ZeRO-Offload: Democratizing Billion-Scale Model Training

Jie Ren* Samyam Rajbhandari† Reza Yazdani Aminabadi† Olatunji Ruwase†
Shuangyan Yang* Minjia Zhang† Dong Li* Yuxiong He†

* University of California, Merced † Microsoft
Large DNN Workloads Are Hungry for Memory

Photo credit: https://github.com/amirgholami/ai_and_memory_wall
Large DNN Workloads Are Hungry for Memory

Photo credit: https://github.com/amirgholami/ai_and_memory_wall
• Model parallelism (Megatron-LM)
 • Partition the model states vertically across multiple GPUs.

• Pipeline parallelism (PipeDream, SOSP’19)

Require having enough GPU devices!

• ZeRO: Zero Redundancy Optimizer (ZeRO, SC’20)
 • Split the training batch across multiple GPUs without model states duplication.
Billon-Scale Model Training - Scale Up Large Model Training

• Heterogeneous DL training (SwapAdvisor, ASPLOS’20; Sentinel, HPCA’21; L2L)
 • Offload tensors from GPU memory to CPU memory when tensors are not used in computation.

 • Prefetch tensors from CPU memory to GPU memory before computation happens.

Only use CPU memory but not CPU computation; Designed for a single GPU
ZeRO-Offload: Democratizing Billion-Scale Model Training

Efficiency

• Enable 13B-parameter model training on a single NVIDIA V100 GPU at 40 TFLOPS.

Scalability

• Achieve near perfect linear speedup with multiple GPUs.

Usability

• Require no model refactoring.
Mixed Precision Training

Mixed precision training iteration for a layer.
Mixed precision training iteration for a layer.
Offload Strategy

• ZeRO-Offload partitions the dataflow graph with:

 i. Few computation on CPU

 ii. Minimization of communication volume

 iii. Maximization of memory saving while achieving minimum communication volume
The dataflow of fully connected neural networks with M parameters.

Computational Complexity

M: #Parameters

B: Batch size
Minimizing Communication Volume

The dataflow of fully connected neural networks with M parameters.
ZeRO-Offload Enables Large Model Training by Offloading Data and Compute to CPU

Offloading fp16 gradients and updating super node on CPU
Unique Optimal Offload Strategy

Offloading fp16 gradients and updating super node on CPU

Memory saving for offload strategies that minimize communication volume compared to the baseline.

<table>
<thead>
<tr>
<th>FWD-BWD</th>
<th>param16</th>
<th>gradient16</th>
<th>Update</th>
<th>Memory</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>16M</td>
<td>1x (baseline)</td>
</tr>
<tr>
<td>GPU</td>
<td>GPU</td>
<td>CPU</td>
<td>GPU</td>
<td>14M</td>
<td>1.14x</td>
</tr>
<tr>
<td>GPU</td>
<td>GPU</td>
<td>GPU</td>
<td>CPU</td>
<td>4M</td>
<td>4x</td>
</tr>
<tr>
<td>GPU</td>
<td>GPU</td>
<td>CPU</td>
<td>CPU</td>
<td>4M</td>
<td>8x</td>
</tr>
</tbody>
</table>
ZeRO-Offload training process on a single GPU.
Scaling with ZeRO-2

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. SC'20

Partitioning based on ZeRO before offloading.
Optimized CPU Execution

• Highly parallelized CPU optimizer implementation

 1) SIMD vector instruction for fully exploiting the hardware parallelism supported on CPU architectures.

 2) Loop unrolling to increase instruction level parallelism.

 3) OMP multithreading for effective utilization of multiple cores and threads on the CPU in parallel.
• One-Step delayed parameter update
Evaluation Setup

- **Hardware Overview**
 - DGX-2 node
 - **GPU**: 16 NVIDIA Tesla V100 Tensor Core GPUs
 - **GPU Memory**: 32GB HBM2 on each GPU
 - **CPU**: 2 Intel Xeon Platinum 8168 Processors
 - **CPU Memory**: 1.5TB 2666MHz DDR4
 - **CPU cache**: L1, L2, and L3 are 32K, 1M, and 33M, respectively
 - **PCIe**: bidirectional 32 GBps PCIe

- **Workloads**
 - GPT-2, BERT-Large, Transformer based models

- **Baseline**
 - PyTorch DDP, Megatron, SwapAdvisor, L2L, ZeRO-2
Evaluation Results

• How does ZeRO-Offload scale the trainable model size compared to existing multi-billion parameter training solutions on a single GPU/DGX-2 node?

![Bar chart showing model size comparison](chart.png)

Figure 7: The size of the biggest model that can be trained on single GPU, 4 and 16 GPUs (one DGX-2 node).
Evaluation Results

• What is the training throughput of ZeRO-Offload on single GPU/DGX-2 node?

Figure 8: The training throughput with PyTorch, L2L, SwapAdvisor and ZeRO-Offload on a single GPU with a batch size of 512.
Discussion

• Strengths of this work:

1. **Efficiency**: It achieves very impressive memory saving while training large models on a single GPU.

2. **Availability**: It’s already well implemented in the DeepSpeed library, can be directly used by data scientists.

3. **Scalability**: With the help of ZeRO-2, it can be applied to multi-GPU clusters.

4. What else…?
Potential issues & improvements of this work:

1. The motivation of this work mentions that it want to utilize CPU for computation (not only for memory expansion). Is the idea of offloading computations to CPU still good today?

2. For a GPU with 40GB Mem (A100), it needs 120GB Mem of Host CPU. Is CPU mem enough for scaling multiple GPUs?
3. Will the optimizer computation affect CPU’s other applications?
4. GPU computation power is growing very fast, today’s GPU may be much faster. How to avoid CPU computation to be the performance bottleneck?
Discussion

• Potential issues & improvements of this work:

1. Can the offload strategy and scheduling do better?

1. In this work, the parameters and activations are still always on GPU. Can these also be offloaded? What if the batch size is large?
2. Can we do a more fine-grained (e.g., OP level, tensor-level) optimized tensor migration scheduling, to best utilize the limited CPU-GPU interconnection bandwidth?
Thank You!

Haoyang Zhang