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Some Background



Trends in Model Sizes



Costs of Serving Models

GPT3 175B instance requires ~$476,491.44/year

When companies serve many consumers in concurrent (1000 not implausible), it will 
cost $476M/year!

I’m terrified to look at how much OpenAI spends, just serving GPT for free.



We have to bring 
costs down!



Prior Work/Architecture



Model Serving Architecture

Inference Server:
- Triton Inference Server
- TensorFlow Serving
- TorchServe

Commodity, highly available 
hardware.

Execution Engine:
- FasterTransformer
- DeepSpeed
- Megatron-LM

 Specialized hardware.
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Inference Server <-> Engine Communication

Server pushes batches of requests (“prompts”) to the engine to exploit GPU 
parallelism.

The engine executes every request, but has to wait until every request in the batch 
reaches EOS.

Only then are the predictions returned to the inference server, and consequently to 
the user.



Request x2 will cause useless computation

and has more latency than needed. 



Key Point: Execution Granularity

Transformer-based models are autoregressive in manner (require multiple iterations 
building on previous output).

Can we do something better?

Instead of scheduling jobs at the batch/request level, can we schedule them at the 
transformer iteration level?



Iteration-Level scheduling

ORCA Scheduler:

1) Selects requests from pool to run 
next.

2) Invokes the engine to execute just 
one iteration of those requests.

3) Receives results for that iteration.



Scheduling Algorithm

Key details:

- First-come-first-served between requests.
- Has to be aware of remaining attention K/V slots.

Otherwise relatively intuitive scheduling algorithm.



(Not very interesting) System Architecture

- Split model parameters/computations across 
multiple GPUs and machines.

- Similar to FasterTransformer.



Added Benefit: Pipeline Parallelism

ORCA utilizes intra-layer and inter-layer parallelism (not 
very different from FasterTransformer).

- Each worker is responsible for an inter-layer partition 
of model.

FasterTransformer+Triton have to wait for A and B to finish 
on all three partitions before moving on.

ORCA is free from this due to iteration-level scheduling.



Problems with Iteration-Level Scheduling



Request Phases

1) Initiation Phase
- First request to transformer, giving only user input.

- Implemented as a single iteration, processing all input tokens in parallel, generate next token.

2) Iteration Phase
- Process single token generated from previous iteration.
- Use attention K/V of all previous tokens.

Usually save attention K/V to avoid recomputation.



Problems with Iteration-Level Scheduling

To exploit parallelism with batching, all requests need to have the same number of 
tokens processed.

This is because the Attention mechanism requires input tensors to have the same 
shape (which is based on the number of processed tokens).

Need to Coalesce B * [L, H] tensors into [B, L, H] tensor for batching.

B -> batch size, L -> input length, H -> hidden size.



When can’t requests be batched together?

Requests cannot be batched together when:

1) Both requests are in the initiation phase and have a different number of 
tokens.

- Length not equal.
2) Both requests are in the incremental phase but are processing tokens at 

different indexes.
- Attention Keys/Values have different shape.

3) Both requests are in different phases (one initiation, one incremental).
- Initiation phase processes all tokens in parallel, incremental just one. 



Solution: Selective Batching

Instead of batching all tensor operations, only batch the ones you can.

Flatten input tensors into 2-D tensor of shape [∑L, H], and feed into non-Attention 
operations (Linear, LayerNorm, Add, GeLU).

For Attention operations, split flattened tensor 
into individual requests and run Attention 
operation separately. Once completed, merge 
requests back.

Attention K/V manager provides Keys/Values 
separately for each request.



Implementation & Evaluation



Implementation

- 13K lines of C++, based on CUDA.
- gRPC for Control Plane<->Engine, NCCL for Data Plane.
- Implemented fused kernels for LayerNorm, Attention, and GeLU.

- Also fused kernels of split attention operators by concatenating all thread blocks of the kernels 
for different requests.



Evaluation

Experiments ran on 8 NVIDIA 40GB A100 GPUs connected over NVLink.

Tested on GPT-3 Models, parameter sizes of 13B, 101B, 175B, and 341B.

Baseline: Triton Inference Server + FasterTransformer.

Tested on synthesized trace where each request is randomly generated by 
sampling the number of input tokens and a max_gen_tokens attribute.



Per-Request Scheduling

No iteration-level scheduling, just batched requests with ORCA vs FastTransformer.



End-to-End Performance

orca(x) or ft(x) represents running orca/ft with max batch size x.

ft(x,y) represents FastTransformer with max batch size x and microbatch size y.



My Final Thoughts

- Overall excellent innovations - seems like a no-brainer.
- Authors evaluated on randomly generated traces. It’s unclear how far from 

random real LLM requests tend to be. In other words, what is the distribution of 
sizes for real requests and does that influence system characteristics?

- ORCA Attention K/V manager seems to cache request K/V values until the 
scheduler tells it to destroy, as opposed to FastTransformer/request-level 
where they can be destroyed immediately after the tokens return. What impact 
does this have on memory?



Thank you!



Extra Slides



Varying Batch Size


