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Motivation

* Decoding K tokens takes K serial runs

e Can we somehow decode several tokens in parallel?



Previous Approaches

* Reduce the inference cost for all inputs equally

* Distillation (Hinton, 2015), sparsification (Jaszczur, 2021), quantization (Hubara,
2016)

* Adaptive computation

* Han, 2021, Sukhbaatar, 2019
 Different inference steps require different size of model

They require changing the model architecture, training procedure,

and re-training the models without maintaining identical outputs




Observation 1

* Some tokens are easier than others

e Hebrew: .NM1w'X n'n 2y XIannEnglish: The president was Barack
Obama.

Hard - e.g. requires looking
Easy - e.g. can guess based several tokens back,

on just the last token. knowledge of hebrew



Observation 2

* Decoding from large transformers is memory bound

Hardware can do Transformers need

XXX X

Floating point operations per byte read | Floating point operations per byte read



Speculative Decoding

» Sample generations from more efficient approximation models as
speculative prefixes for the slower target models

* Consider two models M, target model and M,,, more efficient
approximation model

pl(x) = Mp(pf) Eeessssssss—————) (]

p2(x) = My(pf,x,) s %2 Ryn approximation

model y steps

ps(x) = Mp(pr X1,X2,X3,X, ) ——) X5



Speculative Decoding

* Consider two models M, target model and M,,, more efficient
approximation model

qd1 (.X'), %) (X), ds (.X'), d4 (X), qS(x)' de (x)
Run target model once

= Mq (pfr X1, X2, X3, X4, xS)



Speculative Decoding

e Case 1:if g(x) = p(x), then accept the generated token from the
approximation model

q(x)

p(x)
* If rejected, sample x from an adjusted distribution (q(x) — p(x)),

e Case 2:if g(x) < p(x), then accept with probability —=



Theoretical Analysis: Number of Parallel Tokens

* The expected number of tokens generated by speculative decoding is

1— a)/+1

« E(# generated tokens) =

1-«a

* a:expected acceptance rate

* Optimally choose the number of tokens y to attempt to parallelize



Theoretical Analysis: Walltime Improvement

* The expected improvement factor in total walltime:

1 — a]/+1

(1-a)(yc+1)

* c:the ratio between the time for a single run of the approximation
model and the time for a single run of the target model



How to choose y

* The optimal y should maximize the walltime reduction

244 = c=0.01
23] = c=0.02
214 =—— ¢c=0.05
2041 — c=01
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Figure 3. The optimal ~y as a function of « for various values of c.
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Evaluation

* Implement SD in T5X codebase; two tasks: translation and text summarization;
* Target model (11B); approximation models (800M, 250M, 77M)
* Batch size 1 on a single TPU-v4

Table 2. Empirical results for speeding up inference from a T5-
XXL 11B model.

TASK M, TEMP ~ « SPEED

ENDE T5-SMALL % 0 7 0.75 3.4X

ENDE T5-BASE 0 T 08 7.8X * T5-small (77M) has a good balance
ENDE TS5-LARGE 0 7 082 17X between acceptance rate and
ENDE TS5-SMALL % 1 7 062  2.6X

ENDE P mier 1 5 068 24X number of generated tokens, and
ENDE T5-LARGE 1 F 071 14X achieves fast inference time
CNNDM  T5-SMALL % 0 5 0.65 3.1X

CNNDM  T5-BASE 0 y OESE  30%

CNNDM  T5-LARGE 0 3. B4 29%

CNNDM  T5-SMALL % 1 5 053 23X

CNNDM  T5-BASE 1 3: 955 22%

CNNDM  T5-LARGE 1 3056 1.7X




Evaluation

Table 3. Empirical « values for various target models M, approx-
imation models M, and sampling settings. T=0 and T=1 denote
argmax and standard sampling respectively®.

M, M, SMPL el

GPT-LIKE (97M) UNIGRAM T=0 0.03

GPT-LIKE (97M) BIGRAM T=0 0.05

GPT-LIKE (97M) GPT-LIKE (6M) T=0 0.88

GPT-LIKE (97M) UNIGRAM =1 0.03

GPT-LIKE (97M) BIGRAM T=1 0.05

GPT-LIKE (97M) GPT-LIKE (6M) T=1 0.89

T5-XXL (ENDE) UNIGRAM T=0 0.08

T5-XXL (ENDE) BIGRAM T=0 0.20 ° H H

e e B e wel o o Approximation tends to produce &
T5-XXL (ENDE) TS5-BASE T=0 0.80

T5-XXL (ENDE) T5-LARGE T=0  0.82 between 0.5 and 0.9

T5-XXL (ENDE) UNIGRAM T=i 0.07 .. . .

T5-XXL (ENDE) ~ BIGRAM =1 0.19 e Even trivial unigram and bigram
T5-XXL (ENDE) T5-SMALL T=1 0.62 . . . |d | b|
T5-XXL (ENDE) TS5-BASE T=1 0.68 roxim lon | non n 191
T5-XXL (ENDE) TS5-LARGE =1 0.71 app 0 at ons y e 0 eg g ea
T5-XXL (CNNDM) UNIGRAM T=0  0.13 values with negllglble runtime
T5-XXL (CNNDM) BIGRAM T=0 0.23

T5-XXL (CNNDM) T5-SMALL T=0 0.65

T5-XXL (CNNDM) T5-BASE T=0 0.73

T5-XXL (CNNDM) T5-LARGE T=0 0.74

T5-XXL (CNNDM) UNIGRAM T=1 0.08

T5-XXL (CNNDM) BIGRAM T=1 0.16

T5-XXL (CNNDM) T5-SMALL T=1 0.53

T5-XXL (CNNDM) T5-BASE T=1 0.55

T5-XXL (CNNDM) T5-LARGE T=1 0.56

LAMDA (137B) LAMDA (100M) T1=0 0.61

LAMDA (137B) LAMDA (2B) T=0 0.71

LAMDA (137B) LAMDA (8B) T=0 0.75

LAMDA (137B) LAMDA (100M) T1=1 0.57

LAMDA (137B) LAMDA (2B) =1 0.71 15
LAMDA (137B) LAMDA (8B) T=1 0.74




What SD is good at

* Decode faster from autoregressive models: 2x-3x in
typical scenarios

* Only different decoding algorithm: no architecture
changes, no re-training

* [dentical output distribution



What SD is limited at

* Adaptively choosing ¥ during runtime could further
improve its performance

* Fine-tune the approximation model to generate more
similar distributions with the target model

* Lack comparisons with state-of-the-arts



