QLoRA: Efficient Finetuning of Quantized LLMs

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer University of Washington

Structure

- Motivation
- Background
 - LoRA
 - Quantization
- Method
 - 4-bit NormalFloat
 - Double quantization
 - Page optimizers
- Results
- Thoughts

Problem with finetuning?

Model	Fine-tuning memory
T5-11B	132 GB
Mistral-7B	84 GB
LLaMA2-70B	840 GB

QLoRA reduces the memory for finetuning by 15-20x!

100.05					
132 GB					
84 GB					
840 GB					
QLoRA					
Fine-tuning memory					
6 GB					
5 GB					
46 GB					
	84 GB 840 GB QLoRA Fine-tuning memory 6 GB 5 GB 46 GB				

QLoRA

- LoRA + Quantization
- LoRA
 - Method for finetuning
- Quantization
 - Reduce memory footprint

- Instead of updating weights directly, we track changes
- Track weight changes in two separate, smaller matrices that get multiplied together to form a matrix that is the same size of the model's weight matrix

• Matrix multiplication

Х

5

=

5	1	-1	3	4
15	3	-3	9	12
35	7	-7	21	28
-20	-4	4	-12	-16
10	2	-2	6	8

Matrix decomposition

=

4

	a	· · · · · · · · · · · · · · · · · · ·		
5	1	-1	3	4
15	3	-3	9	12
35	7	-7	21	28
-20	-4	4	-12	-16
10	2	-2	6	8

5	1	-1	3	4
15	3	-3	9	12
35	7	-7	21	28
-20	-4	4	-12	-16
10	2	-2	6	8

? ? Х ?

?

? ? ? ? ?

?

=

Matrix decomposition (rank 1)

LoRA Weight Changes

Matrix decomposition

Matrix Multiplication, Rank 2

Ξ

Higher Precision Weight Changes

# Total Paramete rs	Full Matrix Dimensions	Parameters in Decomposed Matrices (Rank 1)	Relative Number of Values
25	5x5	10	40%
100	10x10	20	20%
2.5k	50x50	100	4%
1M	1k x 1k	2k	0.2%
13B	114k x 114k	228k	0.001%

Simple Implementation

```
class LoRALayer(torch.nn.Module):
 def ______(self, in_dim, out_dim, rank, alpha):
     super()._____init___()
     std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
     self.A = torch.nn.Parameter(torch.randn(in_dim, rank) * std_dev)
     self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
     self.alpha = alpha
 def forward(self, x):
     x = self.alpha * (x @ self.A @ self.B)
     return x
```

Quantization

• INT4 example

Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

- 1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
- 2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
- 3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
- Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] -> denormalize -> [10, 3, 5, 5]

Full Finetuning

- Finetuning cost per parameter:
- Weight: 16 bits

Ο

- Weight gradient: 16 bit
- Optimizer state: 64 bit
- 12 bytes per parameter

70B model -> 840 GB of GPU memory -> 36x consumer GPUs

LoRA is not enough

- Finetuning cost per parameter:
- Weight: 16 bits
 - Weight gradient: ~0.4bit
 - Optimizer state: ~0.8bit
 - Adapter weights: ~0.4bit
 - 17.6 bits per parameter

70B model -> 154 GB of GPU memory -> 8x consumer GPU

QLoRA: 4 bit frozen model + low rank adapters

- Finetuning cost per parameter:
- Weight: 4 bits
 - Weight gradient: ~0.4bit
 - Optimizer state: ~0.8bit
 - Adapter weights: ~0.4bit
 - 5.2 bits per parameter

70B model -> 46 GB of GPU memory -> 2x consumer GPUs.

New datatype: 4-bit NormalFloat (NF4)

Second contribution: Double quantization

Page Optimizers (Unified memory)

- Manage memory by page transfers between CPU <-> GPU automatically (like os paging)
- High level
 - Bigger batch uses large GPU memory
 - Paging engine evicts optimizer state to CPU
 - During optimizer step, prefetch from CPU to GPU
 - Perform optimizer step

Evaluation

- MMLU (Massively Multitask Language Understanding)
 Multiple choice benchmark
- Chatbots (ELO system)
- Trained Guanaco (finetuned on OASST1)

Default hyperparameters for LoRA do not work

- Rank does not matter
- Number of LoRA adapters matter

4bit normal float works!

Table 3: Experiments comparing 16-bit BrainFloat (BF16), 8-bit Integer (Int8), 4-bit Float (FP4), and 4-bit NormalFloat (NF4) on GLUE and Super-NaturalInstructions. QLORA replicates 16-bit LoRA and full-finetuning.

GLUE (Acc.) RoBERTa-large	S T5-80M	Super-Natura	IInstructions	(RougeL)) T5-11B
Roberta-large	13-00101	15-250101	13-700141	15-50	1 J -11 D
88.6	40.1	42.1	48.0	54.3	62.0
88.6	40.0	42.2	47.3	54.9	-
88.8	40.5	42.6	47.1	55.4	60.7
88.8	40.4	42.9	45.4	56.5	60.7
88.6	40.3	42.4	47.5	55.6	60.9
-	40.4	42.7	47.7	55.3	60.9
	GLUE (Acc.) RoBERTa-large 88.6 88.6 88.8 88.8 88.8 88.6 -	GLUE (Acc.) S RoBERTa-large T5-80M 88.6 40.1 88.6 40.1 88.6 40.2 88.8 40.5 88.8 40.4 88.6 40.3 40.4 40.4	GLUE (Acc.) Super-Natura RoBERTa-large T5-80M T5-250M 88.6 40.1 42.1 88.6 40.0 42.2 88.8 40.5 42.6 88.8 40.4 42.9 88.6 40.3 42.4 40.4 42.9 42.4 40.4 42.7 40.4	GLUE (Acc.) Super-Natural Instructions RoBERTa-large T5-80M T5-250M T5-780M 88.6 40.1 42.1 48.0 88.6 40.0 42.2 47.3 88.8 40.5 42.6 47.1 88.8 40.4 42.9 45.4 88.6 40.3 42.4 47.5 40.4 42.7 47.7	GLUE (Acc.) Super-NaturalInstructions (RougeL) RoBERTa-large T5-80M T5-250M T5-780M T5-3B 88.6 40.1 42.1 48.0 54.3 88.6 40.0 42.2 47.3 54.9 88.8 40.5 42.6 47.1 55.4 88.8 40.4 42.9 45.4 56.5 88.6 40.3 42.4 47.5 55.6 40.4 42.7 47.7 55.3

Figure 3: Mean zero-shot accuracy over Winogrande, HellaSwag, PiQA, Arc-Easy, and Arc-Challenge using LLaMA models with different 4-bit data types. The NormalFloat data type significantly improves the bit-for-bit accuracy gains compared to regular 4-bit Floats. While Double Quantization (DQ) only leads to minor gains, it allows for a more fine-grained control over the memory footprint to fit models of certain size (33B/65B) into certain GPUs (24/48GB).

Table 4: Mean 5-shot MMLU test accuracy for LLaMA 7-65B models finetuned with adapters on Alpaca and FLAN v2 for different data types. Overall, NF4 with double quantization (DQ) matches BFloat16 performance, while FP4 is consistently one percentage point behind both.

	Mean 5-shot MMLU Accuracy								
LLaMA Size	2	7B	1	13B	3	33B	6	5B	Mean
Dataset	Alpaca	FLAN v2	Alpaca	FLAN v2	Alpaca	FLAN v2	Alpaca	FLAN v2	
BFloat16	38.4	45.6	47.2	50.6	57.7	60.5	61.8	62.5	53.0
Float4	37.2	44.0	47.3	50.0	55.9	58.5	61.3	63.3	52.2
NFloat4 + DQ	39.0	44.5	47.5	50.7	57.3	59.2	61.8	63.9	53.1

MMLU dataset (multiple choice reasoning)

Table 5: MMLU 5-shot test results for differentsizes of LLaMA finetuned on the correspondingdatasets using QLoRA.

Dataset	7B	13 B	33B	65B
LLaMA no tuning	35.1	46.9	57.8	63.4
Self-Instruct	36.4	33.3	53.0	56.7
Longform	32.1	43.2	56.6	59.7
Chip2	34.5	41.6	53.6	59.8
HH-RLHF	34.9	44.6	55.8	60.1
Unnatural Instruct	41.9	48.1	57.3	61.3
Guanaco (OASST1)	36.6	46.4	57.0	62.2
Alpaca	38.8	47.8	57.3	62.5
FLAN v2	44.5	51.4	59.2	63.9

Vicuna chatbot benchmark (tournament)

Table 6: Zero-shot Vicuna benchmark scores as a percentage of the score obtained by ChatGPT evaluated by GPT-4. We see that OASST1 models perform close to ChatGPT despite being trained on a very small dataset and having a fraction of the memory requirement of baseline models.

Model / Dataset	Params	Model bits	Memory	ChatGPT vs Sys	Sys vs ChatGPT	Mean	95% CI
GPT-4	-	-	_	119.4%	110.1%	114.5%	2.6%
Bard	-	-	-	93.2%	96.4%	94.8%	4.1%
Guanaco	65B	4-bit	41 GB	96.7%	101.9%	99.3 %	4.4%
Alpaca	02R	4-b1t	41 GB	63.0%	11.9%	/0./%	4.3%
FLAN v2	65B	4-bit	41 GB	37.0%	59.6%	48.4%	4.6%
Guanaco	33B	4-bit	21 GB	96.5%	99.2%	97.8 %	4.4%
Open Assistant	33B	16-bit	66 GB	91.2%	98.7%	94.9%	4.5%
Alpaca	33B	4-bit	21 GB	67.2%	79.7%	73.6%	4.2%
FLAN v2	33B	4-bit	21 GB	26.3%	49.7%	38.0%	3.9%
Vicuna	13B	16-bit	26 GB	91.2%	98.7%	94.9 %	4.5%
Guanaco	13 B	4-bit	10 GB	87.3%	93.4%	90.4%	5.2%
Alpaca	13 B	4-bit	10 GB	63.8%	76.7%	69.4%	4.2%
HH-RLHF	13 B	4-bit	10 GB	55.5%	69.1%	62.5%	4.7%
Unnatural Instr.	13 B	4-bit	10 GB	50.6%	69.8%	60.5%	4.2%
Chip2	13B	4-bit	10 GB	49.2%	69.3%	59.5%	4.7%
Longform	13 B	4-bit	10 GB	44.9%	62.0%	53.6%	5.2%
Self-Instruct	13 B	4-bit	10 GB	38.0%	60.5%	49.1%	4.6%
FLAN v2	13 B	4-bit	10 GB	32.4%	61.2%	47.0%	3.6%
Guanaco	7B	4-bit	5 GB	84.1%	89.8%	87.0 %	5.4%
Alpaca	7B	4-bit	5 GB	57.3%	71.2%	64.4%	5.0%
FLAN v2	7B	4-bit	5 GB	33.3%	56.1%	44.8%	4.0%

Vicuna chatbot benchmark

Table 6: Zero-shot Vicuna benchmark scores as a percentage of the score obtained by ChatGPT evaluated by GPT-4. We see that OASST1 models perform close to ChatGPT despite being trained on a very small dataset and having a fraction of the memory requirement of baseline models.

Model / Dataset	Params	Model bits	Memory	ChatGPT vs Sys	Sys vs ChatGPT	Mean	95% CI
GPT-4	-	-	-	119.4%	110.1%	114.5%	2.6%
Bard	-	-	-	93.2%	96.4%	94.8%	4.1%
Guanaco	65B	4-bit	41 GB	96.7%	101.9%	99.3%	4.4%
Alpaca	65B	4-bit	41 GB	63.0%	77.9%	70.7%	4.3%
FLAN v2	65B	4-bit	41 GB	37.0%	59.6%	48.4%	4.6%
Guanaco	33B	4-bit	21 GB	96.5%	99.2%	97.8 %	4.4%
Open Assistant	33B	16-bit	66 GB	91.2%	98.7%	94.9%	4.5%
Alpaca	33B	4-bit	21 GB	67.2%	79.7%	73.6%	4.2%
FLAN v2	33B	4-bit	21 GB	26.3%	49.7%	38.0%	3.9%
Vicuna	13B	16-bit	26 GB	91.2%	98.7%	94.9 %	4.5%
Guanaco	13 B	4-bit	10 GB	87.3%	93.4%	90.4%	5.2%
Alpaca	13 B	4-bit	10 GB	63.8%	76.7%	69.4%	4.2%
HĤ-RLHF	13 B	4-bit	10 GB	55.5%	69.1%	62.5%	4.7%
Unnatural Instr.	13 B	4-bit	10 GB	50.6%	69.8%	60.5%	4.2%
Chip2	13 B	4-bit	10 GB	49.2%	69.3%	59.5%	4.7%
Longform	13 B	4-bit	10 GB	44.9%	62.0%	53.6%	5.2%
Self-Instruct	13 B	4-bit	10 GB	38.0%	60.5%	49.1%	4.6%
FLAN v2	13 B	4-bit	10 GB	32.4%	61.2%	47.0%	3.6%
Guanaco	7B	4-bit	5 GB	84.1%	89.8%	87.0 %	5.4%
Alpaca	7B	4-bit	5 GB	57.3%	71.2%	64.4%	5.0%
FLAN v2	7B	4-bit	5 GB	33.3%	56.1%	44.8%	4.0%

Tournament

Table 7: Elo rating for a tournament between models where models compete to generate the best response for a prompt, judged by human raters or GPT-4. Overall, Guanaco 65B and 33B tend to be preferred to ChatGPT-3.5 on the benchmarks studied. According to human raters they have a Each 10-point difference in Elo is approximately a difference of 1.5% in win-rate.

Benchmark # Prompts Judge	Vicuna 80 Human raters		VicunaVicunaOpen Assistan8080953Iman ratersGPT-4GPT-4		Vicuna 80 GPT-4		Assistant 53 PT-4	Median Rank
Model	Elo	Rank	Elo	Rank	Elo	Rank		
GPT-4	1176	1	1348	1	1294	1	1	
Guanaco-65B	1023	2	1022	2	1008	3	2	
Guanaco-33B	1009	4	992	3	1002	4	4	
ChatGPT-3.5 Turbo	916	7	966	5	1015	2	5	
Vicuna-13B	984	5	974	4	936	5	5	
Guanaco-13B	975	6	913	6	885	6	6	
Guanaco-7B	1010	3	879	8	860	7	7	
Bard	909	8	902	7	-	-	8	

Findings, Strengths and others

- Dataset suitably matters a lot
 - Some datasets affect quality of chatbots
- Strengths
 - Allow consumers to finetune LLMs on their own hardware even on phones
- Could this be applied to multimodal/MoE models and how well do they perform?

Questions about decisions

 Why did the authors decide on r = 16/64 for eval? (could set r = 8)?

Conclusion

- Able to finetune large language models with way less memory
 - NF4 quantization
 - Double quantization
 - Page optimizers