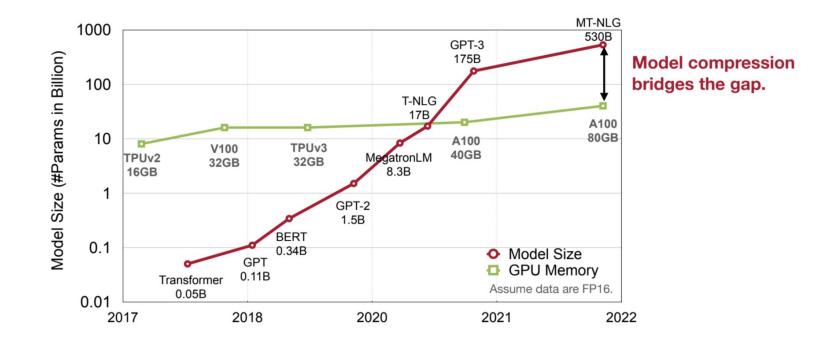
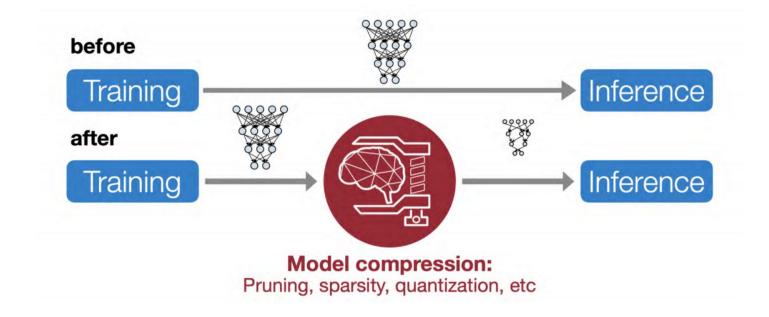
ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, Yuxiong He

Microsoft


Presenter: Xinyu Lian

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers


Background

Bridges the Gap between the Supply and Demand of AI Computing

Background

Bridges the Gap between the Supply and Demand of AI Computing

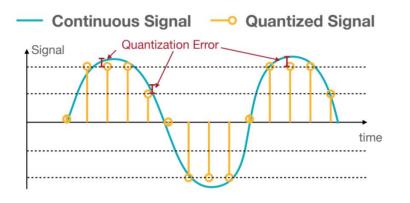
Motivation: Save Energy

Less Bit-Width → Less Energy

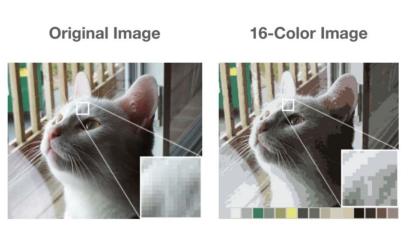
Operation	Energy [pJ]	
8 bit int ADD	0.03	30 ×
32 bit int ADD	0.1	
16 bit float ADD	0.4	
32 bit float ADD	0.9	
8 bit int MULT	0.2	■ 16 ×
32 bit int MULT	3.1	
16 bit float MULT	1.1	
32 bit float MULT	3.7	

Rough Energy Cost For Various Operations in 45nm 0.9V

10

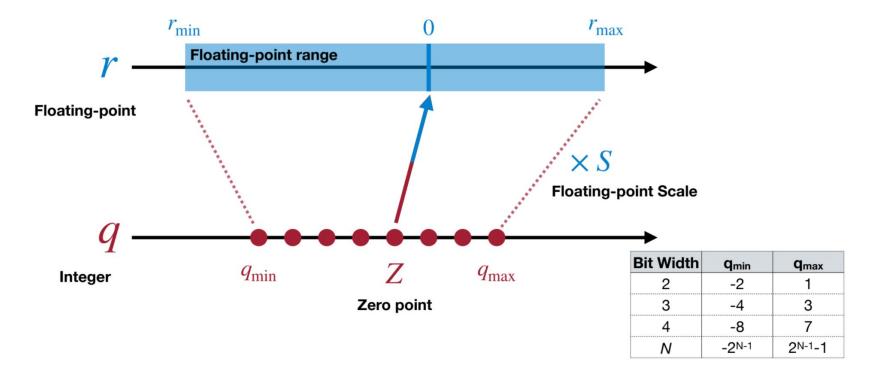

1

1000

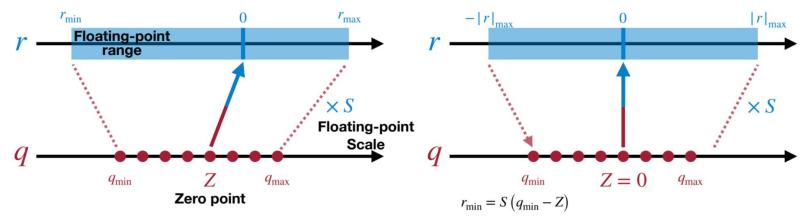

100

Key Concepts: What is Quantization

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.


The difference between an input value and its quantized value is referred to as quantization error.

Images are in the public domain. "Palettization"


Key Concepts: Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Key Concepts: Symmetric Linear Quantization

Full range mode

$$S = \frac{r_{\max} - r_{\min}}{q_{\max} - q_{\min}}$$

s –	r _{min}	_	$- r _{\max}$	_	$ r _{\max}$
5 –	$\overline{q_{\min}-Z}$	_	q_{\min}	_	2^{N-1}

- use full range of quantized integers
- example: PyTorch's native quantization, ONNX

Bit Width	qmin	qmax
2	-2	1
3	-4	3
4	-8	7
N	-2 ^{N-1}	2 ^{N-1} -1

Key Concepts: Quantization Granularity

Per-Tensor Quantization

Per-Channel Quantization

Group Quantization

_	_	_	
	_	_	_
	_	_	

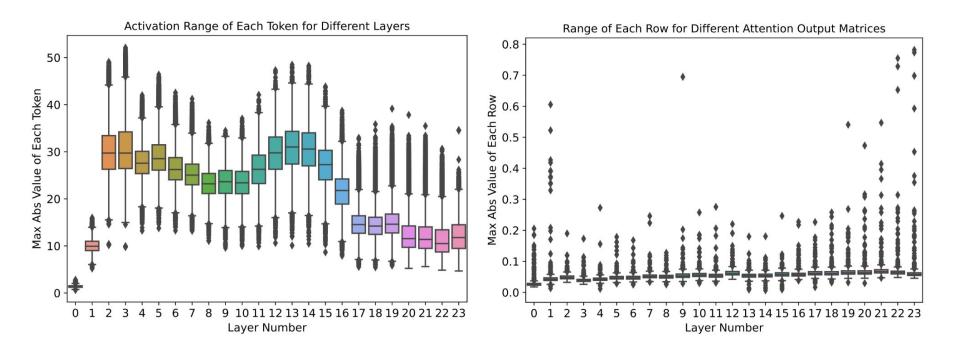

Challenge

Table 1: Post training quantization results of GPT- 3_{350M} on 20 zero-shot evaluation datesets. Here WxAy means x-/y-bit for weight/activation. Particularly, for W4/8, we quantize the MHSA's weight to INT8 and FFC's weight to INT4. Please see Table I.1 for the results of all 20 tasks.

Precision	Lambada (†)	PIQA (†)	OpenBookQA (†)	RTE (†)	ReCoRd (†)	Ave. 19 Tasks (†)	Wikitext-2 (\downarrow)
W16A16	49.3	66.3	29.4	53.8	75.1	38.9	21.5
W8A16 W16A8	<u>49.3</u> 44.7	66.1 64.8	<u> 29.6</u> 28.2	<u>54.2</u> 52.7	74.8 69.2	<u>38.5</u> 37.8	22.1 24.6
WIGA8	42.6	64.1	28.0	53.1	67.5	37.8	26.2
W4/8A16	0.00	51.4	30.2	52.7	16.1	28.9	1.76e5

• INT8 activation quantization causes the primary accuracy loss.

Challenge

Weights Quantization: Group-Wise

- Weights Quantization: Group-Wise
 - First work on Group-Wise Quantization for Post-Training Quantization

- Weights Quantization: Group-Wise
 - First work on Group-Wise Quantization for Post-Training Quantization
 - Optimize for Ampere Architecture (A100)
 - Warp Matrix Multiply and Accumulate tiling size

- Weights Quantization: Group-Wise
 - First work on Group-Wise Quantization for Post-Training Quantization
 - Optimize for Ampere Architecture (A100)
 - Warp Matrix Multiply and Accumulate tiling size

No details provided on it

- Weights Quantization: Group-Wise
- Activations: Token-wise Quantization
 - Finer-grained
 - Dynamically calculate the min/max range
 - Kernel Fusion

Key ideas: Knowledge Distillation

• Layer-by-layer distillation (LKD) algorithm

Teacher Model: Original (i.e., unquantized) version
Use the output of the L_k-1 as the input of Lk

$$\mathcal{L}_{LKD,k} = MSE\left(L_k \cdot L_{k-1} \cdot L_{k-2} \cdot \ldots \cdot L_1(\boldsymbol{X}) - \widehat{L}_k \cdot L_{k-1} \cdot L_{k-2} \cdot \ldots \cdot L_1(\boldsymbol{X})\right),$$

Key ideas: Knowledge Distillation

• Layer-by-layer distillation (LKD) algorithm

• Benefit:

- No need to hold a separate teacher
- Reduce the memory overhead of optimized states
- The training does not depend on the label or even original training data

Key ideas: Optimized Transformer Kernels

- CUTLASS INT8 GeMM
- Fusing Token-wise Activation Quantization

Evaluation Methodology

- Models:
 - Bert
 - $Bert_{base}$ and $Bert_{l \arg e}$ on GLUE benchmark
 - GPT3
 - $GPT 3_{350m}$ and $GPT 3_{1.3B}$ on 20 zero-shot evaluation tasks

20

Accuracy

Table 3: Result of $BERT_{large}$ on the development set of GLUE benchmark (except WNLI). +We extensively tuned the learning rate for QAT (see Appendix F for more details).

Precision (Method)	CoLA	MNLI-m	MNLI-mm	MRPC	QNLI	QQP	RTE	SST-2	STS-B	Ave.	Ave. Time (s)
W16A16 (Baseline)	63.35	86.65	85.91	87.99/91.62	92.24	91.08/88.08	74.01	93.46	90.34/90.11	85.03	N/A
W8A8 [76] (QAT)				—/90.9	91.74				90.12/		
W8A8 $(QAT)^+$	59.85	86.65	86.35	85.29/89.43	92.55	91.60/88.60	61.37	93.23	87.55/87.65	82.78	7181
W8A8 (PTQ)	60.57	75.69	76.94	81.13/84.93	88.49	84.04/74.35	46.93	91.74	62.75/55.77	73.54	31
W8A8 (ZeroQuant)	63.38	86.52	85.64	87.75/91.50	92.31	91.09/88.05	72.56	93.35	90.45/90.19	84.81	0
W4/8A16 (PTQ)	0.00	16.85	33.24	68.38/80.89	51.25	63.18/0.00	52.71	52.41	-5.74/-8.51	35.73	31
W4/8A16 (ZeroQuant)	62.99	84.77	84.42	87.50/91.16	91.63	90.03/86.41	48.01	92.16	89.49/89.28	81.23	0
W4/8A16 (ZeroQuant-LKD)	63.72	84.90	84.81	87.99/91.39	91.45	90.34/86.92	51.62	92.43	89.46/89.29	81.85	550
W4/8A8 (ZeroQuant)	62.34	84.62	84.25	87.75/91.38	91.87	89.86/86.09	47.65	91.97	89.39/89.17	81.06	0
W4/8A8 (ZeroQuant-LKD)	63.51	84.70	84.71	88.73/91.99	91.73	90.25/86.74	49.82	92.09	89.34/89.08	81.62	550

Accuracy

Table 3: Result of $BERT_{large}$ on the development set of GLUE benchmark (except WNLI). +We extensively tuned the learning rate for QAT (see Appendix F for more details).

Precision (Method)	CoLA	MNLI-m	MNLI-mm	MRPC	QNLI	QQP	RTE	SST-2	STS-B	Ave.	Ave. Time (s)
W16A16 (Baseline)	63.35	86.65	85.91	87.99/91.62	92.24	91.08/88.08	74.01	93.46	90.34/90.11	85.03	N/A
W8A8 [76] (QAT)				—/90.9	91.74				90.12/		
W8A8 $(QAT)^+$	59.85	86.65	86.35	85.29/89.43	92.55	91.60/88.60	61.37	93.23	87.55/87.65	82.78	7181
W8A8 (PTQ)	60.57	75.69	76.94	81.13/84.93	88.49	84.04/74.35	46.93	91.74	62.75/55.77	73.54	31
W8A8 (ZeroQuant)	63.38	86.52	85.64	87.75/91.50	92.31	91.09/88.05	72.56	93.35	90.45/90.19	84.81	0
W4/8A16 (PTQ)	0.00	16.85	33.24	68.38/80.89	51.25	63.18/0.00	52.71	52.41	-5.74/-8.51	35.73	31
W4/8A16 (ZeroQuant)	62.99	84.77	84.42	87.50/91.16	91.63	90.03/86.41	48.01	92.16	89.49/89.28	81.23	0
W4/8A16 (ZeroQuant-LKD)	63.72	84.90	84.81	87.99/91.39	91.45	90.34/86.92	51.62	92.43	89.46/89.29	81.85	550
W4/8A8 (ZeroQuant)	62.34	84.62	84.25	87.75/91.38	91.87	89.86/86.09	47.65	91.97	89.39/89.17	81.06	0
W4/8A8 (ZeroQuant-LKD)	63.51	84.70	84.71	88.73/91.99	91.73	90.25/86.74	49.82	<u> </u>	/89.08	81.62	550

The LKD seems not help a lot to Bert.

Table 4: Post training quantization result of $GPT-3_{350M}$ on 20 zero-shot evaluation datasets. Please see Table H.1 for the results of all 20 tasks.

Precision (Method)	Lambada (\uparrow)	PIQA (\uparrow)	OpenBookQA (\uparrow)	RTE (\uparrow)	ReCoRd (\uparrow)	Ave. 19 Tasks (\uparrow)	Wikitext-2 (\downarrow)	Time Cost
W16A16	49.3	66.3	29.4	53.8	75.1	38.9	21.5	\mathbf{N}/\mathbf{A}
W8A8 (PTQ) W8A8 (ZeroQuant)	$\begin{array}{c} 42.6\\51.0\end{array}$	$\begin{array}{c} 64.1 \\ 66.5 \end{array}$	28.0 29.2	$\begin{array}{c} 53.1\\ 53.4\end{array}$	$67.5 \\ 74.9$	37.8 38.7	26.2 21.7	$7 ext{ mins } 0$
W4/8A16 (PTQ) W4/8A16 (ZeroQuant) W4/8A16 (ZeroQuant-LKD)	$0.00 \\ 10.1 \\ 39.8$	$51.4 \\ 58.5 \\ 63.8$	$30.2 \\ 27.2 \\ 29.4$	$52.7 \\ 52.0 \\ 53.1$	$16.1 \\ 56.5 \\ 70.1$	28.9 33.5 37.0	$1.76e5 \\ 88.6 \\ 30.6$	7 mins 0 1.1 hours
W4/8A8 (ZeroQuant) W4/8A8 (ZeroQuant-LKD)	$\begin{array}{c} 10.5\\ 37.4\end{array}$	$\begin{array}{c} 57.7\\ 61.8\end{array}$	$28.0 \\ 28.2$	$\begin{array}{c} 52.7\\ 53.1 \end{array}$	$\begin{array}{c} 55.3\\ 68.5\end{array}$	33.4 36.6	$92.1 \\ 31.1$	0 1.1 hours

The LKD seems help a lot to GPT3.

23

Inference Speed

Table 6: The speedup of our W8A8 as compared to W16A16. We measure the end-to-end average latency for the entire BERT model, and the time reported is in milliseconds.

Seq Len	Precision	128									256							
BS	Frecision	1	2	4	8	16	16	64	128	-	1	2	4	8	16	16	64	128
	W16A16	2.45	3.22	3.85	5.51	9.96	17.93	34.25	67.08	3	8.13	4.05	5.70	10.55	19.27	36.69	71.75	140.0
$\operatorname{BERT}_{\operatorname{base}}$	W8A8	1.08	1.16	1.42	1.76	2.58	3.90	6.74	12.92	1	22	1.44	2.08	2.88	4.10	7.80	14.66	28.13
	Speedup	2.27	2.78	2.71	3.13	3.86	4.60	5.08	5.19	2	2.57	2.81	2.74	3.66	4.70	4.70	4.89	4.98
	W16A16	5.45	6.38	8.73	13.88	26.34	48.59	92.49	183.4	6	5.39	8.94	14.66	27.99	51.94	98.78	195.9	384.5
$\mathrm{BERT}_{\mathrm{large}}$	W8A8	2.08	2.58	2.84	3.79	6.21	10.28	18.86	36.62	2	2.55	3.36	4.16	6.88	11.61	21.20	41.24	79.90
	Speedup	2.62	2.47	3.07	3.66	4.24	4.73	4.90	5.01	2	2.51	2.66	3.52	4.07	4.47	4.66	4.75	4.81

Own Thoughts

- Industry work
- Very solid work with extensive experiment
- Optimize the GPU kernel to demonstrate the real speedup.
- The ideas are not norvel.

Questions:

- Can it scale to larger Models?
- H100 -> FP quantization?