InstaFlow:

One Step is Enough for High-Quality
Diffusion-Based Text-to-lmage Generation

Authors:
Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, Qiang Liu

Presenter:
James Soole

ImageNet

Unconditional Generation

vibrant portrait painting of Salvador Dali with a robotic half face a shiba inu wearing a beret and black twrtleneck aclose up of a handpalm with leaves growing from it Latent DifoSion
Text-to-Image
DALL-E 2 (OpenAl)

Input images

Inpalntlng Style Reference Abicg'::;?ein . briggtlediir}g]a ;fyle ?St]”g?y:: CUStomIZIng Images
RePaint DreamBooth (Google)
- De nOiSi ng cartoon line drawing
- Super Resolution Stylized Images

- .. LoRA on SDXL (UIUC,Google)

Background: Diffusion Summary

Diffusion

e Diffusion Probabilistic Models (2015, Sohl-Dickstein et al.)
e Denoising Diffusion Probabilistic Models (2019, Ho et al.)

Latent Diffusion
e Latent Diffusion (Rombach et al., 2021)

o — Stable Diffusion

Connections To:
Nonequilibrium Thermodynamics
Langevin dynamics
Score Matching

Even More Diffusion

e InstaFlow (this)
e and many more ...

https://arxiv.org/pdf/1503.03585.pdf
https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2112.10752.pdf
https://arxiv.org/pdf/2309.06380.pdf

Background: Diffusion

Reverse process p

| %

turns noise into images

pe(xt 1|Xt
-0 g

__—’

Forward process q

&
< |

turns images into Gaussian noise

— ()

Provided transitions t are small enough, p,(x, .| X,) is gaussian

we can train a neural network to estimate x,_, from x,

Background: Diffusion

Pext1|Xt
0. 0 "0 —~Cp

L DD

Xt|Xt 1
constant
Forward Process (<) %
e Gradually add gaussian noise q(x¢ | x¢21) =N (xt; V1= Bxi_q, BtI)
o B varies by timestep (from 107 to 0.02)
o until the image approaches gaussian noise
e Can sample in closed form
Reverse Process (—) Po (i1 | X¢) = N (Xy—15 g (X4, 1), B (x4, 1))
e Gradually predict the added noise
o our trained model predicts noise mean and variance

e Reconstruct image by subtracting predicted noise predicted

Background: Diffusion

Algorithm 1 Training Algorithm 2 Sampling
; repeat 1: xr ~N(0,I) ~— start with noise
: Xo ~ q(Xo) 2: fort=T,...,1do
3: t ~ Uniform({1,...,T}) 3. 2~ N(0,I)ift>1,elsez =0
4: €~ N(0,I)) o -
5: Take gradient descent step on 4 oxe1 = (xt — Jio; €0 (x¢, t)) + o1z
Ve ||e — eg(Varxo + V1 — aue, t)”2 5: end for
6: until converged X “noised sample 6: return xo

add some \

amount of

noise predict noise

\

predict noise

subtract noise

Background: Diffusion

o> €g(x¢,t)

______________ O S
Time Representatlon 1' I

(and optionally FUllyLCOnnected
conditioning) ayers

Hindrances:

e lterative
e Image-sized inputs + latents

Background: Latent Diffusion

L

e Encode image into smaller latent space

=)
e Run diffusion in latent space ' T
Latent data
Reverse Diffusion
Repeat T times
UNet
‘ Random
<« D (] latent
noise
“7-1
(TT =N
conditioning

embedding

Motivation

Sampling is still iterative

That makes it slow

Stable lefusmn N-step

InstaFlow claims

- “an ultra-fast one-step model”
- “with SD-level image quality”

N times faster

TrO
gaussian noise
distribution

dZ;
N —U(Zt,), such that Z; ~ m

dt

Zy ~ T

v is the ODE’s velocity field

‘J c
Perfect Simulation in

Zlth 1 = Jg| NU(Zt’ AN just one step

Rectified Flow: an ODE Framework
- Learns to transfer m to 1,
- approximated by numerical solvers (e.g. Euler Method)
- choice of N yields a cost-accuracy trade-off

- want a straight flow

Neural Net

d
| minEgx,xe [/ 12X~ (Xt 1

Can choose different interpolations for X,

- can use any
- Xt = ¢(Xo, X1, 1) time-differentiable
X, =tX1+ (1 —1t)X, interpolation
%Xt X — X5 DDIM uses this one
\j

1
- min B e | [1] (= Xo) — o(Xe)| d
0

Rectified Flow

Now we have v,
approximated by a neural net

We can now solve this ODE dz; o(Zs, 1)
starting from Z0 ~ T, to transfer M, to 1, dt BVl

(Zo, Z1) = Rectify((Xo, X1))
*

can be an arbitrary coupling of 7, m;

the rectified coupling
why is this any better?

W (v e

=Rectiﬁed Flow
e Linear

5 v . sws=Interpolation
o % Y

(c) Linear interpolation (d) Rectified flow Z{

(a) Linear interpolation (b) Rectified flow Z;
Xt =tX1 + (1 — t)Xo induced by (Xo, Xl) Zy =tZ1 + (1 — t)ZO induced by (Zo, Zl)

Figure 2: (a) Linear interpolation of data input (X, X7) ~ 7 x 1. (b) The rectified flow Z; induced by (Xy, X1);
the trajectories are “rewired” at the intersection points to avoid the crossing. (c) The linear interpolation of the end
points (Zy, Z) of flow Z;. (d) The rectified flow induced from (Zy, Z;), which follows straight paths.

- Paths for a well-defined ODE cannot cross each other
- That would mean the ODE solution is not unique
Rectified Flow rewires individual trajectories to avoid crossing

- Still keeps the same density map

Flows avoid crossing A key to understanding the method is the non-crossing property of flows: the differ-
ent paths following a well defined ODE dZ; = v(Z;, t)dt, whose solution exists and is unique, cannot cross
each other at any time ¢ € [0, 1). Specifically, there exists no location z € R? and time ¢ € [0, 1), such that
two paths go across z at time ¢ along different directions, because otherwise the solution of the ODE would
be non-unique. On the other hand, the paths of the interpolation process X; may intersect with each other
(Figure 2a), which makes it non-causal. Hence, as shown in Figure 2b, the rectified flow rewires the individ-
ual trajectories passing through the intersection points to avoid crossing, while tracing out the same density
map as the linear interpolation paths due to the optimization of (1). We can view the linear interpolation
X as building roads (or tunnels) to connect 7y and 71, and the rectified flow as traffics of particles passing
through the roads in a myopic, memoryless, non-crossing way, which allows them to ignore the global path
information of how X and X are paired, and rebuild a more deterministic pairing of (Zg, Z1).

Algorithm 1 Rectified Flow: Main Algorithm
Procedure: Z = RectFlow((Xp, X1)):
Inputs: Draws from a coupling (Xo, X1) of my and 71 ; velocity model vg: R — R? with parameter 6.

Training: 6 = arg min E [||X1 — Xo —v(tX1 + (1 —t) X, t)||2} , with ¢t ~ Uniform(|0, 1]).
0

Sampling: Draw (Zy, Z1) following dZ; = vy(Z;, t)dt starting from Zy ~ 7o (or backwardly Z; ~ m1).
Return: Z = {Z,: t € [0, 1]}.
Reflow (optional): Z**! = RectFlow((ZF, ZF)), starting from (23, Z9) = (X0, X1).

/ Y
1) Draw (X_, X =
D) Oraw 6,) X1 = ODE[ui)(Xo)
3) Follow v to get new mapping (Z, , Z,) ﬂ

XneW - DE X
4) Do it again. 1 ODE[vg+1)(Xo)

-Prev (Z,, Z)) is now the input (X, , X)))

- “k-flow”

Original Model Reflowed Model
Curved Trajectories; Bad Coupling Straighter Trajectories; Good Coupling

' [Reflow

Distill

One-Step
Generation

One-Step
Generation

@Failure: blurry, low-quality Success clear, high-quality

Text-Conditioned

T Il
min Ecx, o | [0 = Xo) — (X0, t) |12
| JO

L
V41 = argmin EXON’/TO,TND’T / H (X1 = Xo) = ’U(Xt,t | T) H2 dt]
LJ 0

v

D is a dataset of text prompts

X1 = ODE[vg](Xo | T) = Xo + [ve(Xe,t | T)

Evaluation

Stable Diffusion 2-Rectified Flow 3-Rectified Flow
g — =

—

N=1

+Distill

SD 1.5-DPM Solver

2-Rectified Flow

‘Masterpiece color pencil drawing of a horse; bright vivid color’

Evaluation: Flow

Flow ‘straightness’

S(Z) = [_,E[|| (Z1 - Zo) — v(Zy,t) ||?] dt

How pixel values change over time

Straighter trajectories

log S(2)

Stable Diffusion 2-Rectified Flow

Q Stable Diffusion

2-Rectified Flow
& J

-~
3-Rectified Flow™O

Pixel Value

Evaluation: Inference Time

SD cannot effectively distill

k-Rectified can

40 A
Distilled version of k-Flow has a
smaller gap with teacher = 30

201

o (O Stable Diffusion
v 2-Rectified Flow

101 10°
Inference Time (s)

Stable Diffusion

2-Rectified Flow

+Distill

Evaluation: FID + CLIP

Method Inf. Time FID-5k CLIP Method Inf. Time FID-30k
SD 1.4 (25 step)[70] | 0.88s 228 0315 —
(Pre) 2-RF (25 step) | 0.88s 221 0313 SD* [70] 2.9s 9.62
PD (1 step)[58] 0.09s 372 0275 (Pre) 2-RF (25 step) | 0.88s 13.4
SD 1.4+Distill 0.09s 409 0.255 —
(Pre) 2-RF (1step) | 0.09s 683 0252 SD 14+Disull = 0.09 34.6
(Pre) 2-RF+Distill 0.09s 3.0 0.285 (Pre) 2-RF+Distill 0.09s 20.0
(a) MS COCO 2017 (b) MS COCO 2014
SR N
o 0.25
%60+ S
o é 0.20
40 “
015 =&~ 2-Rectified Flow
=&~ SD 1.5-DPM Solver
20 0.10

1

2

4 8

Number of Inference Steps

1

2 4 8

Number of Inference Steps

InstaFlow-0.9B SD 1.5-DPM Solver

Thoughts

- It's all based on Rectified Flow
- New text-conditioning

- boasts strong improvement (FID + Results)
- failures on complicated prompts
- usefulness of FID ?

- better reflow?

- 1-step ?

DPMSolver

2-Rectified Flow

TrO
gaussian noise
distribution

Vo
ODE
% — U(Zt,t), such that Z; ~ m

Zoy ~ T

] Approx w

1
. d
mvaE(XO,XI)NV [/0 | aXt —o(Xy, t) || dt Neural Net

T

¢(X07X1)t)a

Can choose different interpolations for X, can use any

% — qb(Xo, X, t) time-differentiable
interpolation
X =tX;+ (1 —t)Xg—

d

EXt =X — Xp DDIM uses this

Neural Net Y

= pl
. d
| minEoxmn | [115550 oXe0) [P |
o 0

1
B mvin]E(Xo,Xl)w / | (X1 — Xo) — v(Xg,t) ||? dt]
0

