
Reducing Activation 
Recomputation in Large 

Language Models
Ahan Gupta

Korthikanti et al.



Agenda

Tensor Parallelism

The faults in Tensor Parallelism

Sequence + Tensor Parallelism

Activation Checkpointing



Tensor Parallelism

Shoeybi et al.



Motivation

Larger Models yield better quality (provided trained on more data!)

Really large models hit the memory wall

Combination of Data + Model Parallelism is complicated and require model re-writing

Solution: Simple intra-layer model parallelism (Tensor parallelism) but this is not sufficient

So we bring it one step further. 



Tensor Parallelism



Tensor Parallelism

Apply Tensor Parallelism



Tensor Parallelism

How do we apply Tensor 
Parallelism to these?

Let's see how we can do this if we want 
to effectively use 2 GPUs



Tensor Parallelism - FFNs (Better Partitioning)

Intuition:

Split Weights across columns

Replicate Input across GPUs



Tensor Parallelism - FFNs (Better Partitioning)



Tensor Parallelism - FFNs (Better Partitioning)

Step 1: Replicate data, partition 
weights for local MatMul

GPU 0 GPU 1

Computes: Computes:



Tensor Parallelism - FFNs (Better Partitioning)

Step 2: Compute local GELU's

GPU 0 GPU 1

Computes: Computes:



Tensor Parallelism - FFNs (Better Partitioning)

Step 3: Another Partitioning of 
the weights and local MatMul.

GPU 0 GPU 1

Computes: Computes:



Tensor Parallelism - FFNs (Better Partitioning)

Step 4: All-reduce, synchronize 
data and add.

GPU 0 GPU 1

Computes: Computes:



Tensor Parallelism - FFNs (Better Partitioning)

Step 4: Dropout.

GPU 0 GPU 1

Computes: Computes:



Tensor Parallelism - FFNs (Better Partitioning)



Tensor Parallelism - FFNs (Better Partitioning)

Done on both the GPUs with all the data (redundancies)



Tensor Parallelism - Self-Attention

Concept is the same

Partitioning Scheme is identical



Tensor Parallelism - Self-Attention

Duplication 
again



Reducing Activation 
Computation in Large 
Language Models



Motivation

Layernorm and Dropout in Tensor Parallelism introduces redundant work

Layernorm + Dropout are memory bound but require loads of activations

Duplicating their activations increases Memory usage drastically 



Intuition

We parallelise both the layernorm and dropout across GPUs, reducing redundant work (save 
overall memory consumption)

We parallelise across the sequence dimension (Sequence Parallelism)

Put on special activation checkpointing to save memory!

Try not to materialise the full input matrix across any single GPU



Intuition

Normally, every GPU will do identical 
work on these Dropouts and 
LayerNorms (Duplication)



Intuition

Reducing duplication by parallelising 
these layers as well



Input Visualisation

Sequence 
Dimension

Hidden Dimension

Batch
Dimension



Input Visualisation

Sequence 
Dimension

Hidden Dimension

Batch
Dimension

What does a 
dropout look like 
on this matrix?



Input Visualisation

Sequence 
Dimension

Hidden Dimension

Batch
Dimension

Let's take one (i,j) 
slice. 



Intuition - Where is the Parallelism? (Dropout)

Credits: 
https://epynn.net/Dropout.html 

https://epynn.net/Dropout.html


Intuition - Where is the Parallelism? (Dropout)

Credits: 
https://epynn.net/Dropout.html 

Takes a matrix, and masks out inputs 
with a particular Probability

https://epynn.net/Dropout.html


Intuition - Where is the Parallelism? (Dropout)

Credits: 
https://epynn.net/Dropout.html 

We can apply 
this 
independently 
to each row of 
the matrix

https://epynn.net/Dropout.html


Input Visualisation

Sequence 
Dimension

Hidden Dimension

Batch
Dimension

Partition



Input Visualisation

Hidden Dimension

Batch
Dimension

Partition
Dropout on 
GPU x

Dropout on 
GPU y

Sequence 
Dimension



Input Visualisation

Hidden Dimension

Batch
Dimension

What does 
LayerNorm look 
like?

Sequence 
Dimension



Input Visualisation

Hidden Dimension

Batch
Dimension

What does 
LayerNorm look 
like?

Sequence 
Dimension

We take one 
sequence 
vector 



Input Visualisation



Input Visualisation

Hidden Dimension

Batch
Dimension

Partition
LayerNorm 
on GPU x

LayerNorm 
on GPU y

Sequence 
Dimension



Full Flow - Sequence & Tensor Parallelism



Full Flow - Sequence & Tensor Parallelism

Parallelise across sequence 
dimension



Full Flow - Sequence & Tensor Parallelism

Normal Tensor Parallelism



Full Flow - Sequence & Tensor Parallelism

What are these collectives?



Full Flow - Sequence & Tensor Parallelism

Let's walk through how to do this 
on 2 GPUs



Full Flow - Sequence & Tensor Parallelism

Step 1: Replicate data across 
sequence dimension. Compute 

LayerNorm

GPU 0 GPU 1

Computes: Computes:



Full Flow - Sequence & Tensor Parallelism

Step 2: All-gather, and apply 
tensor Parallelism

GPU 0 GPU 1

Computes: Computes:



Full Flow - Sequence & Tensor Parallelism

Step 2: State After Tensor 
Parallelism has been applied.

GPU 0 GPU 1

Computes: Computes:

Now we've finished 
Tensor Parallelism 
(Step Prior to 
All-Gather)



Full Flow - Sequence & Tensor Parallelism

Step 2: State After Tensor 
Parallelism has been applied.

GPU 0 GPU 1

Computes: Computes:

What we need to do 
is:
1. Add results
2. Split across 

rows



Full Flow - Sequence & Tensor Parallelism

Step 2: State After Tensor 
Parallelism has been applied.

GPU 0 GPU 1

Computes: Computes:

We'll do a reduce 
scatter!



Full Flow - Sequence & Tensor Parallelism

Step 3: Reduce-Scatter

GPU 0 GPU 1

Has: Has:



Full Flow - Sequence & Tensor Parallelism

Step 4: Apply Dropout

GPU 0 GPU 1

Computes: Computes:



Full Flow

All-Gather Reduce-Scatter



Full Flow

We materialise all the activations here.



Activation Checkpointing

Naive Full-Recomputation

Store these checkpoints 



Activation Checkpointing

Naive Full-Recomputation

Recompute Activations

To compute gradients



Selective Recomputation

Activation Checkpointing is effective in reducing memory consumption

Which layers' activations to not checkpoint?



Selective Recomputation

Activation Checkpointing is effective in reducing memory consumption

Which layers' activations to not checkpoint?

Layers with low FLOPs, but high number of activations (softmax, dropout). 



Selective Recomputation

Checkpoint activations 
post linear transformation

Checkpoint activations



Evaluation



Evaluation



Evaluation



Opinion

Doesn't seem to accelerate inference

Main speedup is for training.



Discussion

HPC Community has been working on distributed Matmul for a while. Can some of 
their methods be adapted?

Is there a way to systematically explore the space of communication operations + 
partitioning strategies?

Can we leverage offload strategies as learnt earlier in the class? 


