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Problem with finetuning?



QLoRA reduces the memory for finetuning by 15-20x!



QLoRA

● LoRA + Quantization
● LoRA

○ Method for finetuning
● Quantization

○ Reduce memory footprint



LoRA

● Instead of updating weights directly, we track changes
● Track weight changes in two separate, smaller matrices that get multiplied 

together to form a matrix that is the same size of the model’s weight matrix



LoRA



LoRA

● Matrix multiplication



LoRA

● Matrix decomposition



Matrix decomposition (rank 1)

LoRA



Matrix decomposition

LoRA



LoRA
# Total 
Paramete
rs

Full Matrix 
Dimensions

Parameters in 
Decomposed Matrices 
(Rank 1)

Relative 
Number of 
Values

25 5x5 10 40%

100 10x10 20 20%

2.5k 50x50 100 4%

1M 1k x 1k 2k 0.2%

13B 114k x 114k 228k 0.001%



Simple Implementation



Quantization

● INT4 example



Quantization Example: A non-standard 2-bit data type 

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
4. Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] ->

denormalize -> [10, 3, 5, 5]



Full Finetuning

● Finetuning cost per parameter:
● Weight: 16 bits

○ Weight gradient: 16 bit
○ Optimizer state: 64 bit
○ 12 bytes per parameter
○

70B model -> 840 GB of GPU memory -> 36x consumer GPUs



LoRA is not enough

● Finetuning cost per parameter:
● Weight: 16 bits

○ Weight gradient: ~0.4bit
○ Optimizer state: ~0.8bit
○ Adapter weights: ~0.4bit
○ 17.6 bits per parameter

70B model -> 154 GB of GPU memory -> 8x consumer GPU



QLoRA: 4 bit frozen model + low rank adapters

● Finetuning cost per parameter:
● Weight: 4 bits

○ Weight gradient: ~0.4bit
○ Optimizer state: ~0.8bit
○ Adapter weights: ~0.4bit
○ 5.2 bits per parameter

70B model -> 46 GB of GPU memory -> 2x consumer GPUs.



New datatype: 4-bit NormalFloat (NF4)



Second contribution: Double quantization



Page Optimizers (Unified memory)

● Manage memory by page transfers between CPU <-> GPU 
automatically (like os paging)

● High level
○ Bigger batch uses large GPU memory
○ Paging engine evicts optimizer state to CPU
○ During optimizer step, prefetch from CPU to GPU
○ Perform optimizer step



Evaluation

● MMLU (Massively Multitask Language Understanding)
○ Multiple choice benchmark

● Chatbots (ELO system)
● Trained Guanaco (finetuned on OASST1)



Default hyperparameters for LoRA do not work

● Rank does not matter
● Number of LoRA adapters

matter



4bit normal float works!



MMLU dataset (multiple choice reasoning)



Vicuna chatbot benchmark (tournament)



Vicuna chatbot benchmark



Tournament



Findings, Strengths and others

● Dataset suitably matters a lot
○ Some datasets affect quality of chatbots

● Strengths
○ Allow consumers to finetune LLMs on their own hardware 

even on phones
● Could this be applied to multimodal/MoE models and how 

well do they perform?



Questions about decisions

● Why did the authors decide on r = 16/64 for eval?
(could set r = 8)?



Conclusion

● Able to finetune large language models with way less 
memory
○ NF4 quantization
○ Double quantization
○ Page optimizers


