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Autocompletion Voice Recognition Fitness Tracker

Model Personalization Adapts Models by Training on 
User Data to Improve Accuracy

Ocean sensing

+ energy consumed by bulk data transmission can significantly 
reduce battery life

Privacy, no internet access
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Key Challenge: Limited memory 
for DNN training!

Model Fine-tuning – Train on Edge

Pros:
+ guarantees user’s privacy as all data stays 
on their device
+ enables offline device operation

Cons:
- cannot train modern DNNs on edge devices

Fine-tune on-device

Train
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Memory optimization techniques

•Pruning
• They do not reduce the size of activations.
• Accuracy trade-off

•Quantization
• poor hardware support for quantized operations under 8 bits 

Accuracy trade-off
•Rematerialization
•Paging
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Memory optimization techniques

•Pruning
• They do not reduce the size of activations.
• Accuracy trade-off

•Quantization
• poor hardware support for quantized operations under 8 bits 

Accuracy trade-off
•Rematerialization
•Paging Value preserving

Reduce activation
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Insight

• Paging is very energy-intensive 
• Rematerializing might consume lower energy
• Paging might be quicker.
• Paging can be done in parallel with the compute. DMA technique

• This is because, on edge devices, it is common practice to turn-off components 
that are not utilized (e.g., SD card, DMA, etc.)

• For example,
• piecewise(cheap-to-compute but memory-intensive) → recompute
• conv, matmul(compute-intensive) → paging
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Rematerialization & Paging in DNN training

•Sublinear & Revolve
• Strong assumption that models have uniform compute requirements. Heuristic so not optimal

•Capuchin
• Paging as default. Rematerialization only when paging is not possible

•Checkmate
• Optimal but static graph
• Not energy-aware
• No paging

•POFO
• Not energy-aware
• Assumes paging is asynchronous (e.g., CUDA) but this is not universally true for the edge 

devices we evaluate.
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Comparison
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How  to  reduce  the  memory  and  energy 
requirements  of  ML  training  for  modern 
DNN architectures within the constraints of 
edge devices?
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POET: Private Optimal Energy Training

{ML model, memory and 
runtime constraints}
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POET: Private Optimal Energy Training

Accurate cost profile of 
ML operators on target 
edge platform
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POET: Private Optimal Energy Training

Incorporate memory 
and runtime constraints 
into a Mixed Integer 
Linear Program (MILP) 
formulation
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POET: Private Optimal Energy Training

POET finds a provably 
optimal solution 
through integrated 
rematerialization and 
paging.
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

Lower is better
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

Naïve Strategy (Tensorflow / Torch)
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

Naïve Strategy (Tensorflow / Torch)

POET lowers energy 
consumption at all budgets

28



POET lowers energy 
consumption at all budgets

Result: POET lowers energy consumption and allows training large 
models previously not possible!

Naïve Strategy (Tensorflow / Torch)

POET’s integrated 
Rematerialization and 
Paging enables training 
with much smaller memory 
budgets which was 
previously not possible!
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

POET’s integrated 
Rematerialization and 
Paging enables training 
with much smaller memory 
budgets which was 
previously not possible!
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• POET enables training SOTA DNN models locally on 
memory-constrained edge devices.

• POET’s fine grained profiling results in accurate cost profiles.

• POET’s MILP formulation finds the optimal training schedule 
through integrated rematerialization and paging.
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Conclusion
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