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Highlights

Paper presents a collection of techniques/tips that seem to work well for LM

- Simplifies MoE architecture (each token routed to 1 expert)
- Scaling results -> scaling model params while keeping FLOPs per token 

constant leads to better results
- Sparse MoE works great:

- Switch is faster to train for similar performance to dense model (T5)
- Finetuning performance is better
- Distillation is also effective in retaining teacher’s performance while compressing model size 



Why is this paper important?

- From scaling laws, we know that larger models are more sample-efficient
- Switch transformers helps scale while keeping inference cost the same

- Dense models are harder to train, MoE is complicated
- Shows that a single expert is sufficient, thus reducing complexity of MoE
- Provide tips and tricks for stable training and distillation

- Adds a new dimension for scaling laws: increasing model size while keeping 
FLOPs constant also improves performance (i.e., sparsity)

- Different from just increasing param. count (which is equivalent to more compute)



How is sparsity achieved?

- Sparsity due to activation of only one expert



Routing

Gate value for ith expert

Layer output
(lin. combination of experts in T)

Normal MoE
For switch 

transformers, we 
just take argmax(pi)



Why just one expert?

- Reduced routing computation
- Batch size of each expert can be at least halved

- For top-2, each token is processed twice, for top-3, each token is processed thrice…
- Routing implementation is simplified & communication cost reduced
- Since forward pass FLOPs is now constant, you can scale without worrying 

about increased inference computation
- Can leverage scaling -> better performance



Distributed Switch Implementation

- Tensor shapes are statically determined at compile time
- Use expert capacity -> number of tokens each expert computes

- Low capacity factor -> dropped tokens
- High capacity factor -> increased computation/communication cost
- Dropped tokens passed to next layer through residual connections



Distributed Switch Implementation



Load Balancing Loss

- Auxiliary loss added to encourage balanced token routing for N experts

- Authors claim this loss encourages uniform routing since it is minimized under 
uniform distribution (not necessarily true!)

fraction of tokens to expert i router probability to expert i



Load Balancing Loss

- Authors claim loss is minimized value for both fi and Pi is 1/N. But this is not 
true. Consider N=2, T=3

Table of softmax values (pi)

Credit: https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec16.pdf

= (1/2).(1/2) + (1/2).(1/2)



Baselines

- T5
- Released in 2020
- Family of models: 60M, 220M (T5-Base), 740M (T5-Large), 3B, 11B
- Represents dense models

- MoE Transformers
- Released in 2017
- In this paper, top-2 routing is used for comparison
- FLOPs is larger than Switch Transformers because each expert applies its own FFN



Results

- Masked language modelling task where 15% of tokens are masked
- C4 dataset

- Switch Transformers 
outperforms MoE and 
T5 on speed-quality 
basis

- Switch has smaller 
computational footprint

- Switch performs better 
at lower capacity factors



Results

MoE beats Switch 
here



Results

Increase computation elsewhere (non-expert part) to match 
MoE compute speed, and performance is better



Results

Speed-quality pareto optimality is somewhere here (reduce capacity factor), increase 
compute in non-expert layers



Techniques for improving training

- Selective precision (float32 is slower to compute, also means you transferring 
more data between layers on potentially different devices)

- Reduced initialization scale
- Higher regularization of experts



Selective Precision

- Using only bfloat16 leads to instability (esp. during exponentiation)
- Using only float32 will increase costs
- Selectively cast router input to float32 precision - float32 only used within 

body of router function

.

.

.



Smaller Parameter Initialization

- Weight matrices initialized by sampling from a truncated normal distribution 
with mean              and standard deviation  

- Reduce default initialization scale s = 1.0 to 0.1



Higher Regularization of Experts

- Many finetuning tasks have very few examples -> leads to overfitting
- Switch Transformers have more parameters -> severe overfitting
- Increase dropout inside experts

- Increasing dropout across all layers leads to worse performance



Scaling on a step-basis

- Scaling experts (more params.) when training for fixed number of steps

Perplexity

1 expert

~220M ~14.7B
Doesn’t account for 
communication time



Scaling properties on time basis

- Switch has more communication costs than T5
- For fixed training duration and comp. budget, Switch is better



Scaling vs larger dense model

- Increase sparsity (num. experts) or model density?



Downstream Experiments

- Finetuning
- Distillation
- Multilingual learning



Downstream: Finetuning results

- Switch is better



Distillation Results

Perplexity

Non-expert layers 
have same 
dimensions

Ground truth loss
Matching output logits of 
teacher model (Switch)

Loss = a.L(hard) + (1-a).L(soft) 



Distillation Results



Multilingual learning

- Train on multilingual variant of C4 with 101 languages
- mSwitch is better than mT5 on all languages



Scaling strategies - Data, Model, Expert parallelism

Only scaling experts will give diminishing returns



Scaling strategies - Data, Model, Expert parallelism
Switch Base Switch Large

Param count 
increased by 

increasing 
intermediate 
dimensions



Scaling to trillion parameters



Scaling to trillion parameters ~10x less FLOPs

Size achieved by increasing experts, but worse performance 
than XXL



Additional Discussion

- Switch transformers works for smaller models too
- Even with 2 cores (1 expert per core), Switch is a better choice



Summary

- Bigger models are just better
- Don’t need multiple experts, a single expert is sufficient
- Use the following techniques for better training:

- Mixed precision training (higher precision when doing exponentiation, etc.)
- Smarter initialization with smaller values
- Regularize using dropout



Additional Discussion

- Load balancing loss assumption is wrong (uniform routing does not minimize 
the loss), but still seems to work

- This could mean that many tokens must pass through residual connection under optimal 
training

- How to reconcile uniform load distribution with expert specialization?
- Specialization (polysemanticity) is observed in neurons
- Do experts specialize in certain tasks (nouns, areas like english, grammar, etc.)?
- If so, wouldn’t router probability depend on input distribution? Inputs dealing with math might 

get routed to expert 1 more frequently, english reasoning to expert 2, etc.
- Simply scaling experts leads to diminishing returns (Switch-C)

- Increasing sparsity by just increasing expert count leads to diminishing returns even at 1T
- Human brain has over 100T synapses (parameters)!
- Would the training suggestions provided by authors scale to even larger sizes?



Thank You!


