InstaFlow:

One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation

Authors:

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, Qiang Liu

Presenter:

James Soole

ImageNet

Unconditional Generation Latent Diffusion

in the Acropolis

in a doghouse in a bucket

getting a haircut

Customizing Images DreamBooth (Google)

a close up of a handpalm with leaves growing from it

vibrant portrait painting of Salvador Dalí with a robotic half face

Text-to-Image DALL-E 2 (OpenAI)

- Inpainting RePaint
- Denoising -

. . . .

Super Resolution

Style Reference 0

Stylized Images LoRA on SDXL (UIUC, Google)

A bicycle in [S] Style

A bird in [S] Style

Input images

Background: Diffusion Summary

Diffusion

- <u>Diffusion Probabilistic Models</u> (2015, Sohl-Dickstein et al.)
- Denoising Diffusion Probabilistic Models (2019, Ho et al.)

Latent Diffusion

- Latent Diffusion (Rombach et al., 2021)
 - $\circ \rightarrow$ Stable Diffusion

Even More Diffusion

- InstaFlow (this)
- and many more ...

Connections To: Nonequilibrium Thermodynamics Langevin dynamics Score Matching

- Provided transitions t are small enough, $p_{\theta}(x_{t-1} | x_t)$ is gaussian
- we can train a neural network to estimate x_{t-1} from x_t

Forward Process (←)

- Gradually add gaussian noise
 - B varies by timestep (from 10^{-4} to 0.02)
 - until the image approaches gaussian noise
- Can sample in closed form

Reverse Process (\rightarrow)

- Gradually predict the added noise
 - our trained model predicts noise mean and variance
- Reconstruct image by subtracting predicted noise

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I}\right)$$

$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$

predicted

Hindrances:

- Iterative
- Image-sized inputs + latents

Background: Latent Diffusion

- Encode image into smaller latent space
- Run diffusion in latent space

Motivation

Sampling is still **iterative**

That makes it **slow**

InstaFlow claims

- "an ultra-fast one-step model"
- "with SD-level image quality"

Noise Step 1 Step 2 ... Step N-1 Image Image Image Image Image Image Noise Step 1 Step 2 Step N-1 Image

Stable Diffusion: N-step

v is the ODE's velocity field

Rectified Flow: an **ODE** Framework

- Learns to transfer π_0 to π_1
- approximated by numerical solvers (e.g. Euler Method)
- choice of N yields a cost-accuracy trade-off
- want a straight flow

Neural Net

$$\min_{v} \mathbb{E}_{(X_0, X_1) \sim \gamma} \left[\int_0^1 || \frac{\mathrm{d}}{\mathrm{d}t} X_t - v(X_t, t) ||^2 \, \mathrm{d}t \right]$$

Can choose different interpolations for
$$X_t$$

$$X_t = \phi(X_0, X_1, t)$$

$$X_t = tX_1 + (1 - t)X_0$$

$$\frac{d}{dt}X_t = X_1 - X_0$$

$$= \min_{v} \mathbb{E}_{(X_0, X_1) \sim \gamma} \left[\int_0^1 || (X_1 - X_0) - v(X_t, t) ||^2 dt \right]$$

Rectified Flow

Now we have v, approximated by a neural net

We can now solve this ODE starting from $Z_0 \sim \pi_0$ to transfer π_0 to π_1

$$\frac{\mathrm{d}Z_t}{\mathrm{d}t} = v(Z_t, t),$$

$$(Z_0, Z_1) = \texttt{Rectify}((X_0, X_1))$$

can be an arbitrary coupling of π_0, π_1
the rectified coupling

why is this any better?

Figure 2: (a) Linear interpolation of data input $(X_0, X_1) \sim \pi_0 \times \pi_1$. (b) The rectified flow Z_t induced by (X_0, X_1) ; the trajectories are "rewired" at the intersection points to avoid the crossing. (c) The linear interpolation of the end points (Z_0, Z_1) of flow Z_t . (d) The rectified flow induced from (Z_0, Z_1) , which follows straight paths.

- Paths for a well-defined ODE cannot cross each other
 - That would mean the ODE solution is not unique
- Rectified Flow rewires individual trajectories to avoid crossing
 - Still keeps the same density map

Flows avoid crossing A key to understanding the method is the non-crossing property of flows: the different paths following a well defined ODE $dZ_t = v(Z_t, t)dt$, whose solution exists and is unique, cannot cross each other at any time $t \in [0, 1)$. Specifically, there exists no location $z \in \mathbb{R}^d$ and time $t \in [0, 1)$, such that two paths go across z at time t along different directions, because otherwise the solution of the ODE would be non-unique. On the other hand, the paths of the interpolation process X_t may intersect with each other (Figure 2a), which makes it non-causal. Hence, as shown in Figure 2b, the rectified flow *rewires* the individual trajectories passing through the intersection points to avoid crossing, while tracing out the same density map as the linear interpolation paths due to the optimization of (1). We can view the linear interpolation X_t as building roads (or tunnels) to connect π_0 and π_1 , and the rectified flow as traffics of particles passing through the roads in a myopic, memoryless, non-crossing way, which allows them to ignore the global path information of how X_0 and X_1 are paired, and rebuild a more deterministic pairing of (Z_0, Z_1) .

Algorithm 1 Rectified Flow: Main Algorithm

Procedure: $Z = \text{RectFlow}((X_0, X_1))$: *Inputs*: Draws from a coupling (X_0, X_1) of π_0 and π_1 ; velocity model $v_\theta \colon \mathbb{R}^d \to \mathbb{R}^d$ with parameter θ . Training: $\hat{\theta} = \arg\min_{\alpha} \mathbb{E}\left[\|X_1 - X_0 - v(tX_1 + (1-t)X_0, t)\|^2 \right]$, with $t \sim \text{Uniform}([0,1])$. Sampling: Draw (Z_0, Z_1) following $dZ_t = v_{\hat{\theta}}(Z_t, t) dt$ starting from $Z_0 \sim \pi_0$ (or backwardly $Z_1 \sim \pi_1$). *Return*: $\mathbf{Z} = \{Z_t : t \in [0, 1]\}.$ **Reflow** (optional): $Z^{k+1} = \text{RectFlow}((Z_0^k, Z_1^k))$, starting from $(Z_0^0, Z_1^0) = (X_0, X_1)$. bad coupling $X_1 = \mathsf{ODE}[v_k](X_0)$

 $X_1^{\text{new}} = \text{ODE}[v_{k+1}](X_0)$

better coupling

- Draw (X_0, X_1)
- Train v
- Follow v to get new mapping (Z_0, Z_1) 3)
- Do it again. 4)
 - Prev (Z_0 , Z_1) is now the input (X_n , X_1)
 - "k-flow"

Text-Conditioned

$$\min_{v} \mathbb{E}_{(X_{0},X_{1})\sim\gamma} \left[\int_{0}^{1} || (X_{1} - X_{0}) - v(X_{t},t) ||^{2} dt \right]$$
$$v_{k+1} = \operatorname*{arg\,min}_{v} \mathbb{E}_{X_{0}\sim\pi_{0},\mathcal{T}\sim D_{\mathcal{T}}} \left[\int_{0}^{1} || (X_{1} - X_{0}) - v(X_{t},t \mid \mathcal{T}) ||^{2} dt \right]$$

 $D_{\mathcal{T}}$ is a dataset of text prompts

$$X_1 = \mathsf{ODE}[v_k](X_0 \mid \mathcal{T}) = X_0 + \int_0^1 v_k(X_t, t \mid \mathcal{T})$$

Evaluation

'Masterpiece color pencil drawing of a horse; bright vivid color'

Evaluation: Flow

Flow 'straightness'

$$S(Z) = \int_{t=0}^{1} \mathbb{E} \left[|| (Z_1 - Z_0) - v(Z_t, t) ||^2 \right] dt$$

How pixel values change over time

Straighter trajectories

Evaluation: Inference Time

SD cannot effectively distill

k-Rectified can

Distilled version of k-Flow has a smaller gap with teacher

Evaluation: FID + CLIP

Method	Inf. Time	FID-5k	CLIP
SD 1.4 (25 step)[70]	0.88s	22.8	0.315
(Pre) 2-RF (25 step)	0.88s	22.1	0.313
PD (1 step)[58]	0.09s	37.2	0.275
SD 1.4+Distill	0.09s	40.9	0.255
(Pre) 2-RF (1 step)	0.09s	68.3	0.252
(Pre) 2-RF+Distill	0.09s	31.0	0.285

(a) MS COCO 2017

Method	Inf. Time	FID-30k
SD* [70]	2.9s	9.62
(Pre) 2-RF (25 step)	0.88s	13.4
SD 1.4+Distill	0.09s	34.6
(Pre) 2-RF+Distill	0.09s	20.0

(b) MS COCO 2014

Thoughts

- It's all based on Rectified Flow
- New text-conditioning
- boasts strong improvement (FID + Results)
- failures on complicated prompts
- usefulness of FID ?
- better reflow?
- 1-step ?

DPMSolver

2-Rectified Flow

A dog and a cat shake hands with each other

Can choose different interpolations for X_t

$$X_{t} = \phi(X_{0}, X_{1}, t)$$

$$X_{t} = tX_{1} + (1 - t)X_{0}$$

$$\frac{d}{dt}X_{t} = X_{1} - X_{0}$$
Neural Net
$$\lim_{v} \mathbb{E}_{(X_{0}, X_{1}) \sim \gamma} \left[\int_{0}^{1} || \frac{d}{dt}X_{t} - v(X_{t}, t) ||^{2} dt \right]$$

$$= \min_{v} \mathbb{E}_{(X_{0}, X_{1}) \sim \gamma} \left[\int_{0}^{1} || (X_{1} - X_{0}) - v(X_{t}, t) ||^{2} dt \right]$$