QLoRA: Efficient Finetuning
of Quantized LLMs

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman
L k ZttI my
University of Washington

Structure

e Motivation
e Background

o LoRA
o Quantization
e Method

o 4-bit NormalFloat
o Double quantization
o Page optimizers

e Results
e Thoughts

Problem with finetuning?

Model
T5-11B
Mistral-7B

LLaMA2-70B

Fine-tuning memory
132 GB
84 GB

840 GB

QLoRA reduces the memory for finetuning by 15-20x!

Model Fine-tuning memory
T5-11B 132 GB
Mistral-7B 84 GB
LLaMA2-70B 840 GB
* QLoRA *
Model Fine-tuning memory
T5-11B 6 GB
Mistral-7B | 5GB

LLaMA2-70B 46 GB

QLORA

e LoRA + Quantization
e [ORA
o Method for finetuning

e Quantization
o Reduce memory footprint

LoRA

e Instead of updating weights directly, we track changes
e Track weight changes in two separate, smaller matrices that get multiplied
together to form a matrix that is the same size of the model’s weight matrix

Regular finetuning LoRA weights, A and B, represent AW

Forward pass with Forward pass with
updated model weights updated model weights

Embeddlng h
/N /N

Pretrained Weight Pretrained “|
welghts update weights ~
¥ AR

LoRA

LoRA . Fine-tuned
Weight Changes Model Weights Model Weights

LoRA

e Matrix multiplication

511111314
1513 [-3]9 |12
35| 7 |-7 21|28
201 -4 | 4 |-12]-16
1022|1618

LoRA

e Matrix decomposition

1 511111314

3 1513 [-3]9 |12
7/ X 511113 |4 = 35| 7 |-7 21|28
-4 201 -4 | 4 |-12]-16
2 1022|1618

511111314
1513 (-39 (12
35| 7 |-7(21|28
20| -4 | 4 |-112|-16
1012|2618

LoRA

Matrix decomposition (rank 1)

LoRA
Matrix Multiplication Weight Changes

LoRA

Matrix decomposition

Higher Precision
Matrix Multiplication, Rank 2 Weight Changes

LoRA

Total
Paramete
rs

25

100

2.5k

™

13B

Full Matrix
Dimensions

5x5

10x10

50x50

Tk x 1k

114k x 114k

Parameters in
Decomposed Matrices
(Rank 1)

10

20

100

2k

228k

Relative
Number of
Values

40%

20%

4%

0.2%

0.001%

Simple Implementation

(torch.nn.Module):
(self, in_dim, out_dim, rank, alpha):
super().__init__()
std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
self.A = torch.nn.Parameter(torch.randn(in_dim, rank) * std_dev)
self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))

self.alpha = alpha

(self, x):
self.alpha * (x @ self.A @ self.B)

(torch.nn.Module):
(self, linear, rank, alpha):
super().__init__()
self.linear = linear

self.lora = LoRALayer(
linear.in_features, linear.out_features, rank, alpha
)

(self, x):
return self.linear(x) + self.lora(x)

Quantization

0.40 - — pdf
@ Quantization bins
e [NT4 example 0.35
0.30 -
0.25 -
z
€ 0.20
8 .

0.15 A

0.10 -

0.05 A1

Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}
Input tensor: [10, -3, 5, 4]

Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]

Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]

Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] ->
denormalize -> [10, 3, 5, 5]

LN~

Full Finetuning

e Finetuning cost per parameter:

e Weight: 16 bits N Adupters
o Weight gradient: 16 bit ~ gptimizer
o Optimizer state: 64 bit ~ “" []

12 bytes per parameter et l l l

O
O

/0B model -> 840 GB of GPU memory -> 36x consumer GPUs

LoRA is not enough

e Finetuning cost per parameter:

e Weight: 16 bits il Fineuin LoR
o Weight gradient: ~0.4bit ptimizer
o Optimizer state: ~0.8bit “" [] ???
o Adapter weights: ~0.4bit &eme l l l coc
o 17.6 bits per parameter
w1

/0B model -> 154 GB of GPU memory -> 8x consumer GPU

QLoRA: 4 bit frozen model + low rank adapters

e Finetuning cost per parameter:
e \Weight: 4 bits

O

O
O
O

Weight gradient: ~0.4bit
Optimizer state: ~0.8bit

Adapter weights: ~0.4bit
5.2 bits per parameter

Optimizer
State
(32 bit)

Adapters
(16 bit)

1999
| ||| 5¢%¢
1 T”T] 1 1 1]

16-bit Transformer

QLoRA
T N i
O O O«ppp.
| | | ‘boos
S o S |
e %

e
4-bit Transformer Paging Flow -

/0B model -> 46 GB of GPU memory -> 2x consumer GPUs.

4-bit NormalFloat (NF4)

New datatype

0.40

0.35

0.30

0.25

0.20

0.15

0.10 A

0.05

0.00

@l Quantization bins

— pdf

0.40 A

0.35

0.30 4

0.25 4

PSR

- 0.20 A

0.15 +

0.10 A

0.05

Z-score

Second contribution: Double quantization

Weight
16 bit
Quantized Absmax
weight .~ . constant
Quantize again
4bit | ==
0.5 bit

\

1x 32-bit value for every 64
parameters

Absmax
constant

0.5 bit

0.002-bit

™

0.125
bit

2nd
Absmax
constant

Quantized
absmax
constant

Page Optimizers (Unified memory)

e Manage memory by page transfers between CPU <-> GPU
automatically (like os paging)

e High level
o Bigger batch uses large GPU memory

Paging engine evicts optimizer state to CPU

O
O
O

Evaluation

e MMLU (Massively Multitask Language Understanding)
o Multiple choice benchmark

e Chatbots (ELO system)

e Trained Guanaco (finetuned on OASST1)

Default hyperparameters for LORA do not work

e Rank does not matter)
e Number of LORA adapters =]
matter 7
65.0 §’62
64.8 o 61
%64'6 * I l . 60
o bits
* 64.4] : o 4
64.2 | " O‘ZYV\\ nyéé &@&00
B 0\9 QYY \Q’O
64.0 i N v
8 16 32 64 MOdeI

LoRA r

4bit normal float works!

067 | 4-bit LLaMA S Table 3: Experiments comparing 16-bit BrainFloat (BF16), 8-bit Integer (Int8), 4-bit Float (FP4), and 4-
bit NormalFloat (NF4) on GLUE and Super-Naturallnstructions. QLORA replicates 16-bit LoRA and full-
5 066 gl finetuning.
§ 0.65 / - Dataset GLUE (Acc.) Super-Naturallnstructions (RougeL.)
3 064 /;/ Model RoBERTa-large T5-80M T5-250M T5-780M T5-3B T5-11B
g 0.63 1 4 BF16 88.6 40.1 42.1 48.0 54.3 62.0
£ ven BF16 replication 88.6 40.0 42.2 47.3 54.9 -
= 061 M ores i LoRA BF16 88.8 40.5 42.6 47.1 554 60.7
. —— NFloat QLORA Int8 88.8 40.4 42.9 454 56.5 60.7
060 ‘ i QLORA FP4 88.6 40 42 2 4 6 60,9
' Total model bits QLORA NF4 +DQ - 47.7 553 60.9

Figure 3: Mean ZerOjShOt accuracy over Wino- Table 4: Mean 5-shot MMLU test accuracy for LLaMA 7-65B models finetuned with adapters on Alpaca and
grande, HellaSwag, PiQA, Arc-Easy, and Arc- g AN v2 for different data types. Overall, NF4 with double quantization (DQ) matches BFloat16 performance,

Challenge using LLaMA models with different 4-bit 1o FP4 is consistently one percentage point behind both.
data types. The NormalFloat data type significantly Mean 5-shot MMLU A
ean 5-sho ccuracy

improves the bit-for-bit accuracy gains compared
to regular 4-bit Floats. While Double Quantization LLaMA Size 7B 13B 33B 65B Mean
(DQ) only leads to minor gains, it allows for a more Dataset Alpaca FLANvV2 Alpaca FLANvV2 Alpaca FLANv2 Alpaca FLAN v2

fine-grained control over the memory footprint to fit
.) . BFloat16 384 45.6 47.2 50.6 577 60.5 61.8 62.5 53.0
iocels of geftaifiize (SOB/6OB)ANI Corait GELS g 372 40 473 500 559 585 613 633 | 522

(24/48GB). NFloat4 +DQ 390 445 475 50.7 573 592 61.8 639 | 531

MMLU dataset (multiple choice reasoning)

Table 5: MMLU 5-shot test results for different
sizes of LLaMA finetuned on the corresponding

datasets using QLoRA.
Dataset 7B 13B 33B 65B
LLaMA no tuning 351 469 578 634
Self-Instruct 364 333 530 56.7
Longform 32.1 432 56.6 59.7
Chip2 345 41.6 53.6 5938
HH-RLHF 349 446 558 60.1

Unnatural Instruct 419 48.1 57.3 61.3
Guanaco (OASST1) 366 464 570 62.2

Alpaca . : . d
|FLAN v2 44, 1: 9.2 3.9

Vicuna chatbot benchmark (tournament)

Table 6: Zero-shot Vicuna benchmark scores as a percentage of the score obtained by ChatGPT evaluated by
GPT-4. We see that OASST1 models perform close to ChatGPT despite being trained on a very small dataset
and having a fraction of the memory requirement of baseline models.

Model / Dataset Params Model bits Memory ChatGPT vs Sys Sys vs ChatGPT Mean 95% CI

GPT-4 - - - 119.4% 110.1% 1145% 2.6%
Bard - - - 93.2% 96.4% 94.8% 4.1%
Guanaco 65B 4-bit 41 GB 96.7% 101.9% 99.3% 4.4%

paca -bIt 47GB 63.0% 7.9% 10.7% 4.3%
FLAN v2 65B 4-bit 41 GB 37.0% 59.6% 48.4% 4.6%
Guanaco 33B 4-bit 21 GB 96.5% 99.2% 97.8% 4.4%
Open Assistant 33B 16-bit 66 GB 91.2% 98.7% 94.9% 4.5%
Alpaca 33B 4-bit 21 GB 67.2% 79.7% 73.6% 4.2%
FLAN v2 33B 4-bit 21 GB 26.3% 49.7% 38.0% 3.9%
Vicuna 13B 16-bit 26 GB 91.2% 98.7% 94.9% 4.5%
Guanaco 13B 4-bit 10 GB 87.3% 93.4% 90.4% 5.2%
Alpaca 13B 4-bit 10 GB 63.8% 76.7% 69.4% 4.2%
HH-RLHF 13B 4-bit 10 GB 55.5% 69.1% 62.5% 4.7%
Unnatural Instr. 13B 4-bit 10 GB 50.6% 69.8% 60.5% 4.2%
Chip2 13B 4-bit 10 GB 49.2% 69.3% 59.5% 4.7%
Longform 13B 4-bit 10 GB 44.9% 62.0% 53.6% 5.2%
Self-Instruct 13B 4-bit 10 GB 38.0% 60.5% 49.1% 4.6%
FLAN v2 13B 4-bit 10 GB 32.4% 61.2% 47.0% 3.6%
Guanaco 7B 4-bit 5GB 84.1% 89.8% 87.0% 5.4%
Alpaca 7B 4-bit 5GB 57.3% 71.2% 64.4% 5.0%

FLAN v2 7B 4-bit 5GB 33.3% 56.1% 44.8% 4.0%

Vicuna chatbot benchmark

Table 6: Zero-shot Vicuna benchmark scores as a percentage of the score obtained by ChatGPT evaluated by
GPT-4. We see that OASST1 models perform close to ChatGPT despite being trained on a very small dataset
and having a fraction of the memory requirement of baseline models.

Model / Dataset Params Model bits Memory ChatGPT vs Sys Sys vs ChatGPT Mean 95% CI

GPT-4 - - - 119.4% 110.1% 1145% 2.6%
Bard - - - 93.2% 96.4% 948% 4.1%
Guanaco 65B 4-bit 41 GB 96.7% 101.9% 99.3% 4.4%
__Alpaca 65B 4-bit 41 GR 63.0% 77.9% 207% _43%
FLAN v2 65B 4-bit 41 GB 37.0% 59.6% 484% 4.6%
Guanaco 33B 4-bit 21 GB 96.5% 99.2% 97.8% 4.4%
Open Assistant ~ 33B 16-bit 66 GB 91.2% 98.7% 94.9% 4.5%
Alpaca 33B 4-bit 21 GB 67.2% 79.7% 73.6% 4.2%
FLAN v2 33B 4-bit 21 GB 26.3% 49.7% 38.0% 3.9%
Vicuna 13B 16-bit 26 GB 91.2% 98.7% 94.9% 4.5%
Guanaco 13B 4-bit 10 GB 87.3% 93.4% 90.4% 5.2%
Alpaca 13B 4-bit 10 GB 63.8% 76.7% 69.4% 4.2%
HH-RLHF 13B 4-bit 10 GB 55.5% 69.1% 62.5% 4.7%
Unnatural Instr. ~ 13B 4-bit 10 GB 50.6% 69.8% 60.5% 4.2%
Chip2 13B 4-bit 10 GB 49.2% 69.3% 59.5% 4.7%
Longform 13B 4-bit 10 GB 44.9% 62.0% 53.6% 5.2%
Self-Instruct 13B 4-bit 10 GB 38.0% 60.5% 49.1% 4.6%
FLAN v2 13B 4-bit 10 GB 32.4% 61.2% 47.0% 3.6%
Guanaco 7B 4-bit 5GB 84.1% 89.8% 87.0% 5.4%
Alpaca 7B 4-bit 5GB 57.3% 71.2% 64.4% 5.0%

FLAN v2 7B 4-bit 5GB 33.3% 56.1% 44.8% 4.0%

Tournament

Table 7: Elo rating for a tournament between models where models compete to generate the best response
for a prompt, judged by human raters or GPT-4. Overall, Guanaco 65B and 33B tend to be preferred to
ChatGPT-3.5 on the benchmarks studied. According to human raters they have a Each 10-point difference in Elo
is approximately a difference of 1.5% in win-rate.

Benchmark Vicuna Vicuna Open Assistant

Prompts 80 80 953

Judge Human raters GPT-4 GPT-4 Median Rank
Model Elo Rank Elo Rank Elo Rank

GPT-4 1176 1 1348 1 1294 1 1
Guanaco-65B 1023 2 1022 2 1008 3 2
Guanaco-33B 1009 4 992 3 1002 4 4
ChatGPT-3.5 Turbo 916 7 966 5 1015 2 5
Vicuna-13B 984 5 974 4 936 5 5
Guanaco-13B 975 6 913 6 885 6 6
Guanaco-7B 1010 3 879 8 860 7 7
Bard 909 8 902 7 - - 8

Findings, Strengths and others

e Dataset suitably matters a lot
o Some datasets affect quality of chatbots
e Strengths
o Allow consumers to finetune LLMs on their own hardware
even on phones
e Could this be applied to multimodal/MoE models and how
well do they perform?

Questions about decisions

e \Why did the authors decide on r = 16/64 for eval?
(could setr =8)7?

65.0
[]
64.8 S
%%
1 64.6
(O]
[®)) []
= p
o bits
[] []
< 64.4) 2 . o 4
64.2 : o
[]
[]
L4 °
64.0 2 B
8

16
LoRA r

32 64

Conclusion

e Able to finetune large language models with way less
memory
o NF4 quantization
o Double quantization
o Page optimizers

