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Highlights

Paper presents a collection of techniques/tips that seem to work well for LM

- Simplifies MoE architecture (each token routed to 1 expert)
- Scaling results -> scaling model params while keeping FLOPs per token
constant leads to better results

- Sparse MoE works great:
- Switch is faster to train for similar performance to dense model (T5)
- Finetuning performance is better
- Distillation is also effective in retaining teacher’s performance while compressing model size



Why is this paper important?

- From scaling laws, we know that larger models are more sample-efficient
- Switch transformers helps scale while keeping inference cost the same

- Dense models are harder to train, MoE is complicated

- Shows that a single expert is sufficient, thus reducing complexity of MoE
- Provide tips and tricks for stable training and distillation

- Adds a new dimension for scaling laws: increasing model size while keeping

FLOPs constant also improves performance (i.e., sparsity)
- Different from just increasing param. count (which is equivalent to more compute)



How is sparsity achieved?

- Sparsity due to activation of only one expert
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Routing
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Why just one expert?

- Reduced routing computation

- Batch size of each expert can be at least halved
- For top-2, each token is processed twice, for top-3, each token is processed thrice...

- Routing implementation is simplified & communication cost reduced
- Since forward pass FLOPs is now constant, you can scale without worrying

about increased inference computation
- Can leverage scaling -> better performance



Distributed Switch Implementation

Tensor shapes are statically determined at compile time
Use expert capacity -> number of tokens each expert computes

tokens per batch

expert capacity :( ) X capacity factor.

number of experts

Low capacity factor -> dropped tokens
High capacity factor -> increased computation/communication cost
Dropped tokens passed to next layer through residual connections



Distributed Switch Implementation

Terminology

Experts: Split across devices,
each having their own unique
parameters. Perform standard feed-
forward computation.

Expert Capacity: Batch size of
each expert. Calculated as
(tokens_per_batch / num_experts) *
capacity_factor

Capacity Factor: Used when
calculating expert capacity. Expert
capacity allows more buffer to help
mitigate token overflow during
routing.

(Capacity Factor: 1.0)
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Load Balancing Loss
- Auxiliary loss added to encourage balanced token routing for N experts

N
loss:a-N-Zfi-Pi
i=1

1 . 1
fi= 7 1{argmaxp(z) = i} P =) pix).
z€eB x€EB
fraction of tokens to expert i router probability to expert i

- Authors claim this loss encourages uniform routing since it is minimized under
uniform distribution (not necessarily true!)



Load Balancing Loss

- Authors claim loss is minimized value for both fi and Pi is 1/N. But this is not
true. Consider N=2, T=3

- Expert 1 Expert 2

Token 1 0.51 0.49 Zz]il(fl p) = sz\;(% ' %) - %
Token 2 0.51 0.49 i_vij = (1/2).(1/2) + (1/2).(1/2)
Token 3 0 1 o
Table of softmax values (p.) /
2 1 1
f= 33 P = (0.34,0.66), (f,P)=0.447 < >

Credit: https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec16.pdf



Baselines

- T5
- Released in 2020
- Family of models: 60M, 220M (T5-Base), 740M (T5-Large), 3B, 11B
- Represents dense models

- MoE Transformers

- Released in 2017
- In this paper, top-2 routing is used for comparison
- FLOPs is larger than Switch Transformers because each expert applies its own FFN



Results

- Masked language modelling task where 15% of tokens are masked

- C4 dataset
Model Capacity Quality after Time to Quality Speed (1)
Factor 100k steps (1) Threshold ()  (examples/sec)
(Neg. Log Perp.) (hours)

T5-Base — -1.731 Not achieved' 1600
T5-Large — -1.550 131.1 470
MoE-Base 2.0 -1.547 68.7 840

Switch-Base 2.0 -1.554 72.8 860
MoE-Base 1.25 -1.559 80.7 790
Switch-Base 1.25 -1.553 65.0 910
MoE-Base 1.0 -1.572 80.1 860
Switch-Base 1.0 -1.561 62.8 1000
Switch-Base+ 1.0 -1.534 67.6 780

Switch Transformers
outperforms MoE and
T5 on speed-quality
basis

Switch has smaller
computational footprint
Switch performs better
at lower capacity factors
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Results

Model Capacity Quality after Time to Quality Speed (1)
Factor 100k steps (1) Threshold (})  (examples/sec)
(Neg. Log Perp.) (hours)

T5-Base — -1.731 Not achieved’ 1600
T5-Large = -1.550 131.1 470
MoE-Base 2.0 -1.547 68.7 840

Switch-Base 2.0 -1.554 72.8 860
MoE-Base 1.25 -1.559 80.7 790
Switch-Base 1.25 -1.553 65.0 910
MoE-Base 1.0 -1.572 80.1 860
Switch-Base 1.0 -1.561 62.8 1000
Switch-Base+ 1.0 -1.534 67.6 780

Increase computation elsewhere (non-expert part) to match
MoE compute speed, and performance is better



Results

Model Capacity Quality after Time to Quality Speed (1)
Factor 100k steps (1) Threshold (})  (examples/sec)
(Neg. Log Perp.) (hours)

T5-Base — -1.731 Not achieved’ 1600
T5-Large = -1.550 131.1 470
MoE-Base 2.0 -1.547 68.7 840

Switch-Base 2.0 -1.554 72.8 860
MoE-Base 1.25 -1.559 80.7 790
Switch-Base 1.25 -1.553 65.0 910
MoE-Base 1.0 -1.572 80.1 860
Switch-Base 1.0 -1.561 62.8 1000
Switch-Base+ 1.0 -1.534 67.6 780

Speed-quality pareto optimality is somewhere here (reduce capacity factor), increase
compute in non-expert layers



Techniques for improving training

- Selective precision (float32 is slower to compute, also means you transferring
more data between layers on potentially different devices)

- Reduced initialization scale

- Higher regularization of experts



Selective Precision

- Using only bfloat16 leads to instability (esp. during exponentiation)

- Using only float32 will increase costs

- Selectively cast router input to float32 precision - float32 only used within
body of router function

# Convert input to softmax operation from bfloatl6 to float32 for stability.
router_logits = mtf.to_float32(router_logits)

# Probabilities for each token of what expert it should be sent to.
router_probs = mtf.softmax(router_logits, axis=-1)

# Cast back outputs to bfloatl6 for the rest of the layer.
combine_tensor = mtf.to_bfloat16(combine_tensor)

Model Quality Speed
(precision) (Neg. Log Perp.) (1) (Examples/sec) (1)

Switch-Base (float32) -1.718 1160

Switch-Base (bfloat16) -3.780 [diverged] 1390

Switch-Base (Selective precision) -1.716 1390




Smaller Parameter Initialization

- Weight matrices initialized by sampling from a truncated normal distribution
with mean y = ( and standard deviation g — S/n

- Reduce default initialization scale s = 1.0 to 0.1

Model (Initialization scale) Average Quality Std. Dev. of Quality
(Neg. Log Perp.) (Neg. Log Perp.)
Switch-Base (0.1x-init) 2.72 0.01
Switch-Base (1.0x-init) -3.60 0.68

Table 3: Reduced initialization scale improves stability. Reducing the initialization scale
results in better model quality and more stable training of Switch Transformer.
Here we record the average and standard deviation of model quality, measured by
the negative log perplexity, of a 32 expert model after 3.5k steps (3 random seeds
each).



Higher Regularization of Experts

- Many finetuning tasks have very few examples -> leads to overfitting
- Switch Transformers have more parameters -> severe overfitting

- Increase dropout inside experts
- Increasing dropout across all layers leads to worse performance

Model (dropout) GLUE CNNDM SQuAD SuperGLUE
T5-Base (d=0.1) 829  19.6 83.5 72.4
Switch-Base (d=0.1) 84.7 19.1 83.7 73.0
Switch-Base (d=0.2) 84.4 19.2 83.9 73.2
Switch-Base (d=0.3) 83.9 19.6 83.4 70.7
Switch-Base (d=0.1, ed=0.4) 85.2 19.6 83.7 73.0

Table 4: Fine-tuning regularization results. A sweep of dropout rates while fine-tuning
Switch Transformer models pre-trained on 34B tokens of the C4 data set (higher
numbers are better). We observe that using a lower standard dropout rate at
all non-expert layer, with a much larger dropout rate on the expert feed-forward
layers, to perform the best.



Scaling on a step-basis

- Scaling experts (more params.) when training for fixed number of steps
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Scaling properties on time basis

- Switch has more communication costs than T5
- For fixed training duration and comp. budget, Switch is better
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Scaling vs larger dense model

- Increase sparsity (num. experts) or model density?
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Downstream Experiments

- Finetuning
- Distillation
- Multilingual learning



Downstream: Finetuning results

- Switch is better

Model GLUE SQuAD SuperGLUE  Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
T5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
T5-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5

Model CB Web QA CB Natural QA CB Trivia QA

T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 27.7 27.6 29.5

Switch-Large 31.3 29.5 36.9




Distillation Results

Perplexity

Technique Parameters  Quality (1)

T5-Base 223M -1.636

Switch-Base 3,800M / -1.444

Distillation 223M [ (3%)|-1.631

__+ Init. non-expert weights from teacher 223M (20%)|-1.598

Non-expert layers  + 0.75 mix of| hard [and[soft Jloss 223M (29%)|-1.580
gs;]’:::i'g]es Initialization Baseline (no distillation)

Init. non-expert weights from teacher 223M -1.639

Loss = a.L(hard) + (1-a).L(soft)
Matching output logits of
teacher model (Switch)

Ground truth loss



Distillation Results

Dense Sparse
Parameters 223M | 1.1B 2.0B 3.8B 74B |14.7B
Pre-trained Neg. Log Perp. (1) -1.636 | -1.505 -1.474 -1.444 -1.432 |-1.427
Distilled Neg. Log Perp. (1) — | -1.587 -1.585 -1.579 -1.582 [-1.578
Percent of Teacher Performance  — 3%  32% 30% 27% |28%
Compression Percent - 8% 90% 9B5% 97% |99 %




Multilingual learning

Train on multilingual variant of C4 with 101 languages
mSwitch is better than mT5 on all languages
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Scaling strategies - Data, Model, Expert parallelism

Only scaling experts will give diminishing returns

Data

How the model weights are split over cores
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Scaling strategies - Data, Model, Expert parallelism

Switch Base Switch Large
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Scaling to trillion parameters

Model Parameters = FLOPs/seq dmodel FFNgeGLy dsf dry Num. Heads
T5-Base 0.2B 124B 768 v 2048 64 12
T5-Large 0.7B 425B 1024 v 2816 64 16
T5-XXL 11B 6.3T 4096 v 10240 64 64
Switch-Base 7B 124B 768 v 2048 64 12
Switch-Large 26B 425B 1024 v 2816 64 16
Switch-XXL 395B 6.3T 4096 v 10240 64 64
Switch-C 1571B 890B 2080 6144 64 32
|
Model Expert Freq. Num. Layers Num Experts Neg. Log Perp. @250k Neg. Log Perp. @ 500k
T5-Base - 12 - -1.599 -1.556
T5-Large - 24 - -1.402 -1.350
T5-XXL - 24 - -1.147 -1.095
Switch-Base 1/2 12 128 -1.370 -1.306
Switch-Large 1/2 24 128 -1.248 -1.177
Switch-XXL 1/2 24 64 -1.086 -1.008
Switch-C 1 15 2048 -1.096 -1.043




Scaling to trillion parameters

~10x less FLOPs

v
Model Parameters FLOPs/seq dmodel FFNgEGLU dfy dry Num. Heads
T5-Base 0.2B 124B 768 v 2048 64 12
T5-Large 0.7B 425B 1024, v 2816 64 16
T5-XXL 11B 6.3T 4096 v 10240 64 64
Switch-Base 7B 124B " 768 v 2048 64 12
Switch-Large 26B 425B 1024 v 2816 64 16
Switch-XXL 395B 6.3T 4096 v 10240 64 64
Switch-C 1571B 890B 2080 6144 64 32
l
Model Expert Freq. Num. Layers Num Experts Neg. Log Perp. @250k Neg. Log Perp. @ 500k
T5-Base - 12 - -1.599 -1.556
T5-Large - 24 - -1.402 -1.350
T5-XXL - 24 - -1.147 -1.095
Switch-Base 1/2 12 128 -1.370 -1.306
Switch-Large 1/2 24 128 -1.248 -1.177
Switch-XXL 1/2 24 64 -1.086 -1.008
Switch-C 1 15 2048 -1.096 -1.043

than XXL

“"+-.a Size achieved by increasing experts, but worse performance



Additional Discussion

- Switch transformers works for smaller models too
- Even with 2 cores (1 expert per core), Switch is a better choice
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Summary

- Bigger models are just better
- Don’t need multiple experts, a single expert is sufficient

- Use the following techniques for better training:
- Mixed precision training (higher precision when doing exponentiation, etc.)
- Smarter initialization with smaller values
- Regularize using dropout



Additional Discussion

- Load balancing loss assumption is wrong (uniform routing does not minimize

the loss), but still seems to work

- This could mean that many tokens must pass through residual connection under optimal

training
- How to reconcile uniform load distribution with expert specialization?

- Specialization (polysemanticity) is observed in neurons

- Do experts specialize in certain tasks (nouns, areas like english, grammar, etc.)?

- If so, wouldn’t router probability depend on input distribution? Inputs dealing with math might
get routed to expert 1 more frequently, english reasoning to expert 2, etc.

- Simply scaling experts leads to diminishing returns (Switch-C)
- Increasing sparsity by just increasing expert count leads to diminishing returns even at 1T

- Human brain has over 100T synapses (parameters)!
- Would the training suggestions provided by authors scale to even larger sizes?



Thank You!



