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Introduction to State Space Models (SSM)

e Reference: Modeling Sequences with Structured State Space

e Oiriginated from state space methods in control theory
o Input: 1-dimensional function or sequence x(t)
o Maintain latent state h(t) following

State equation h'(t) = Ah(t) + BX(t) X Bl lr‘ @-}y

1B —1hl
Output equation y(t) = Ch(t) + DX(t) L@—

where A, B, C & D are projection matrices. Such an SSM is represented by (A, B, C).
D is often omitted as it is only a skip connection.

skip connection

o However, it is too general
m Inefficient to compute,O( NZL) operations & O( NL) space
m Struggle to remember long dependencies, similar to the vanishing/exploding gradient
problem of RNN



Structured State Space Models (S4)

e Discretization: for discrete inputs
o e.g.zero-order hold (ZOH)

A = exp(AA)

Discretized matrix A

B = (AA) (exp(AA)- I)- AB

where A is the step size of sampling.

Discretized matrix B

o Now, the discrete S_SM can be represented
as (A A, B,C),or (A, B, C)

Input Output
(sequence) Continuous SSM (sequence)
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state equation

hk = th,1 + EXK

e o o output equation e o o

¢ Yy, = Ch, ¢
Discrete SSM




Structured State Space Models (S4)

e Computation: Linear Time Invariant (LTI)
o Linear recurrence

state equation

hk = th,q = EXK

v efficient inference
X parallelizable training

output equation

Yy, = Ch,
o Global convolution
Kere o) |5
_ — — _k_ { {; 1 Muttiply
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emel — K = (CB, CAB, ..., CAB, ...) ,n(%m qbaaam';m ,:y rome .
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Structured State Space Models (S4)

e By imposing structure on matrix A, the system can be solved using efficient algorithms
o Popular choices: Diagonal, or High-order Polynomial Projection Operators (HiPPO)
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1/2 evervthi 0 0 0
ything below the
(2" * 1) (2k i 1) diagonal
1 o (0] «
Ank n - 1 the diagonal : 3 .
everything above the
0 diagonal ! g °

n

o HiPPO can reconstruct older signals, while keeping track of newer signals

Input Signal Reconstructed Signal

HiPPO

(compress and small degration
reconstruct signal of newer steps
information)
large degration T
of older steps H

0 1 2 3 4 0 1 2 3 4
Time t Time t

o 0( N2L) operations & O( NL) space -> O( N+ L) operations and O(N+ L) space
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Mamba: Selective SSM

e Motivation: Selection as a Means of Compression
o Selective Copying task

Input Output
Cats love playing with vyarn ™™ et | oem
verb verb prep.
o Induction Heads task
Input Output
Taskefiswer s with W
Q What is 1 + 1 ?
Example
A 7
Induction
. Head
pompt Q : What is 2 + 2 ? = 11

o LTl fails as the constant (A, B, C) cannot let them select the correct information.



Mamba: Selective SSM

e Efficient Implementation of Selective SSMs

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x : (B,L,D) Input: x : (B,L,D)
Output: y : (B,L,D) Output: y : (B,L,D)
1: A : (D,N) « Parameter 1: A : (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix

2: B : (D,N) « Parameter 2: B : (B,L,N) « sz(x)
3: C : (D,N) « Parameter 3: C: (B,L,N) « s0(x)
4: A : (D) « t(Parameter) 4: A : (B,L,D) « 7,(Parameter+s,(x))
5: A,B : (D,N) « discretize(A, A, B) 5: A,B : (B,L,D,N) « discretize(A, A, B)
6: y « SSM(A, B, C)(x) 6: y « SSM(A, B, C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: returny 7: returny

e Can no longer use convolution form



Mamba: Selective SSM

e Selective Scan: Dynamic Matrices + Parallel Scan

A A ESweep—down
B B B B g i
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Sequential computation O(n)

Parallel computation O(n/t)



Mamba: Selective SSM

e Hardware Awareness

copy copy copy COpY «——gjow!
DRAM SRAM DRAM SRAM DRAM

Initial tensors —» Calculation —» Write results —» Calculation —» Write results

copy copy

Y Y

DRAM SRAM SRAM DRAM

Initial tensors —»:Calculation 1—» Calculation 2; —>Wr|te results

kernel fusion

Keep state in
fast SRAM

o, 0 G-
Tﬂ |

Keep track of parameters
in DRAM




Mamba: Selective SSM E

e \Whole pipeline (S6)

| 5

Project

Sl Selection Mechanism



Mamba: Selective SSM

e Mamba Block Design

nput ELH () Mamba Block

® [ viaroe oo ]

s, projection "
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Experimental Results

Model Arch. Layer Acc. Induction Heads Extrapolation
1.0 o
S4 Nogate S4 18.3
_ No gate S6 97.0 0.8 - == MHA-Absolute
. MHA-RoPE
5 0.6 MHA-xPos
H3 H3 S4 57.0 g : —— H3
Hyena H3 Hyena 30.1 8 o4 —=— Hyena
< = Mamba
= H3 S6 99-7 = Random
_ Mamba S4 56.4 0.2 N e Train Length
. Mamba Hyena 28.4 00— T T—— T T P T ——T—T—T— T
Mamba Mamba S6 99.8 10 10° 10 108 10°
Test Sequence Length
Table 1: (Selective Copying.) Table 2: (Induction Heads.) Models are trained on sequence length
Accuracy for combinations of architectures 28 = 256, and tested on increasing sequence lengths of 26 = 64 up to

and inner sequence layers. 2?0 = 1048576. Full numbers in Table 11.



Experimental Results

I Scaling Laws on The Pile (Sequence Length 2048) - Scaling Laws on The Pile (Sequence Length 8192)
x x
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Figure 4: (Scaling Laws.) Models of size ~ 125M to ~ 1.3B parameters, trained on the Pile. Mamba scales better than all other
attention-free models and is the first to match the performance of a very strong “Transformer++” recipe that has now become
standard, particularly as the sequence length grows.



Experimental Results

Table 3: (Zero-shot Evaluations.) Best results for each size in bold. We compare against open source LMs with various tokenizers,
trained for up to 300B tokens. Pile refers to the validation split, comparing only against models trained on the same dataset and
tokenizer (GPT-NeoX-20B). For each model size, Mamba is best-in-class on every single evaluation result, and generally matches
baselines at twice the model size.

Model Token. Pile LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C  WinoGrande Average
ppl!l ppll acct acc? acct acct acct acct acc T
Hybrid H3-130M  GPT2 —_ 89.48 25.77 31.7 64.2 444 24.2 50.6 40.1
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 43.2 241 51.9 40.6
amba- €0. ; 16.07 433 35.3 64.5 480 243 51.9 a7 |
Hybrid H3-360M  GPT2 — 12.58 48.0 41.5 68.1 514 24.7 54.1 48.0
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 52.1 24.6 53.8 48.2
[Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0 |
Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 271 53.5 51.9
[Mamba-790M NeoX 733  6.02 62.7 55.1 721 612 295 561 571 |
GPT-Neo 1.3B GPT2 — 7.50 57.2 48.9 71.1 56.2 259 549 524
Hybrid H3-1.3B GPT2 —_ 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0
OPT-1.3B OPT —_ 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 294 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7 |
GPT-Neo 2.7B GPT2 —_ 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 — 7.92 55.7 59.7 733 65.6 323 61.4 58.0
OPT-2.7B OPT — 512 63.6 60.6 74.8 60.8 313 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 329 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 59.6
g 2 66.1 752 697 363 635 63.3 |
GPT-J-6B GPT2 - 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B OPT - 4.25 67.7 67.2 76.3 65.6 349 65.5 62.9
Pythia-6.9B NeoX 6.51 4.45 67.1 64.0 75.2 67.3 35.5 61.3 61.7

RWKV-7.4B NeoX 6.31 4.38 67.2 65.5 76.1 67.8 37.5 61.0 62.5




Experimental Results

Scaling Laws on the Human Genome (HG38)
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Figure 5: (DNA Scaling Laws.) Pretraining on the HG38 (human genome) dataset. (Left) Fixing short context length 21° = 1024
and increasing size from ~ 200K to ~ 40M parameters, Mamba scales better than baselines. (Right) Fixing model size and increasing
sequence lengths while keeping tokens/batch and total training tokens fixed. Unlike baselines, the selection mechanism of Mamba

facilitates better performance with increasing context length.



Experimental Results

Finetuning Accuracy (Species DNA Classification)
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: Mamba 7M
0.6 4 == Random
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°
b
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Sequence Length

Figure 6: (Great Apes DNA Classification.) Accuracy after
fine-tuning on sequences of length 21° = 1024 up to 2% =
1048576 using pretrained models of the same context length. Nu-
merical results in Table 13.
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Figure 7: (Audio Pretraining.) Mamba improves performance
over prior state-of-the-art (Sashimi) in autoregressive audio mod-
eling, while improving up to minute-long context or million-
length sequences (controlling for computation).



Experimental Results

Table 4: (SC09) Automated metrics for unconditional generation Table 5: (SC09 Model Ablations) Models with 6M parameters.
on a challenging dataset of fixed-length speech clips. (Top to In SaShiMi’s U-Net backbone, there are 8 center blocks operat-
Bottom) Autoregressive baselines, non-autoregressive baselines, ing on sequence length 1000, sandwiched on each side by 8 outer

Mambea, and dataset metrics. blocks on sequence length 4000, sandwiched by 8 outer blocks
on sequence length 16000 (40 blocks total). The architecture of
Model Params NLL| FID| ISt mIStT AM] the 8 center blocks are ablated independently of the rest. Note
SampleRNN  35.0M 2042 896 171 302 176 that Transformers (MHA+MLP) were not tested in the more im-
WaveNet 42M 1925  5.08 227 580 1.47 portant outer blocks because of efficiency constraints.
SaShiMi 5.8M 1.873 199 513 4257 074
WaveGAN 19IM - 203 490 3610 0.80 Outer Center NLL, FID} IST mIST AM/
DiffWave 241M - 192 526 5121  0.68
+SaShiMi  23.0M - 1.42 5.94 69.17 0.59 S4+MLP MHA+MLP 1.859 1.45 5.06 47.03 0.70
S4+MLP  S4+MLP 1.867 143 542 5354  0.65
Mamba 6.1IM 1852 094 626 8.54  0.52 S4+MLP  Mamba 1859 142 571 5651  0.64
Mamba 24.3M 1860  0.67 7.33 1449 036 Mamba MHA+MLP 1850  1.37 563 5823  0.62
, Mamba  S4+MLP 1853 107 605 7334 055
S - - ple ot e e Mamba  Mamba 1852 094 626 8854 052

Test - 2 0.02 833 2576 0.19




Experimental Results

Scan vs Convolution vs Attention time (A100 80GB PCle) Inference throughput on A100 80GB (prompt length 2048)
§ = FlashAttention-2 — ramh: 1'451 - el
s ranstormer 1.
1000 gE Convolution @ 1500 4 Mamba 6.9B s
] Scan (PyTorch) ; mmm  Transformer 6.7B
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Figure 8: (Efficiency Benchmarks.) (Left) Training: our efficient scan is 40X faster than a standard implementation. (Right)
Inference: as a recurrent model, Mamba can achieve 5X higher throughput than Transformers.



Experimental Results

Table 6: (Ablations: Architecture and SSM layer.) The Mamba block performs similarly to H3 while being simpler. In the
inner layer, there is little difference among different parameterizations of LTI models, while selective SSMs (S6) provide a large
improvement. More specifically, the S4 (real) variant is S4D-Real and the S4 (complex) variant is S4D-Lin.

Model Arch. SSM Layer Perplexity Model  Arch. SSM Layer Perplexity

Hyena H3 Hyena 10.24 - Mamba Hyena 10.75
H3 H3 S4 (complex) 10.30 - Mamba S4 (complex) 10.54
- H3 S4 (real) 10.34 - Mamba S4 (real) 10.56

- H3 S6 8.95 Mamba Mamba S6 8.69




Experimental Results

Table 7: (Ablations: Selective parameters.) A is the most im- Table 8: (Al')l.at'ion's: Par ameterizatiqn of A.) The more
portant parameter (Theorem 1), but using multiple selective pa- standard initializations based on S4D-Lin (Gu, Gupta, et al.
rameters together synergizes. 2022) perform worse than S4D-Real or a random initializa-

tion, when the SSM is selective.

Selective A  Selective B Selective C  Perplexity

A, Initialization Field Perplexity
X X X 10.93 -
X v X 10.15 A, = -+ ni Complex 9.16
X X 4 9.98 A, =-1/2 Real 8.85
4 X X 9.81 A, =—-(n+1) Real 8.71
v v v

8.71 A, ~exp(NV(0,1)) Real 8.71




Experimental Results

Table 9: (Ablations: Expressivity of A.)  Taple 10: (Ablations: SSM state dimension.) (Top) Constant B and C (Bottom)
The selection mechanism of A constructs  Selective B and C. Increasing the SSM state dimension N, which can be viewed as
it with a projection of the input. Project-  an expansion factor on the dimension of the recurrent state, can significantly improve
ing it even to dim. 1 provides a large in-  performance for a negligible cost in parameters/FLOPs, but only when B and C are

crease in performance; increasing it fur- )50 selective. Size of A projection fixed to 64.
ther provides further improvements at the

cost of a modest increase in parameters.
State size fixed to N = 16.

State dimension N Params (M) Perplexity

1 367.1 9.88
Size of A proj. Params (M) Perplexity 2 367.4 9.86

4 368.0 9.82
; 358.9 212 8 369.1 9.82
! 3591 8.97 16 371.5 9.81
2 339.3 8.97
4 359.7 8.91 1 367.1 9.73
8 360.5 8.83 2 367.4 9.40
16 362.1 8.84 4 368.0 9.09
32 365.2 8.80 8 369.1 8.84

64 371.5 8.71 16 371.5 8.71




Discussions

e Strength
o The paper introduces a key mechanism by parameterizing the SSM parameters based on the
input, allowing the model to filter out irrelevant information and remember relevant information
indefinitely.
o The results as compared to Pythia, and Transforms on many benchmarks are impressive.
o The paper is written in a clear and understandable manner, with a well-defined approach and
simple yet effective improvement strategies.

e \Weakness
o Might need a more concise experiment design to validate its capability as an alternative
backbone for LLMs.



Discussions

e Many works have explored this framework on distinctive modalities
Visual representation: Vision mamba, Vmamba, Localmamba, Hsimamba, ...
Biomedical image segmentation: U-mamba, Segmamba, Vm-unet, ...

Video representation: Videomamba

Motion generation: Motion mamba i,
Multimodality: VL-Mamba s
Checkout Awesome-Mamba-Papers on Github == 1
for more!
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Vision Mamba (Vim)

(b) Mamba Block

(c) The Vanilla VSS Block

(d) VSS Block




Discussions

However, it is rejected by g
ICLR 2024
TL;DR

(@]

Absence of results on Long e
Range Arena (LRA)

Evaluation using perplexity
Lack of evaluation on short
sequences

Paper Decision
Decision ,#" Program Chairs @@ 16 Jan 2024, 05:54 (modified: 16 Feb 2024, 14:40) ® Everyone [k Revisions

Decision: Reject

LR Public Comment

Meta Review of Submission4202 by Area Chair ZNBf

Meta Review ,#" Area Chair ZNBf & 19 Dec 2023, 14:01 (modified: 16 Feb 2024, 14:28) @ Everyone [l Revisions

Metareview:

This paper introduces a novel variant of state space models designed for long-range language modeling. The conducted experiments reveal notable advancements in comparison to existing models
under the perplexity metric for language modeling tasks. Notably, two reviewers provided highly positive assessments, (despite one of which has limited prior experience with language models).
However, a third reviewer, an more experienced expert in language models, raised two significant concerns pertaining to the benchmark and evaluation metric:

1. Absence of Results on LRA (Long Range Arena): The reviewer underscored the omission of results on LRA, a widely acknowledged benchmark for long sequence modeling. LRA's inclusion has been
customary in prior research on state space models, making it imperative for a comprehensive evaluation.

2. Evaluation using perplexity: The reviewer questioned the reliance on perplexity as the major metric for evaluation. References were made to Sun et al. (2021), suggesting lower perplexities may
not necessarily imply improved modeling abilities for end NLP applications. Their claim has been further strengthened by Zhang et al. (2023), which highlighted the limitations of some
transformer models that achieve lower perplexity but struggle in generation tasks such as summarization and question-answering.

Additionally, a minor concern was raised regarding the potential performance gap of long-range language models in short text sequences. I recommended the inclusion of supplementary
experimental results to address this aspect.

To reconcile these differing perspectives, discussions were initiated with the reviewer duga and subsequently with the senior area chair. After a meticulous examination of the paper and considering
the valid concerns raised, the final decision was to recommend rejection. The concerns, particularly those related to experimental methodology and the chosen evaluation metric, were deemed
substantial and not adequately addressed in the provided rebuttal. We believe that the paper could substantially benefit from addressing these concerns through adding additional experiments.

[1] Sun et al. Do Long-Range Language Models Actually Use Long-Range Context? EMNLP 2021 [2] Zhang et al. Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at
Every Layer. EMNLP 2023.

Justification For Why Not Higher Score:
See comments

Justification For Why Not Lower Score:
NA

LULH  Public Comment



Thank you!
Any Questions?
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