
FlashAttention-2: Faster Attention with Better 
Parallelism and Work Partitioning

Tri Dao

Yuhao Ge

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré



GPU Memory Hierarchy

• A massive number of threads to execute an operation (kernel)
• Load input from HBM to registers and SRAM
• Computes
• Load output to HBM



Attention is the Heart of Transformers



Approximate Attention

FlashAttention is Exact Attention 



FlashAttention

Purpose
• Compute softmax normalization without access to full input
• Backward without the large attention matrix from forward

Approach
• Tiling: Restructure algorithm to load block by block from HBM to SRAM
• Recomputation: Don’t store attn. matrix from forward, but recompute

Challenge
• softmax normalization has row dependency
• Attention Matrix has quadratic memory consumption to the seq length



Tiling

Online softmax instead computes “local” softmax with respect to 
each block and rescale to get the right output at the end

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. 



Recomputation

By storing softmax normalization factors from 
forward, quickly recompute attention in the 
backward from input in SRAM



Result

Faster training speed

Support longer sequence length



FlashAttention is still not as efficient as other primitives (GEMM)

• The forward pass only reaches 30-50% of 
the maximum throughput 

• The backward pass only reaches 25-35% 
of maximum throughput

Optimized GEMM can reach up to 
80-90% of the theoretical 
maximum device throughput

Modern GPUs have specialized compute units (e.g., Tensor 
Cores on Nvidia GPUs) that makes matmul much faster.

Non-matmul FLOP is 16× more expensive than a matmul FLOP



FlashAttention2

1. Algorithm: Tweak the algorithm from FlashAttention to reduce the number of non-matmul FLOPs.

2. Parallelism: Additionally parallelize over the sequence length

3. Work Partitioning: Decide how to partition the work between different warps.



Algorithm

FlashAttention FlashAttention2



Parallelism

Parallelize over the b. h. and seq length dimensionParallelize over batch size and number of head

• FlashAttention parallelizes over batch size and number of head
• There are BS * #head thread blocks, each running on a Streaming multiprocessor (SM)
• A100 -- 108 SMs

• FlashAttention
• For j-th (K, V), for i-th Q, computer using Kj, Vj, Qi in SRAM, and update Oi, li, mi in HBM

• FlashAttention2
• Swap order of loop
• Parallelize outer loop
• Leads to improved occupancy

White square: causal mask for cases like
auto-regressive language modeling



Work Partitioning Between Warps

We typically use 4 or 8 warps per thread block
• FlashAttention

• Split K and V
• All warps need to write intermediate results out to shared memory, synchronize, then add up

• FlashAttention2
• Split Q 
• No need for communication between warps



Benchmarking attention.

2X faster than FlashAttention
1.3X faster than Triton
10X faster than Pytorch

Reaches up to 230 TFLOPs/s, 73% 
of the threoretical max on A100



End to end Performance

2.8X faster than baseline
1.3X faster than FlashAttention



Summary

• FlashAttention2 is 2x faster than FlashAttention
• FlashAttention2 will also speed up training, finetuning, and inference 

• Future Directions
• Device dependent, only applicable to Nvidia A100
• Hand-writing CUDA implementation, specially designed for specific attention implementation
• How the FlashAttention2 performs on sparse attention mechanisms
• Auto-tuning mechanisms for selecting optimal block sizes and partitioning strategies could 

simplify the use of FlashAttention-2


