Reducing Activation Recomputation in Large Language Models Ahan Gupta

Agenda

Tensor Parallelism

The faults in Tensor Parallelism

Sequence + Tensor Parallelism

Activation Checkpointing

Tensor Parallelism

Motivation

Larger Models yield better quality (provided trained on more data!)

Really large models hit the memory wall

Combination of Data + Model Parallelism is *complicated* and require model re-writing

Solution: Simple intra-layer model parallelism (Tensor parallelism) but this is *not sufficient*

So we bring it one step further.

Tensor Parallelism

 $\overline{}$

Intuition:

Split Weights across columns

Replicate Input across GPUs

$$
O1 = XA
$$

\n
$$
O2 = Gelu(O1)
$$

\n
$$
O3 = O2A1
$$

\n
$$
O4 = Dropout(O3)
$$

 $\left[A_1|A_2\right]$ $Q^1 = X \overline{A}$ $O^2 = Gelu(O^1)$ $Q^3 = Q^2 A^1$ $O^4 = Dropout(O^3)$

Step 1: Replicate data, partition weights for local MatMul

GPU 0 GPU 1

Computes: Computes: XA_1

 $XA₂$

 $Q^1 = XA$ $O^2 = Gelu(O^1)$ $Q^3 = Q^2 A^1$ $O^4 = Dropout(O^3)$

Step 2: Compute local GELU's

GPU 0 GPU 1

Computes: Computes: $Gelu(XA_1)$

 $Gelu(XA_2)$

Step 3: Another Partitioning of the weights and local MatMul.

GPU 0 GPU 1

Computes: Computes: $Gelu(XA_1)A_1^1$

 $Gelu(XA_2)A_2^1$

Step 4: All-reduce, synchronize data and add.

GPU 0 GPU 1

Computes: Computes:

 $Gelu(XA_1)A_1^1+Gelu(XA_2)A_2^1$

 $Gelu(XA_1)A_1^1+Gelu(XA_2)A_2^1$

 $Dropout(Gelu(XA_1)A_1^1+Gelu(XA_2)A_2^1)$

Done on both the GPUs with all the data (redundancies)

Tensor Parallelism - Self-Attention

Concept is the same

Partitioning Scheme is identical

Tensor Parallelism - Self-Attention

Reducing Activation Computation in Large Language Models

Motivation

Layernorm and Dropout in Tensor Parallelism introduces redundant work

Layernorm + Dropout are memory bound but require loads of activations

Duplicating their activations increases Memory usage *drastically*

Intuition

We parallelise both the layernorm and dropout across GPUs, reducing redundant work (save overall memory consumption)

We parallelise across the sequence dimension (Sequence Parallelism)

Put on special activation checkpointing to save memory!

Try not to materialise the full input matrix across *any single GPU*

Intuition

Intuition

What does a dropout look like on this matrix?

Intuition - Where is the Parallelism? (Dropout)

From Previous Layer

Dropout Mask (D)

To Next Layer

Credits: <https://epynn.net/Dropout.html>

Intuition - Where is the Parallelism? (Dropout)

From Previous Layer

Dropout Mask (D)

To Next Layer

Takes a matrix, and masks out inputs with a particular Probability

Credits: <https://epynn.net/Dropout.html>

Intuition - Where is the Parallelism? (Dropout)

 0.1

 0.6

From Previous Layer

Dropout Mask (D)

To Next Layer

Credits: <https://epynn.net/Dropout.html>

What does LayerNorm look

Let's walk through how to do this on 2 GPUs

$$
O1 = LayerNorm(X)
$$

\n
$$
O2 = O1A1
$$

\n
$$
O3 = Gelu(O2)
$$

\n
$$
O4 = O3A2
$$

\n
$$
O5 = Dropout(O4)
$$

Step 1: Replicate data across sequence dimension. Compute LayerNorm GPU 0 GPU 1

Computes: Computes: $LayerNorm(X_1)$ $LayerNorm(X_2)$

Step 2: All-gather, and apply tensor Parallelism

GPU 0 GPU 1

Computes: Computes: $LayerNorm(X_1)$ $LayerNorm(X_2)$

Now we've finished Tensor Parallelism (Step Prior to All-Gather)

Step 2: State After Tensor Parallelism has been applied.

GPU 0 GPU 1

Computes: Computes: $Gelu(O^1A_1^1)A_1^2$

 $Gelu(O^1A_2^1)A_2^2$

What we need to do

is:

- 1. Add results
- 2. Split across rows

scatter!

Step 3: Reduce-Scatter

GPU 0 GPU 1

Has: Has: O_1^4

 O_2^4

Step 4: Apply Dropout

GPU 0 GPU 1

 $\textit{Comput}(O_1^4)$ Computes:
 $\textit{Dropout}(O_1^4)$ Dropout(0)

 $Dropout(O_2^4)$

Full Flow

Full Flow

We materialise all the activations here.

Activation Checkpointing

Store these checkpoints

Naive Full-Recomputation

Activation Checkpointing

Naive Full-Recomputation

Recompute Activations

Selective Recomputation

Activation Checkpointing is effective in reducing memory consumption

Which layers' activations to *not* checkpoint?

Selective Recomputation

Activation Checkpointing is effective in reducing memory consumption

Which layers' activations to *not* checkpoint?

Layers with low FLOPs, but high number of activations (softmax, dropout).

Selective Recomputation

Checkpoint activations post linear transformation

Evaluation

Figure 7: Percentage of required memory compared to the tensor-level parallel baseline. As the model size increases, both sequence parallelism and selective activation recomputation have similar memory savings and together they reduce the memory required by $\sim 5 \times$.

Evaluation

Table 4: Time to complete the forward and backward pass of a single transformer layer of the 22B model.

Evaluation

Figure 8: Per layer breakdown of forward, backward, and recompute times. Baseline is the case with no recomputation and no sequence parallelism. Present work includes both sequence parallelism and selective activation recomputation.

Opinion

Doesn't seem to accelerate inference

Main speedup is for training.

Discussion

HPC Community has been working on distributed Matmul for a while. Can some of their methods be adapted?

Is there a way to systematically explore the space of communication operations + partitioning strategies?

Can we leverage offload strategies as learnt earlier in the class?