
QLoRA: Efficient Finetuning
of Quantized LLMs

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman,
Luke Zettlemoyer

University of Washington

Structure

● Motivation
● Background

○ LoRA
○ Quantization

● Method
○ 4-bit NormalFloat
○ Double quantization
○ Page optimizers

● Results
● Thoughts

Problem with finetuning?

QLoRA reduces the memory for finetuning by 15-20x!

QLoRA

● LoRA + Quantization
● LoRA

○ Method for finetuning
● Quantization

○ Reduce memory footprint

LoRA

● Instead of updating weights directly, we track changes
● Track weight changes in two separate, smaller matrices that get multiplied

together to form a matrix that is the same size of the model’s weight matrix

LoRA

LoRA

● Matrix multiplication

LoRA

● Matrix decomposition

Matrix decomposition (rank 1)

LoRA

Matrix decomposition

LoRA

LoRA
Total
Paramete
rs

Full Matrix
Dimensions

Parameters in
Decomposed Matrices
(Rank 1)

Relative
Number of
Values

25 5x5 10 40%

100 10x10 20 20%

2.5k 50x50 100 4%

1M 1k x 1k 2k 0.2%

13B 114k x 114k 228k 0.001%

Simple Implementation

Quantization

● INT4 example

Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
4. Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] ->

denormalize -> [10, 3, 5, 5]

Full Finetuning

● Finetuning cost per parameter:
● Weight: 16 bits

○ Weight gradient: 16 bit
○ Optimizer state: 64 bit
○ 12 bytes per parameter
○

70B model -> 840 GB of GPU memory -> 36x consumer GPUs

LoRA is not enough

● Finetuning cost per parameter:
● Weight: 16 bits

○ Weight gradient: ~0.4bit
○ Optimizer state: ~0.8bit
○ Adapter weights: ~0.4bit
○ 17.6 bits per parameter

70B model -> 154 GB of GPU memory -> 8x consumer GPU

QLoRA: 4 bit frozen model + low rank adapters

● Finetuning cost per parameter:
● Weight: 4 bits

○ Weight gradient: ~0.4bit
○ Optimizer state: ~0.8bit
○ Adapter weights: ~0.4bit
○ 5.2 bits per parameter

70B model -> 46 GB of GPU memory -> 2x consumer GPUs.

New datatype: 4-bit NormalFloat (NF4)

Second contribution: Double quantization

Page Optimizers (Unified memory)

● Manage memory by page transfers between CPU <-> GPU
automatically (like os paging)

● High level
○ Bigger batch uses large GPU memory
○ Paging engine evicts optimizer state to CPU
○ During optimizer step, prefetch from CPU to GPU
○ Perform optimizer step

Evaluation

● MMLU (Massively Multitask Language Understanding)
○ Multiple choice benchmark

● Chatbots (ELO system)
● Trained Guanaco (finetuned on OASST1)

Default hyperparameters for LoRA do not work

● Rank does not matter
● Number of LoRA adapters

matter

4bit normal float works!

MMLU dataset (multiple choice reasoning)

Vicuna chatbot benchmark (tournament)

Vicuna chatbot benchmark

Tournament

Findings, Strengths and others

● Dataset suitably matters a lot
○ Some datasets affect quality of chatbots

● Strengths
○ Allow consumers to finetune LLMs on their own hardware

even on phones
● Could this be applied to multimodal/MoE models and how

well do they perform?

Questions about decisions

● Why did the authors decide on r = 16/64 for eval?
(could set r = 8)?

Conclusion

● Able to finetune large language models with way less
memory
○ NF4 quantization
○ Double quantization
○ Page optimizers

