ZeRO: Memory Optimizations Toward
Training Trillion Parameter Models
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Background

» Different parallelisms partitions different types of data

Data Parallelism Activation Low communication volume High memory volume

Parameter : .
High communication volume

Model Parallelism Gradient Low memory volume )
. Small compute granularity
Optimizer
Parameter Low communication volume Imbalance memory volume
Pipeline Parallelism Gradient Bubbles

Optimizer Latency cannot scale down




Background

» As models become larger, existing parallelisms are ineffective
» Data parallelism: size of data that cannot be partitioned exceeds the GPU memory

» Model parallelism: large models requires many GPUs and fine-grained partitioning,
causing excessive communication overhead

» Pipeline parallelism: each layer is still too large; and with deeper layers, the
devices handling the first few layers must hold more gradients/optimizers for the
ongoing batches.




Challenge

» Reduce communication overhead
» Partition all types of data to save memory in a balanced way

» Preserve large operator size per device for TensorCore utilization




Observation

» In data/model parallelism, all types of data may be duplicated.

» In DNN model executions, most data stays idle when other layers are be
computed.

» Thus, this data can be scatted into multiple devices and gathered when they
are demanded
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Data Management

» Defragmentation
» Short lived memory: discarded activation
» Long lived memory: checkpointed activation, model states
» Placing short-lived and long-lived memory together causes fragmentation

» Solution: reserve contiguous memory for long lived memory

» Buffer size
» To enable efficient reduction, Nvidia fuses all parameters into one buffer

» Buffer of a large model can be too large for GPU memory

» Solution: partition the buffer into fixed-sized buffers, which still have high efficiency in red




Evaluation

e Performance scales with number of GPUs
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