ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning

Authors: Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He

Large model training landscape

- GPU Memory Wall
 - 1T (10T) params: 800 (8K) V100 GPUs
 - How do we support the growth in model size?
- Accessibility to large model training
 - 256 GPUs to fine-tune GPT-3
 - Limited access to such resources
- Model code refactoring
 - Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
 - Painful and error prone

Beyond the GPU Memory

- Modern clusters have heterogeneous memory systems.
- GPU memory comprises a small fraction
- Leverages GPU/CPU/NVMe memory
 - 32T params on 32 nodes
 - 1T params on a single node
- GPT-3 can be fine-tuned on a single node

Memory available on a Single DGX-2 Node

	GPU Mem	ory 🗖 C	PU Memo	ory 🗖 N	VMe Stora	age
0.5 1.5			28			
0	5	10	15	20	25	30
			Memory (TB)			

How to leverage non-GPU memory?

- Can we extend an existing parallel training technology to use CPU/NVMe memory?
- Data Parallelism : Replication causes memory explosion
- Tensor-Slicing: scaling challenge for multi-GPU
- Pipeline-Parallelism: Requires significant code refactoring
- What about Zero Redundancy Optimizer (ZeRO)?
 - Efficiently scale across nodes trillions of parameters
 - No model code refactoring necessary

ZeRO: Zero Redundancy Optimizer

- Memory efficient form of data parallelism
- Each GPU stores a mutually exclusive subset of the parameters
- Broadcast parameters from owner to all the GPUs as needed

Model States mapping in Data Parallel Training

Model States mapping in ZeRO Training

Zero Infinity Overview

- Infinity offload engine
 - Based on GPU memory,
 - Offload partitioned model states -> CPU/NVMe
 - Fetch back at time of needed
- Optimization: memory centric tiling
 - Breakdown large linear operator -> small sequential ones
 - Reduce required working memory

ZeRO with CPU/NVME Offload

Efficiency as a function of bandwidth

Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

Data Type	Overlap	Requirement
Params/Grads	Yes	70 GB/s
Optimizer States	No	1500 GB/s
Activations	Yes	1-4 GB/s

Overlap: prefetch data from CPU to GPU before computation. Need BW to achieve at least 50% efficiency.

ZeRO with CPU/NVME Offload

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.

GPUs	Data Type	Required
1024	Params/Grads	70 GB/s
1024	Optimizer States	1500 GB/s
1024	Activations	1-4 GB/s

ZeRO with non-GPU memory

- Is CPU/NVME ← → GPU bandwidth sufficient?
 - Params/grads: PCIe bottleneck 12 GB/s
 - Optimizer States: More than needed
 - Activations: CPU Memory bandwidth sufficient

Efficiency Design Choice

• Require 70GB/s

- GPU-GPU BW can satisfy
- But not PCIE's 12GB/s BW
- Zero-Offload, CPU-> owner GPU then broadcast
 - Require larger batch size
 - Activation memory too large for CPU memory
 - May not lead to effective convergence

BW-centric Partition

- Partition each parmaeter across GPUs
- Send from NVMe to GPU in parallel
- Bandwidth Increases linearly with devices
 - #gpus x host-to-device bandwidth
 - CPU -> GPU: 64 GB/s 4 TB/s (1-64 nodes)
 - NVMe -> GPU: 28 GB/s 1.8 TB/s (1-64 nodes)
- Limited by GPU $\leftarrow \rightarrow$ GPU bw
 - min (#gpus x host-device bw, gpu-gpu bw)
 - 70 GB/s

ZeRO Infinity

GPUs	Data Type	Required	NVMe memory	CPU Memory
1024	Params/Grads	70 GB/s	70 GB/s	70 GB/s
1024	Optimizer States	1500 GB/s	1792 GB/s	4096 GB/s
1024	Activations	4 GB/s	1.75GB/s	4GB/s

Overlap-Centric Design

- Data movement flow
 - NVMe -> CPU
 - CPU -> GPU
 - GPU <> GPU (all gather)
- Prefetch required data before consumption
 - While executing ith operator, fetch i + 1, i +2 ...

Overlapped layer prefetching during forward pass

Ease Inspired Implementation

- Automatic Data Movement
 - Auto registration of all parameters
 - Intercepting parameter access to automate communication
- Automatic Model Partitioning during Initialization
 - Initializing models that are larger than GPU/CPU memory
 - Automatically partitioning parmaeters as they are created

Evaluation

Massive model scale

Excellent Efficiency

Super-linear Scalability

Democratizing Large Model Training

Impact of System Features on Performance

• Prefetching and Overlapping

• Activation checkpoint offload

More effective for smaller batch sizes

Overhead is negligible for large hidden dims

Large model training landscape today

GPU Memory Wall

- 1T (10T) params: 800 (8K) V100 GPUs
- How do we support the growth in model size?
- Accessibility to large model training
 - 256 GPUs to fine-tune GPT-3
 - Limited access to such resources

Model code refactoring

- Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
- Painful and error prone

Redefining the landscape with ZeRO-Infinity

- Beyond GPU Memory
 - 50x larger models
 - 32T params on 512 GPUs (instead of 25K)
- Broader access to large model training
 - GPT-3 sized fine-tuning on a single node/GPU (instead of 16 nodes)
- Excellent Throughput and Scalability
 - Comparable to 3D-parallelism
- Ease of Use
 - No model refactoring necessary

Plus and Minus

- Clear analysis on BW requirement
 - Clear illustration on why Offloading can achieve high efficiency
- Leveraging huge NVMe room
 - Much larger capacity for ML models

• Data placement

- Activation memory on CPU memory
- But other states, CPU becomes cache of NVMe
- Can have some pre knowledge of hotness of data

Discussion

- CPU by passing?
 - NVMe -> CPU -> GPU
 - GPU direct accessing NVMe, greatly cutdown GPU fetching time