5.40
4"\n"+1020 5.60




Attention sink details (contd.)

* Positional encoding determined w.r.t. cache position
* Positions assigned continuously from 0O to L starting from the sink tokens
* Most recent token assigned position L, not T

* Can be easily integrated with paged attention
* Just don’t discard the first page



Pre-training with sink token

* As an alternative to storing the first few tokens, a zero token can
be inserted before every sample in training
e Can also have learnable token instead of a zero token

Table 3: Comparison of vanilla attention with

prepending a zero token and a learnable sink token . .

during pre-training. To ensure stable streaming Another alternative is to change the softmax
perplexity, the vanilla model required several ini- function:

tial tokens. While Zero Sink demonstrated a slight

improvement, it still needed other initial tokens. eri

Conversely, the model trained with a learnable SoftMax; (z); = N
Sink Token showed stable streaming perplexity 1+ Zj:l e’
with only the sink token added. Cache config z+y

denotes adding x initial tokens with y recent to-

kens. Perplexity is evaluated on the first sample in

the PG 19 test set.

Cache Config  0+1024 1+1023 241022 4+1020

Vanilla 27.87 18.49 18.05 18.05
Zero Sink 20214  19.90 18.27 18.01
Learnable Sink 1235 18.01 18.01 18.02




Experiment results

Sliding Window
w/ Re-computation
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Figure 3: Language modeling perplexity on texts with 20K tokens across various LLM. Observations
reveal consistent trends: (1) Dense attention fails once the input length surpasses the pre-training
attention window size. (2) Window attention collapses once the input length exceeds the cache size,
i.e., the initial tokens are evicted. (3) StreamingLLLM demonstrates stable performance, with its
perplexity nearly matching that of the sliding window with re-computation baseline.



Experiment results (contd.)

Pre-training with sink token
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Figure 6: Pre-training loss
curves of models w/ and w/o sink
tokens. Two models have a simi-
lar convergence trend.

Table 4: Zero-shot accuracy (in %) across 7 NLP benchmarks,
including ARC-[Challenge, Easy], HellaSwag, LAMBADA, Open-
bookQA, PIQA, and Winogrande. The inclusion of a sink token
during pre-training doesn’t harm the model performance.

Methods ARC-c ARC-e HS LBD OBQA PIQA WG

Vanilla 18.6 452 294 396 160 622 50.1
+Sink Token 19.6 45.6 298 399 16.6 62.6 50.8




Experiment results (contd.)

Performance gains

[] Sliding Window with Re-computation [l StreamingLLM
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Figure 10: Comparison of per-token decoding latency and memory usage between the sliding window
approach with re-computation baseline and StreaminglLLM, plotted against the cache size (attention
window size) on the X-axis. StreamingL.LLM delivers a remarkable speedup of up to 22.2x per token
and retains a memory footprint similar to the re-computation baseline.



Why does the sink phenomenon happen?

* The first tokens are seen by every attention calculation, while later
tokens are only seen by subsequent tokens

* Similar observations for last tokens in encoder transformers (periods at
the end of sentence, etc.)

Layer 9 head 0 Layer 11 head 0

Layer 10 head 0
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Figure 14: Visualization of attention maps for sentence “StreaminglLLM can work on infinite-length texts
without compromising efficiency and performance.” in BERT-base-uncased.



Further work to be done?

* This techniqgue doesn’t help extend context length
* Relation with different kinds of positional encoding seems unclear

* Window attention not significantly worse for some LLMs
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