
ORCA: A Distributed Serving
System for Transformer-Based
Generative Models

Presented by Aditya Prerepa

Some Background

Trends in Model Sizes

Costs of Serving Models

GPT3 175B instance requires ~$476,491.44/year

When companies serve many consumers in concurrent (1000 not implausible), it will
cost $476M/year!

I’m terrified to look at how much OpenAI spends, just serving GPT for free.

We have to bring
costs down!

Prior Work/Architecture

Model Serving Architecture

Inference Server:
- Triton Inference Server
- TensorFlow Serving
- TorchServe

Commodity, highly available
hardware.

Execution Engine:
- FasterTransformer
- DeepSpeed
- Megatron-LM

 Specialized hardware.

Inference
requests

Schedule
Execution

Execution
Results

Inference
responses

Inference Server <-> Engine Communication

Server pushes batches of requests (“prompts”) to the engine to exploit GPU
parallelism.

The engine executes every request, but has to wait until every request in the batch
reaches EOS.

Only then are the predictions returned to the inference server, and consequently to
the user.

Request x2 will cause useless computation

and has more latency than needed.

Key Point: Execution Granularity

Transformer-based models are autoregressive in manner (require multiple iterations
building on previous output).

Can we do something better?

Instead of scheduling jobs at the batch/request level, can we schedule them at the
transformer iteration level?

Iteration-Level scheduling

ORCA Scheduler:

1) Selects requests from pool to run
next.

2) Invokes the engine to execute just
one iteration of those requests.

3) Receives results for that iteration.

Scheduling Algorithm

Key details:

- First-come-first-served between requests.
- Has to be aware of remaining attention K/V slots.

Otherwise relatively intuitive scheduling algorithm.

(Not very interesting) System Architecture

- Split model parameters/computations across
multiple GPUs and machines.

- Similar to FasterTransformer.

Added Benefit: Pipeline Parallelism

ORCA utilizes intra-layer and inter-layer parallelism (not
very different from FasterTransformer).

- Each worker is responsible for an inter-layer partition
of model.

FasterTransformer+Triton have to wait for A and B to finish
on all three partitions before moving on.

ORCA is free from this due to iteration-level scheduling.

Problems with Iteration-Level Scheduling

Request Phases

1) Initiation Phase
- First request to transformer, giving only user input.

- Implemented as a single iteration, processing all input tokens in parallel, generate next token.

2) Iteration Phase
- Process single token generated from previous iteration.
- Use attention K/V of all previous tokens.

Usually save attention K/V to avoid recomputation.

Problems with Iteration-Level Scheduling

To exploit parallelism with batching, all requests need to have the same number of
tokens processed.

This is because the Attention mechanism requires input tensors to have the same
shape (which is based on the number of processed tokens).

Need to Coalesce B * [L, H] tensors into [B, L, H] tensor for batching.

B -> batch size, L -> input length, H -> hidden size.

When can’t requests be batched together?

Requests cannot be batched together when:

1) Both requests are in the initiation phase and have a different number of
tokens.

- Length not equal.
2) Both requests are in the incremental phase but are processing tokens at

different indexes.
- Attention Keys/Values have different shape.

3) Both requests are in different phases (one initiation, one incremental).
- Initiation phase processes all tokens in parallel, incremental just one.

Solution: Selective Batching

Instead of batching all tensor operations, only batch the ones you can.

Flatten input tensors into 2-D tensor of shape [∑L, H], and feed into non-Attention
operations (Linear, LayerNorm, Add, GeLU).

For Attention operations, split flattened tensor
into individual requests and run Attention
operation separately. Once completed, merge
requests back.

Attention K/V manager provides Keys/Values
separately for each request.

Implementation & Evaluation

Implementation

- 13K lines of C++, based on CUDA.
- gRPC for Control Plane<->Engine, NCCL for Data Plane.
- Implemented fused kernels for LayerNorm, Attention, and GeLU.

- Also fused kernels of split attention operators by concatenating all thread blocks of the kernels
for different requests.

Evaluation

Experiments ran on 8 NVIDIA 40GB A100 GPUs connected over NVLink.

Tested on GPT-3 Models, parameter sizes of 13B, 101B, 175B, and 341B.

Baseline: Triton Inference Server + FasterTransformer.

Tested on synthesized trace where each request is randomly generated by
sampling the number of input tokens and a max_gen_tokens attribute.

Per-Request Scheduling

No iteration-level scheduling, just batched requests with ORCA vs FastTransformer.

End-to-End Performance

orca(x) or ft(x) represents running orca/ft with max batch size x.

ft(x,y) represents FastTransformer with max batch size x and microbatch size y.

My Final Thoughts

- Overall excellent innovations - seems like a no-brainer.
- Authors evaluated on randomly generated traces. It’s unclear how far from

random real LLM requests tend to be. In other words, what is the distribution of
sizes for real requests and does that influence system characteristics?

- ORCA Attention K/V manager seems to cache request K/V values until the
scheduler tells it to destroy, as opposed to FastTransformer/request-level
where they can be destroyed immediately after the tokens return. What impact
does this have on memory?

Thank you!

Extra Slides

Varying Batch Size

