SmoothQuant

MIT, NVIDIA 2023

Introduction

Serving Large Language Models Is Expensive

e Pre-trained language models have achieved remarkable performance

/ ©
@he) GitHub
&P Copilot

ChatGPT

e Large language models often come in high precision formats such as FP16
o Significant GPU memory requirements (size and bandwidth)
o Slow matrix multiplication operations

Post-Training Quantization Reduces The Cost

e Post-training quantization (PTQ) reduces the cost of LLMs.

o “Post-training:” no modifications to training => easy to implement and wide applicability
o “Quantization:” lowers the bit-width and improves efficiency
o Mitigate memory consumption and reduce computational overhead => higher performance

Single-precision Floating Point (PF32)
8 23

- - -
jopopoooMGm |

Half-precision Floating Point (FP16.16)

5 10
Bl [e e T]

Quantization

8-bit Integer (INT8)

Existing methods cannot maintain accuracy and
hardware efficiency at the same time

e ZeroQuant

o Uses layer-by-layer knowledge distillation without the original training data
o Delivers good accuracy for GPT-3-350M and GPT-J-6B
o Can not maintain the accuracy for the large OPT model with 175 billion parameters

e LLM.int8()

o Increases accuracy by keeping outliers in FP16 and uses INT8 for the other activations
o The mixed-precision decomposition is not hardware friendly

Paper Key Takeaways

e Per-channel quantization is infeasible

o GEMM kernels rely on a sequence of operations at a high throughput

o But operations that apply different scales for each channel have a lower throughput
e Preprocessing the weights and activations is the solution

o Activations are hard to quantize and weights are easy to quantize
o Exploit the linearity of matrix multiplication to offload the quantization difficulty
o Uniform quantization is supported by hardware

e SmoothQuant enables an INT8 quantization of both weights and activations

for all the matrix multiplications in LLMs
o Preserves accuracy
o Hardware-friendly
o Up to 1.56x speedup and 2x memory reduction

The Quantization Process

RKINTS _ [XFPMJ, A — max(|X])
A 2N-1 _1
Fp16 vector
12[05|-4.3[1.2-3.1/08(24]| 54| = |54 —
Get max(abs) Get quantisation
factor +
I [-127, 127]

Quantized - int8 vector

The Quantization Process

XFPI6 max(|X|)
A b A=ona

XINTS — |‘

How to get A?

e Dynamic Range Quantization
o Atruntime
o Use the runtime statistics of activations to get A

e Static Quantization
o Before runtime
o Calculate A offline with the activations of some calibration samples

o This paper gets activation statistics from 512 random sentences from the pre-training dataset
Pile

Quantization Granularity

e Per-Tensor Quantization
o Uses a single step size for the entire matrix

e Per-Token Quantization | 7| 2.12
S = — = =212
e Per-Channel Quantization - S oo2-1_1
| e Gmax 2 1
e Group-Wise Quantization
per-tensor quant.
grestirsnanssssa st : 1 0 1 0 2121 0 |2.12] o
i C;
AX[] ilo o |11 0 | 0 |-2.12|2.12
o |IT X o1]o|o]||lol22]0]o0
: : 1 0 1 1 2121 0 |2.12|2.12

e e i g Quantized Reconstructed

Quantization Granularity

e Per-Tensor Quantization
e Per-Token Quantization

o Uses different quantization step sizes for activations associated with each token

e Per-Channel Quantization
e Group-Wise Quantization

AX[TXI]

per-token quant.

0 1 0 209| 0 |209| O
0 -1 1 0 0 |-2.12|2.12
1 0o | -1 0 (192 0 [-1.92
0 1 1 1.87| 0 |1.87|1.87
Quantized Reconstructed

Quantization Granularity

e Per-Tensor Quantization

e Per-Token Quantization

e Per-Channel Quantization A [1XC,]
W

o Uses different quantization step sizes for activations

associated with each output channel of weights

e Group-Wise Quantization C
0

per-channel quant.

Quantization Granularity

Per-Tensor Quantization
Per-Token Quantization
Per-Channel Quantization

Group-Wise Quantization

o Different quantization steps for different
channel groups

Input Channel

]
c
<
©
M o
< FP16
3
Q.
5
o
Weight
s||z INT INT s||z
S|z INT INT S|z
Sl |2 INT INT s||z
S|z INT INT S|z
S ||z INT INT S|z
5| |2 INT INT s||z

Weight

Key Idea #1: Per-Channel Quantization is Infeasible

e (Observations:

o Outliers lead to low effective quantization bits
o OQutliers exist in a small fraction of channels

e Reasonable thought:

o If we could perform per-channel quantization, the quantization error would be much smaller
compared to per-tensor quantization

Weight range per output channel

1009 (first depthwise-separable layer in MobileNetV2)
outlier IX| |W | 75 1
W) 10 0-1 50 -
= z
2 low effective bits o 25
P ©
S , 0 . -25-
hard to quantize very easy to quantize .
-5

1234567 8 91011121314151617181920212223242526272829303132
Output channel index

Key Idea #1: Per-Channel Quantization is Infeasible

e |[ssue:
o Hardware-accelerated GEMM kernels, that rely on a sequence of operations executed at a
high throughput
o Per-channel activation quantization relies on insertion of instructions with a lower throughput
to apply different scales for each channel
o GEMM kernels do not tolerate the insertion of instructions with a lower throughput

Key ldea #2: Migrating the quantization difficulty

Weights are easy to quantize, but activations are hard due to outliers

Y = XW = (0.01X)(100W)

Migrate the quantization
——— difficulty
Smooth

| 5| 5
70 ¢ | L
3 10 [4| 4]
s 10 i | L
i 8] 3 3
g8 6 |
=6 | 21)
2 | 4 5 | 1 >
£ 4’ | /gt 300 1| 200001 20000
A /300 ¢ : i 9 0 ; 15000y g -8 /15000,
, / N
0 = 57 200 O Jooo ¢ & 1000 /10000 O yooo /10000
1000 S & 2000 100 2000 5000 2000 5000 O
2000 100 (¥ o, 3000 0 263,39 400 S 232" g000 £
ey, 4000 “ney s000 0 ey s000 0 “anney s000 0
e/ soo0 0
Activation (Original) Activation (SmoothQuant) Weight (Original) Weight (SmoothQuant)
Hard to quantize Easy to quantize Very easy to quantize Harder but still easy to quantize

Key ldea #2: Migrating the quantization difficulty

e Issue from before: Activation outliers persist in fixed channels

o Per-tensor quantization is limited
o But per-channel quantization was infeasible.

e After preprocessing (smoothing): Linearity is exploited so that weights and

activations can have similar degrees of outliers

o Per-tensor quantization is effective again
o Bake smoothing factor into previous layers (or residual branch for residual add)

SmoothQuant’s Per-Channel Smoothing Factor

Y = (Xdiag(s)™!) - (diag(s)W) = XW

Push all quantization difficulty from activations to weights (all channels have same

maximum magnitude):
Sj = ma.x(|Xj|),_7 = 1, 2, cony Cz

Push all quantization difficulty from weights to activations:
s; = 1/max(|W;]).

Share difficulty according to a:
s; = max(|X;])*/ max(|W,|)'

Choosing a

Case-by-case decision

If the a is too large, weights will be hard to quantize. If too small, activations will be
hard to quantize.

Goal: make activations and weights both easy to quantize.

-- FP16 < W8A16 + WI16A8 W WBRAS

0 T
(>)‘ SOA) p--é---{%---@---%&- -
< Yl
E 0 | y &
g 0% Weight easy [ard
9 a5 | | Sweet spot
< 4 Activation hard | easy
% 40% — ', ‘
= 20% | f
= ¢ /
=% /
& 0% T—TF— = 4

0 0?1 0?2 03 04 05 06 07 08 09 1
Migration strength a

Example of SmoothQuant

1) Apply Smoothing Factor
2) Quantize (constant step size)

Original: Abs Max SmoothQuant:
_X 2 1 2|i2i XeXdao! ST,
. 1-1‘12 6*1_1_15155 1'42,2*4_4-4
22)2 220 2
EA XA EIETEN IR RRNE ARNE N EIEIE

W s = /max | X|/max |[W| W = diag(s)W

SmoothQuant Hardware Efficiency

e Applying SmoothQuant to transformer blocks
o Linear layers take up most of the parameters and computation
o Smoothing factor can be fused into previous layers’ parameters offline
o Alllinear layers are quantized with W8AS8, as well as BMM operators in Attention computation

— | N

P16 — ()

L oo) mts — @

(Laye;'Norm)

@

Four Baselines

LLM.int8 keeps outliers in FP16 (large latency overhead). W8AS8 is the naive
implementation. Outlier suppression uses token-wise clipping

Method Weight Activation

WSAS per-tensor per-tensor dynamic
ZeroQuant group-wise per-token dynamic
LLM.int8 () per-channel per-token dynamic+FP16

Outlier Suppression per-tensor per-tensor static

SmoothQuant O1 to O3

Gradually aggressive and efficient (lower latency) quantization levels

Method

Weight Activation

SmoothQuant-O1
SmoothQuant-O2
SmoothQuant-O3

per-tensor per-token dynamic
per-tensor per-tensor dynamic
per-tensor per-tensor static

Evaluation

e Three families of LLMs

o OPT

m a=05
o BLOOM

m a=05
o GLM-130B

m ais setto 0.75 since its activations are more difficult to quantize

e Seven zero-shot evaluation tasks e.g. LAMBADA, WikiText
e Focus on relative performance chance before/after quantization

OPT-175B results

OPT-175B LAMBADA HellaSwag PIQA WinoGrande OpenBookQA RTE COPA Average! WikiText|
FP16 74.7% 59.3% 79.7% 72.6% 34.0% 59.9% 88.0% 66.9% 10.99
W8AS 0.0% 25.6% 53.4% 50.3% 14.0% 49.5% 56.0% 35.5% 93080
ZeroQuant 0.0%* 26.0% 51.7% 49.3% 17.8% 50.9% 55.0% _35.8%.. 84648
LLM.int8 () 74.7% 592% 79.7% 72.1% 34.2% 60.3% 87.0% |66.7% J |_11.10
Outlier Suppression 0.00% 25.8% 52.5% 48.6% 16.6% 53.4% 55.0% 36.0% 96151
SmoothQuant-O1 74.7% 59.2% 79.7% 71.2% 33.4% 58.1% 89.0% 66.5% 11.11
SmoothQuant-O2 75.0% 59.0% 79.2% 71.2% 33.0% 59.6% 88.0% 114
SmoothQuant-O3 74.6% 589% 79.7% 71.2% 33.4% 59.9% 90.0% | 66.8% 11.17

Results On Different LLMs

Method OPT-175B BLOOM-176B GLM-130B*
FP16 71.6% 68.2% 73.8%
WEAS 32.3% 64.2% 26.9%
ZeroQuant 31.7% 67.4% 26.7%
LLM.int8 () 71.4% 68.0% [73.8%
Outlier Suppression 31.7% 54.1% 63.5%
SmoothQuant-O1 71.2% 68.3% 73.7 %
SmoothQuant-O2 71.1% 68.4% 72.5%
SmoothQuant-O3 71.1% 67.4% 72.8%

Lossless W8AS8 quantization for LLaMA models

Lower perplexity is better

Wiki PPL| 7B 13B 30B 65B
FP16 1151 1005 753 6.17 }
Similar!

W8A8 SmoothQuant 11.56 10.08 7.56 6.20

Memory/Latency Savings

Only compares with LLM.int8() because it is the only method that maintains
accuracy.

[] FP16 B LLM.int8() B SmoothQuant

= 400 371 700 660655
2 296
g: 300 = —M.. 525 3 458
9 200 Ll 153 350 276 o
§ 12 %5 228
100 84 I 63 175 136
0 0
128 256 512 128
a 26 244 249 259 60 56.6 57.3 59.0
O 20 45
E 03 12.812.6 133129 14313 6 50 29.128.9 30.029 3 31.630.4
o
g 7 15
s 0 0 :
128 256 512 128 256 512

OPT-13B OPT-30B

Hardware Efficiency

Similar or faster latency with half # GPUs

900
675
450
225

0

400
200

848
] FP16 (8 GPUs) 720
B SmoothQuant (4 GPUs)
432 366
228
139122 o194 .
m N} .
128 256 512 1024
369 372 378 389
182 184 189 200
128 256 312 1024

OPT-175B

Overall Results

e SmoothQuant is faster than FP16 baseline under all settings

e LLM.int8() is usually slower than SmoothQuant

e Additionally: SmoothQuant can serve a >500B model within a single node
(8xA100 80GB GPUs) at a negligible accuracy loss

My Thoughts

e Strengths
o Novel suggestion of migrating quantization difficulty to weights
o Surpasses SOTA PTQ methods in high accuracy and low latency
o High quality of evaluation - many families of LLMs including LLaMA
o [Easy to use (no training required)
e \Weaknesses
o Selecting the a hyperparameter is a little difficult to get right
o Getting activation statistics requires some work
e Design Choices
o Very thoughtful and simple use of matmul’s linearity
o Efficiency relies on access to hardware accelerators
e Future Directions

o Getting down to 4 bits for weights and/or activations
o Could FP4 be viable?

Discussion

e Can SmoothQuant scale for even larger LLMs (e.g. 100 trillion parameters)?

e Are there any specific types of applications where SmoothQuant wouldn’t be
the best choice?

e \What prevents quantizing to reduced bit-widths of size 4, 2, or even 17

Q&A

