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Large model training landscape

« GPU Memory Wall
e 1T (10T) params: 800 (8K) V100 GPUs
* How do we support the growth in
model size?

* Accessibility to large model training
e 256 GPUs to fine-tune GPT-3
 Limited access to such resources

 Model code refactoring
e Re-writing the model using 3D
parallelism (tensor-slicing + pipeline
parallelism)
e Painful and error prone

*Al and Memory Wall. (This blogpost has been written in... | by Amir Gholami] riselab |
Medium
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Beyond the GPU Memory

* Modern clusters have heterogeneous
memory systems.

* GPU memory comprises a small
fraction

* Leverages GPU/CPU/NVMe memory

e 32T params on 32 nodes
e 1T params on a single node

 GPT-3 can be fine-tuned on a single
node
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How to leverage non-GPU memory?

* Can we extend an existing parallel training technology to use
CPU/NVMe memory?

e Data Parallelism : Replication causes memory explosion

* Tensor-Slicing: scaling challenge for multi-GPU
* Pipeline-Parallelism: Requires significant code refactoring

 What about Zero Redundancy Optimizer (ZeRO)?



/eR0O: Zero Redundancy Optimizer

* Memory efficient form of data parallelism
* Each GPU stores a mutually exclusive subset of the parameters

* Broadcast parameters from owner to all the GPUs as needed

GPU Interconnect GPU Interconnect
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Zero Infinity Overview

* Infinity offload engine

. Based on GPU memory,
. Offload partitioned model states -> CPU/NVMe

. Fetch back at time of needed
* Optimization: memory centric tiling

. Breakdown large linear operator —> small sequential ones
. Reduce required working memory



ZeRO with CPU/NVME Offload

- _ compute_time
ef ficiency = compute_time+communication_time

e Store in CPU/NVME instead of GPU

¢ Send frOm CPU/NVI\/Ie tO GPU ’ total_computation
compute_time = peak;

* Broadcast or reduce as ZeRO d

total_computation

ait = total data_movement

total data _movement

communication_time =

* Is NVME &> GPU bandwidth L.
sufficient? = T aitxbw
» Efficiency analysis based on
bandwidth Cn ait X bw
ef ficiency =

ait X bw + peakyp






Efficiency as a function of bandwidth
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Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

Data Type Overlap Requirement Overlap: prefetch data from
CPU to GPU before
Params/Grads Yes 70 GB/s .
computation.
Optimizer States No 1500 GB/s Need BW to achieve at least
Activations Yes 1-4 GB/s 50% efficiency.



ZeRO with CPU/NVME Offload

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.

ZeRO with non-GPU memory

PCle

GPUs Data Type Required
1024 Params/Grads 70 GB/s

NVME NVME

1024 Optimizer States 1500 GB/s

1024 Activations 1-4 GB/s

* |s CPU/NVME < - GPU bandwidth sufficient?
* Params/grads: PCle bottleneck 12 GB/s



Efficiency Design Choice

. Reqmre 70GB/s

GPU-GPU BW can satisfy
. But not PCIE’s 12GB/s BW
. Zero-Offload, CPU-> owner GPU then broadcast
. Require larger batch size
. Activation memory too large for CPU memory
. May not lead to effective convergence



BW-centric Partition

Partition each parmaeter across GPUs
Send from NVMe to GPU in parallel

Bandwidth Increases linearly with
devices
e #igpus x host-to-device bandwidth
 CPU->GPU: 64 GB/s—4 TB/s (1-64 nodes)
* NVMe-> GPU:28 GB/s— 1.8 TB/s (1-64 nodes)

* Limited by GPU<—2>GPU bw
* min (#gpus x host-device bw, gpu-gpu bw)
e 70GB/s

GPUs
1024
1024
1024

PCle

Layer O
Layer 1

Layer 2

ZeRO Infinity
CPU
Data Type Required NVMe memory Memory
Params/Grads 70 GB/s 70 GB/s 70 GB/s
Optimizer States 1500 GB/s
Activations 4 GB/s 1.75GB/s 4GB/s



Overlap-Centric Design

e Data movement flow Computing

. NVMe -> CPU
. CPU -> GPU
. GPU <> GPU (all gather) Prefetching

 Prefetch required data before
consumption

. While executing ith operator, fetchi+1,i+2 ...

Prefetching

~_

NVME

Overlapped layer prefetching during forward pass



Ease Inspired Implementation

* Automatic Data Movement

* Auto registration of all parameters
* Intercepting parameter access to automate communication

* Automatic Model Partitioning during Initialization
* Initializing models that are larger than GPU/CPU memory
e Automatically partitioning parmaeters as they are created



Evaluation



Massive model scale
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Excellent Efficiency
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Super-linear Scalability
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Democratizing Large Model Training

Data Parallel |14

ZeRO Offload 13

ZeRO Stage 3 20

3D Parallelism 20

ZeRO-Infinity (CPU) 70

ZeRO-Infinity (NVMe)
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Impact of System Features on Performance

* Prefetching and Overlapping
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Large model training landscape today
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Redefining the landscape
with ZeRO-Infinity

Beyond GPU Memory

50x larger models
32T params on 512 GPUs (instead of 25K)

Broader access to large model training

GPT-3 sized fine-tuning on a single
node/GPU (instead of 16 nodes)

Excellent Throughput and Scalability

* Comparable to 3D-parallelism
Ease of Use

No model refactoring necessary
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Plus and Minus

e Clear analysis on BW requirement

. Clear illustration on why Offloading can achieve high
efficiency

* Leveraging huge NVMe room
. Much larger capacity for ML models

 Data placement

. Activation memory on CPU memory
. But other states, CPU becomes cache of NVMe
. Can have some pre knowledge of hotness of data



Discussion

* CPU by passing?
* NVMe->CPU->GPU
*  GPU direct accessing NVMe, greatly cutdown GPU fetching
time
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