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Motivation: Save Energy
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Key Concepts: What is Quantization
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Key Concepts: Linear Quantization
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Key Concepts: Symmetric Linear Quantization
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Key Concepts: Quantization Granularity



10

Challenge

● INT8 activation quantization causes the primary accuracy loss.
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Key ideas: Fine-grained Quantization

● Weights Quantization:   Group-Wise

○ First work on Group-Wise Quantization for 
Post-Training Quantization 

○ Optimize for Ampere Architecture (A100)
■ Warp Matrix Multiply and Accumulate tiling size 

No details provided on it
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Key ideas: Fine-grained Quantization

● Weights Quantization:   Group-Wise
  

● Activations: Token-wise Quantization
○ Finer-grained
○ Dynamically calculate the min/max range
○ Kernel Fusion
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Key ideas: Knowledge Distillation

● Layer-by-layer distillation (LKD) algorithm

○ Teacher Model: Original (i.e., unquantized) version
■ Use the output of the L_k-1 as the input of Lk 
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Key ideas: Knowledge Distillation

● Layer-by-layer distillation (LKD) algorithm

○ Benefit:
■ No need to hold a separate teacher
■ Reduce the memory overhead of optimized states
■ The training does not depend on the label or even original 

training data
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Key ideas: Optimized Transformer Kernels

● CUTLASS INT8 GeMM

● Fusing Token-wise Activation Quantization
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Evaluation Methodology

● Models:
○ Bert

■                   and                  on GLUE benchmark

○ GPT3
■                  and                        on 20 zero-shot evaluation tasks
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Experimental Results

Accuracy
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Experimental Results

Accuracy

The LKD seems not help a lot to Bert.
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Experimental Results

The LKD seems help a lot to GPT3.
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Experimental Results

Inference Speed
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Own Thoughts

● Industry work
● Very solid work with extensive experiment
● Optimize the GPU kernel to demonstrate the real 

speedup.

● The ideas are not norvel. 

Questions:
● Can it scale to larger Models?
● H100 -> FP quantization?


