Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient **Sparsity**

Ritik Dutta

Highlights

Paper presents a collection of techniques/tips that seem to work well for LM

- Simplifies MoE architecture (each token routed to 1 expert)
- Scaling results -> scaling model params while keeping FLOPs per token constant leads to better results
- Sparse MoE works great:
	- Switch is faster to train for similar performance to dense model (T5)
	- Finetuning performance is better
	- Distillation is also effective in retaining teacher's performance while compressing model size

Why is this paper important?

- From scaling laws, we know that larger models are more sample-efficient
	- Switch transformers helps scale while keeping inference cost the same
- Dense models are harder to train, MoE is complicated
	- Shows that a single expert is sufficient, thus reducing complexity of MoE
	- Provide tips and tricks for stable training and distillation
- Adds a new dimension for scaling laws: increasing model size while keeping FLOPs constant also improves performance (i.e., sparsity)
	- Different from just increasing param. count (which is equivalent to more compute)

How is sparsity achieved?

- Sparsity due to activation of only one expert

Routing

$$
p_i(x) = \frac{e^{h(x)_i}}{\sum_j^N e^{h(x)_j}}.
$$

Gate value for ith expert

Normal MoE

$$
y = \sum_{i \in \mathcal{T}} p_i(x) E_i(x).
$$

Layer output (lin. combination of experts in T)

For switch transformers, we just take argmax(p_i)

Why just one expert?

- Reduced routing computation
- Batch size of each expert can be at least halved
	- For top-2, each token is processed twice, for top-3, each token is processed thrice…
- Routing implementation is simplified & communication cost reduced
- Since forward pass FLOPs is now constant, you can scale without worrying about increased inference computation
	- Can leverage scaling -> better performance

Distributed Switch Implementation

- Tensor shapes are statically determined at compile time
- Use expert capacity -> number of tokens each expert computes

expert capacity =
$$
\left(\frac{\text{tokens per batch}}{\text{number of experts}}\right) \times \text{capacity factor.}
$$

- Low capacity factor -> dropped tokens
- High capacity factor -> increased computation/communication cost
- Dropped tokens passed to next layer through residual connections

Distributed Switch Implementation

Terminology

- Experts: Split across devices. each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity factor
- . Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

Load Balancing Loss

- Auxiliary loss added to encourage balanced token routing for N experts

$$
\text{loss} = \alpha \cdot N \cdot \sum_{i=1}^{N} f_i \cdot P_i
$$

$$
f_i = \frac{1}{T}\sum_{x\in\mathcal{B}}\mathbb{1}\{\operatorname{argmax}p(x) = i\}
$$

router probability to expert i

 $P_i = \frac{1}{T} \sum_{x \in \mathcal{B}} p_i(x).$

- Authors claim this loss encourages uniform routing since it is minimized under uniform distribution (not necessarily true!)

Load Balancing Loss

- Authors claim loss is minimized value for both f_i and P_i is 1/N. But this is not true. Consider N=2, T=3

Credit: https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec16.pdf

Baselines

- T5

- Released in 2020
- Family of models: 60M, 220M (T5-Base), 740M (T5-Large), 3B, 11B
- Represents dense models
- MoE Transformers
	- Released in 2017
	- In this paper, top-2 routing is used for comparison
	- FLOPs is larger than Switch Transformers because each expert applies its own FFN

- Masked language modelling task where 15% of tokens are masked
- C4 dataset

- Switch Transformers outperforms MoE and T5 on speed-quality basis
- Switch has smaller computational footprint
- Switch performs better at lower capacity factors

Increase computation elsewhere (non-expert part) to match MoE compute speed, and performance is better

Speed-quality pareto optimality is somewhere here (reduce capacity factor), increase compute in non-expert layers

Techniques for improving training

- Selective precision (float32 is slower to compute, also means you transferring more data between layers on potentially different devices)
- Reduced initialization scale
- Higher regularization of experts

Selective Precision

- Using only bfloat16 leads to instability (esp. during exponentiation)
- Using only float32 will increase costs

. . .

- Selectively cast router input to float32 precision - float32 only used within body of router function

```
# Convert input to softmax operation from bfloat16 to float32 for stability.
router_logits = mtf.to_float32(router_logits)
```

```
# Probabilities for each token of what expert it should be sent to.
router-probs = mtf.softmax(router_logits, axis=-1)
```
Cast back outputs to bfloat16 for the rest of the layer. $combine_tensor = mtf.to_bfloat16(combine_tensor)$

Smaller Parameter Initialization

- Weight matrices initialized by sampling from a truncated normal distribution with mean $\mu=0$ and standard deviation $\sigma=\sqrt{s/n}$
- Reduce default initialization scale s = 1.0 to 0.1

Table 3: Reduced initialization scale improves stability. Reducing the initialization scale results in better model quality and more stable training of Switch Transformer. Here we record the average and standard deviation of model quality, measured by the negative log perplexity, of a 32 expert model after 3.5k steps (3 random seeds) each).

Higher Regularization of Experts

- Many finetuning tasks have very few examples -> leads to overfitting
- Switch Transformers have more parameters -> severe overfitting
- Increase dropout inside experts
	- Increasing dropout across all layers leads to worse performance

Table 4: Fine-tuning regularization results. A sweep of dropout rates while fine-tuning Switch Transformer models pre-trained on 34B tokens of the C4 data set (higher numbers are better). We observe that using a lower standard dropout rate at all non-expert layer, with a much larger dropout rate on the expert feed-forward layers, to perform the best.

Scaling on a step-basis

- Scaling experts (more params.) when training for fixed number of steps

Scaling properties on time basis

- Switch has more communication costs than T5
- For fixed training duration and comp. budget, Switch is better

Scaling vs larger dense model

- Increase sparsity (num. experts) or model density?

Downstream Experiments

- Finetuning
- Distillation
- Multilingual learning

Downstream: Finetuning results

- Switch is better

Distillation Results

Perplexity

Non-expert layers have same dimensions	Technique		Parameters	Quality (\uparrow)
	$T5$ -Base		223M	-1.636
	Switch-Base		3,800M	-1.444
	Distillation		223M	(3%) -1.631
	+ Init. non-expert weights from teacher		223M	(20%) -1.598
	$+$ 0.75 mix of hard and soft loss		223M	(29%) -1.580
	Initialization Baseline (no distillation)			
	Init. non-expert weights from teacher		223M	-1.639
	Ground truth loss		$Loss = a.L(hard) + (1-a).L(soft)$	
		Matching output logits of teacher model (Switch)		

Distillation Results

Multilingual learning

- Train on multilingual variant of C4 with 101 languages
- mSwitch is better than mT5 on all languages

Scaling strategies - Data, Model, Expert parallelism

Only scaling experts will give diminishing returns

How the *model weights* are split over cores

How the *data* is split over cores

Scaling strategies - Data, Model, Expert parallelism

Scaling to trillion parameters

Scaling to trillion parameters _{~10x less FLOPs}

than XXL

Additional Discussion

- Switch transformers works for smaller models too
- Even with 2 cores (1 expert per core), Switch is a better choice

Summary

- Bigger models are just better
- Don't need multiple experts, a single expert is sufficient
- Use the following techniques for better training:
	- Mixed precision training (higher precision when doing exponentiation, etc.)
	- Smarter initialization with smaller values
	- Regularize using dropout

Additional Discussion

- Load balancing loss assumption is wrong (uniform routing does not minimize the loss), but still seems to work
	- This could mean that many tokens must pass through residual connection under optimal training
- How to reconcile uniform load distribution with expert specialization?
	- Specialization (polysemanticity) is observed in neurons
	- Do experts specialize in certain tasks (nouns, areas like english, grammar, etc.)?
	- If so, wouldn't router probability depend on input distribution? Inputs dealing with math might get routed to expert 1 more frequently, english reasoning to expert 2, etc.
- Simply scaling experts leads to diminishing returns (Switch-C)
	- Increasing sparsity by just increasing expert count leads to diminishing returns even at 1T
	- Human brain has over 100T synapses (parameters)!
	- Would the training suggestions provided by authors scale to even larger sizes?

Thank You!