Efficient Streaming
Language Models with
Attention Sinks

Paper written by:
Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis, (2023)
(https://arxiv.org/abs/2309.17453)

https://arxiv.org/abs/2309.17453

The problem they’re trying to solve

* Transformer-based LLMs only work with finite context length

* OQutput quality drops significantly beyond training context length
* (This is a more difficult problem)

* Required computation also grows with increasing input length
* Memory for KV cache also grows rapidly
In this paper

* Technique for “streaming” input to LLM of possibly infinite length
* LLM doesn’t fail catastrophically while being computationally efficient

Recap of the attention layer

* Inputis a sequence x{, X5, ..., X
* In traditional transformer, x; includes positional encoding: x; = t; + f (i)

* For each item x;, query, key, and value q;, k;, v; are generated
* Qutput given by
a; = Softmaxj:j<i(qi - kj)vj
* If KV values are cached, needs O(T) compute foreach i
* Also fails catastrophically if T is more than training context length

Sliding window

Simple solution for long inputs:
* Slide the context window so that you only consider last L tokens

X1r X2 e »IxT—L+1r XT—L42s =y XT—1, XT
Use the last L tokens as inputto LLM

The downside:

* Need to recompute all the KV values due to positional encoding
« Needs 0(L?) compute

* Very poor performance if we reuse the KV values

Relative positional encoding

* Many models like Llama use relative positional encoding
* Encoding is not directly integrated into the inputs Xx;

KV values cached before

vy XT84y XT3, XT-2, XT—-1, XT positional encoding
Positions: -4 -3 -2 -1 0 * Apply encoding while
running attention layer
For next token: * Llama uses RoPE

https://arxiv.org/abs/2104.09864

vy XT =4y XT3, XT-2, XT—1, XT) XT 41
Positions: 5 -4 3) 1 0

https://arxiv.org/abs/2104.09864

Attention sink

* Current paper manages to reuse KV cache with sliding window

* Without performance loss due to mismatched positional encoding
* Works for LLMs with relative positional encoding

Key observation

e Most of the attention score is held in the first few “sink” tokens

 Preserve these tokens and reuse the KV cache for last L tokens
* O(L) computation without much loss in performance

Pictorial summary of attention sink

(a) Dense Attention (b) Window Attention

4—— T'cached tokens —» L e\rlcled L cached

tokens tokens
O(T*)x PPL:5641x O(TL)v PPL: 5158x
Has poor efficiency and

Breaks when initial
performance on long text. tokens are evicted.

(c) Shiding Window

w/ Re-computation (d) Streaming..M (ours)

previous tokens
are truncated

E —
Attention Sink

evicted

tokens

O(TL)v PPL:540v

Can perform efficient and stable
language modeling on long texts.

L re- oomputad
tokens

O(TL?*)x PPL:5.43v

Has to re-compute cache
for each incoming token.

L cached

tokens

Empirical observation of attention sink

Layer 00 Head 0 Layer 1 Head 0 Layer 2 Head 0 Layer9Head® Layer 16 Head 0

& 8 10 12 14

-] g 10 12 14

Figure 2 Visualization of the average attention leglts in Llama-2-7B over 256 sentences eaeh w1th a length
of 16. Observations include: (1) The attention maps in the first two layers (layers 0 and 1) exhibit the "local”
pattern, with recent tokens receiving more attention. (2) Beyond the bottom two layers, the model heavily attends
to the 1nitial token across all layers and heads.

[£] 2 4 3 g 0 12 14

Attention scores on longer sequences

Llama-2-7B Attention Score on the First Token in Each Layer (SeglLen = 4096)

o
co

® A
o1 07%¢

O
(@)}
1

o
S
1

Attention Score on the First Token

o
N

O
o

0 5 10 15 20 25 30
Layer ID

Attention sink details

* The first tokens are not semantically important

* Four tokens enough on pre-trained LLMs

Table 2: Effects of reintroduced initial token numbers on
StreamingLLM. (1) Window attention (0+y) has a dras-
tic increase in perplexity. (2) Introducing one or two ini-
tial tokens usually doesn’t suffice to fully restore model
perplexity, indicating that the model doesn’t solely use
the first token as the attention sink. (3) Introducing four
initial tokens generally suffices; further additions have
diminishing returns. Cache config x+y denotes adding x
initial tokens to y recent tokens. Perplexities are evalu-
ated on 400K tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046 4+2044 8+2040

Falcon-7B 1790 12,12 12,12 12.12 12.12
MPT-7B 460.29 1499 15.00 1499 14.98
Pythia-12B 21.62 1195 12.09 12.09 12.02

Cache Config 0+4096 1+4095 2+4094 4+4092 8+4088
Llama-2-7B 335995 11.88 10.51 9.59 9.54

Table 1: Window attention has poor per-
formance on long text. The perplexity is
restored when we reintroduce the initial
four tokens alongside the recent 1020 to-
kens (4+1020). Substituting the original
four initial tokens with linebreak tokens
“\n" (4"\n"+1020) achieves comparable per-
plexity restoration. Cache config x+y de-
notes adding x initial tokens with y recent
tokens. Perplexities are measured on the
first book (65K tokens) in the PG19 test set.

Llama-2-13B PPL (])
0 + 1024 (Window) 5158.07
4 +1020 5.40
4"\n"+1020 5.60

Attention sink details (contd.)

* Positional encoding determined w.r.t. cache position
* Positions assigned continuously from 0O to L starting from the sink tokens
* Most recent token assigned position L, not T

* Can be easily integrated with paged attention
* Just don’t discard the first page

Pre-training with sink token

* As an alternative to storing the first few tokens, a zero token can
be inserted before every sample in training
e Can also have learnable token instead of a zero token

Table 3: Comparison of vanilla attention with

prepending a zero token and a learnable sink token . .

during pre-training. To ensure stable streaming Another alternative is to change the softmax
perplexity, the vanilla model required several ini- function:

tial tokens. While Zero Sink demonstrated a slight

improvement, it still needed other initial tokens. eri

Conversely, the model trained with a learnable SoftMax; (z); = N
Sink Token showed stable streaming perplexity 1+ Zj:l e’
with only the sink token added. Cache config z+y

denotes adding x initial tokens with y recent to-

kens. Perplexity is evaluated on the first sample in

the PG 19 test set.

Cache Config 0+1024 1+1023 241022 4+1020

Vanilla 27.87 18.49 18.05 18.05
Zero Sink 20214 19.90 18.27 18.01
Learnable Sink 1235 18.01 18.01 18.02

Experiment results

Sliding Window
w/ Re-computation
Llama-2-7B . Pythia-12B . Falcon-7B . MPT-7B

Dense Attention ——— Window Attention —— StreamingLLM

log PPL
& KV Cache Size |
log PPL

oo
- .,_1er' Cache Size

a
=
oy
P
£l
Ly
o
o
= f
X

log PPL
[LTV -V e N |

]

T ‘5K 10K 15K 200 90k sk 10K 15K 206 Yok sk 10K 15K 20k %ok sk 10K 15K 20K
Input Length Input Length Input Length Input Length

Figure 3: Language modeling perplexity on texts with 20K tokens across various LLM. Observations
reveal consistent trends: (1) Dense attention fails once the input length surpasses the pre-training
attention window size. (2) Window attention collapses once the input length exceeds the cache size,
i.e., the initial tokens are evicted. (3) StreamingLLLM demonstrates stable performance, with its
perplexity nearly matching that of the sliding window with re-computation baseline.

Experiment results (contd.)

Pre-training with sink token

M
o

— Vanilla
+ Sink Token

Training Loss
)
-~

N
o

25 9 20 40 60 80 100 120 140
k Steps

Figure 6: Pre-training loss
curves of models w/ and w/o sink
tokens. Two models have a simi-
lar convergence trend.

Table 4: Zero-shot accuracy (in %) across 7 NLP benchmarks,
including ARC-[Challenge, Easy], HellaSwag, LAMBADA, Open-
bookQA, PIQA, and Winogrande. The inclusion of a sink token
during pre-training doesn’t harm the model performance.

Methods ARC-c ARC-e HS LBD OBQA PIQA WG

Vanilla 18.6 452 294 396 160 622 50.1
+Sink Token 19.6 45.6 298 399 16.6 62.6 50.8

Experiment results (contd.)

Performance gains

[] Sliding Window with Re-computation [l StreamingLLM

N
2o 3000 38
2355

3ﬁ34

(]

1600 1411
1200 N
800
400
0

2929

1€ 2
16 3595 2526 2627

1414

1313 1313

=

523 260

103,, 223 9 361
6331 1031 35 | fas 9948 16%3 =60 | |75 [J106

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 409

e |

10

Memory (GB)

Latency (ms)
&
Memory (GB)
o

Latency (ms)

=
L

=

=

Llama-2-7B Llama-2-13B

Figure 10: Comparison of per-token decoding latency and memory usage between the sliding window
approach with re-computation baseline and StreaminglLLM, plotted against the cache size (attention
window size) on the X-axis. StreamingL.LLM delivers a remarkable speedup of up to 22.2x per token
and retains a memory footprint similar to the re-computation baseline.

Why does the sink phenomenon happen?

* The first tokens are seen by every attention calculation, while later
tokens are only seen by subsequent tokens

* Similar observations for last tokens in encoder transformers (periods at
the end of sentence, etc.)

Layer 9 head 0 Layer 11 head 0

Layer 10 head 0

[CLS]

[CLS])
streaming 5 0.35 streaming 0.7
#atll 0.8
##m 0.30 0.6
can
work
on 0.6 0.25 0.5
infinite
length |0.20 0.4
texts 0.4
without withaut 10.15 0.3
com com
##Dm_musmg ##prolmiEing 0.10 ##pm_muslng 0.2
efficiency 0.2 efficiency efficiency
and ' and and
performance performance 0.05 performance 01
[SEP] [SEP] B [SEP] :
—m=gc¥xCca'cHEco=TOH T —o—CEXC @ CWE DT L e T R P
€% E5562 BE3EZTEL & WEsEE562 SE3EZTEL B TExfe5sf 55352952 B
UE®y 2 & cBouovog®g u UE#Hy = = cEBLoYYgTg wn OE#®g 2 £ ceodBg™m 0
g £ 2 % E2 E = £ &£ 2 ES E — @ £ = ET E
5 5% & g 25 ¢ 5 5% ¢
[=]
’ b g ; * H ° #* 5
#* = # (=% 3 =%

Figure 14: Visualization of attention maps for sentence “StreaminglLLM can work on infinite-length texts
without compromising efficiency and performance.” in BERT-base-uncased.

Further work to be done?

* This techniqgue doesn’t help extend context length
* Relation with different kinds of positional encoding seems unclear

* Window attention not significantly worse for some LLMs

Sliding Window

Dense Attention Window Attention . = StreamingLLM
w/ Re-computation
~ Uama-2-7B o Pythia-12B - Falcon-7B . MPT-7B
12 @ = A ; & 5 & 15 12l 85
NoE N B N B N
10w woe e oG
g 8 : 3 2 & 2= g8 g @ ||.ﬁ
% 6 g 54 YA a4 U ¢ s & L= fll \
: = fi g - L 26 = E N 1/)
4 ; WMMW 4 g
2 M 2 S o
2 . 1 e = 2~
T '5K 10K 15K 206 90k sk 10K 15K 206 Yok sk 10K 15K 20k %ok sk 10K 15K

Input Length Input Length Input Length Input Length

20K

	Slide 1: Efficient Streaming Language Models with Attention Sinks
	Slide 2: The problem they’re trying to solve
	Slide 3: Recap of the attention layer
	Slide 4: Sliding window
	Slide 5: Relative positional encoding
	Slide 6: Attention sink
	Slide 7: Pictorial summary of attention sink
	Slide 8: Empirical observation of attention sink
	Slide 9: Attention scores on longer sequences
	Slide 10: Attention sink details
	Slide 11: Attention sink details (contd.)
	Slide 12: Pre-training with sink token
	Slide 13: Experiment results
	Slide 14: Experiment results (contd.)
	Slide 15: Experiment results (contd.)
	Slide 16: Why does the sink phenomenon happen?
	Slide 17: Further work to be done?

