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From Training to Inference

● Latency
○ Small batch sizes
○ Memory bound
○ Maximize memory bandwidth utilization when reading weights for feed-forward layers

● Decoding throughput
○ Overlapping compute with reading model weights

■ We can increase throughput if latency remains the same per layer
■ Maximize batch size

○ Autoregressive decoding 
■ Dependency on previous token (doesnʼt exist in training)
■ Need to maintain KV cache longer
■ Higher memory requirements



Latency-Optimal Schedule

● Previous works go row by row in the compute graph



Latency-Optimal Schedule

● Previous works go row by row in the compute graph
○ Low latency



Motivation

● Make large models more accessible



Motivation

Latency oriented tasks 
(e.g. chatbots)

Throughput oriented tasks 
(e.g. offline document processing)



Throughput-Optimal Schedule

● Previous works go row by row in the compute graph
○ Low latency
○ High IO



Throughput-Optimal Schedule

● Reuse layer weights
● Offload activations and KV cache



Overlapping Memory Access
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Activations & KV Cache on CPU / Disk



Overlapping Memory Access



Tensor Placement

wg, wc, wd: percentage of weights placed on GPU, CPU, and disk

hg, hc, hd: activations

cg, cc, cd: KV cache



Tensor Placement

● Weights: layer granularity
● KV cache, activations: tensor granularity



Cost Model

T: latency

T_pre: prefilling latency for one layer (multiple blocks)

l: number of layers

T_gen: decoding latency for one layer (multiple blocks)

n: generation length



Cost Model

ctog: latency of transfer from CPU -> GPU, etc.



Cost Model

ctog: latency of transfer from CPU -> GPU, etc.



Cost Model Assumptions

● Perfect overlapping
● All latencies are estimated by summing up IO events
● Computation term is estimated by summing up matrix multiplication



Cost Model

Bls: effective batch size (batch size * # GPU blocks)



Policy Search



CPU Compute

Size of KV cache:

Size of activation: 

IO reduction by s times if we compute attention scores on CPU



CPU Compute

Purple: CPU->GPU Blue: CPU compute



Multiple GPUs

● Pipeline parallelism
○ Low communication costs

● Add micro-batches in inner loop 



Quantization

● Group quantization to 4 bits for weights and KV cache

● Group weights along output dim and KV cache along hidden dim
● CPU compute is turned off due to overhead
● Further reduces IO cost



Sparse Attention

● Compute scores given Q
● Only load top 10% K with highest scores
● Select corresponding Vs



Experimental Setup

● T4 GCP instances
● 2 GB/s read and 1 GB/s write for SSD
● OPT models: 6.7B, 30B, 175B
● Synthetic dataset with padded prompts
● Prompt length: 512, 1024
● Generation length: 32



Baseline

● DeepSpeed Inference
● HuggingFace Accelerate
● Petals

○ Collaborative inference over network
○ 10 ms latency and 1Gbps bandwidth



Throughput Results

● Petals uses 1, 4, and 24 GPUs respectively for the three model sizes



Multi-GPU Scaling

● 4 GPUs, per GPU throughput reported
● Superlinear scaling for decoding throughput with pipeline parallelism
● Generation (prefilling + decode) doesnʼt scale superlinearly with n = 32



Latency-Throughput Tradeoff



Quantization Results



Comparisons with Collaborative Inference



Ablation Study



Runtime Breakdown



Compression Throughput

(batch x bls, wg, wc, cg, cc, hg, hc)



Takeaways

● Efficient offload strategy
○ Formulate cost model and search space for offloading policy

● 4-bit quantization on KV cache and weights
● Scaled to multi-GPU with pipeline parallelism


