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Background and Motivation

* Training with reduced precision
* Reduces memory bandwidth pressure
* Faster arithmetic
* Reduces memory required for training

* But FP16 has a narrower dynamic range than FP32
* May cause underflow/overflow and other arithmetic issues
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ldea 1: FP32 Master Copy Of Weights

* |If model weights and gradients are in FP16, weight gradients may underflow

Weight Gradient

* Also, the ratio of weight value and weight update might be very large
* Loss of precision while adding



ldea 1: FP32 Master Copy Of Weights
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ldea 1: FP32 Master Copy Of Weights

* Impact on
* Performance

Using a FP32 master copyfixes training

* Memory

Keepinga master copy of the weights requires
more memory

For the models they tested the activationmemory
is the major bottleneck

May not be true if usingtechniqueslike activation
checkpointing

May not be true for LLM training.
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ldea 2: Loss Scaling

* Histogram of activation gradient values
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 If cast to FP16, most gradient values will become 0!
» Scaling gradients during backpropagation prevents underflow

* The gradient is scaled before backpropagation begins and rescaled before updating weights



ldea 3: Arithmetic Precision

* Neural Net math
* Vector dot-products
e Reductions (BatchNorm, Softmax)
* Point-wise operations (Non-linearities)
e Accumulating FP16 math into an FP16 value doesn’t work

* The paper proposes accumulating outputs in FP32 and saving them
in FP16 format




Results

e Configuration
* Baseline: Weights, activations, gradients, and arithmetic in FP32
* Mixed Precision Training (MPT)

e Tasks
» Vision: Classification, Detection
e Language: Machine Translation, Language modeling
* Speech recognition
* Generative Modeling




Vision

Table 1: ILSVRCI12 classification top-1 accuracy.

Model Baseline | Mixed Precision Reference
AlexNet 56.77% 56.93% (Krizhevsky et al., 2012)
VGG-D 65.40% 65.43% (Simonyan and Zisserman, 2014)
GoogLeNet (Inception vl) | 68.33% 68.43% (Szegedy et al., 2015)
Inception v2 70.03% 70.02% (Ioffe and Szegedy, 2015)
Inception v3 73.85% 74.13% (Szegedy et al., 2016)
Resnet50 75.92% 76.04% (He et al., 2016b)
Model Baseline | MP without loss-scale | MP with loss-scale

Faster R-CNN 69.1%
Multibox SSD 76.9%

68.6%
diverges

69.7%
77.1%




Language
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Figure 4: English to French translation network training perplexity, 3x1024 LSTM model v
attention. Refl, ref2 and ref3 represent three different FP32 training runs.
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Table 3: Character Error Rate (CER) using mixed precision training for speech recognition. English
results are reported on the WSJ *92 test set. Mandarin results are reported on our internal test set.

Model/Dataset | Baseline | Mixed Precision
English 2.20 1.99
Mandarin 15.82 15.01

Speech +

Generative
Modeling




Closing Comments

* This paper is from 2018.
* For people working in ML ...

1. https://www.amazon.com/Dinosaurs-Roamed-Earth-Stephen-Attmore /dp/0824984099



Recent work on MPT

* Automatic mixed precision package: torch.amp
* Automatic casting to FP16/bfloat16
* Loss scaling
e Using underlying tensor-core units

* MPT for LLMs
* FP8 parameter training
» Adaptive loss scaling to prevent overflow/underflows
* Lowering precision of some optimizer states L+ 4+ 4+ 4 = l6bytes.

master weights  gradients Adam states
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