
FlexGen
High-throughput Generative Inference of Large Language Models 
with a Single GPU
Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, 
Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, 
Ion Stoica, Ce Zhang

Presented by Steven Gao



Outline

● Challenges in Inference
● Motivation
● Block Schedule
● Cost Model
● Compression
● Evaluation



From Training to Inference

● Latency
○ Small batch sizes
○ Memory bound
○ Maximize memory bandwidth utilization when reading weights for feed-forward layers

● Decoding throughput
○ Overlapping compute with reading model weights

■ We can increase throughput if latency remains the same per layer
■ Maximize batch size

○ Autoregressive decoding 
■ Dependency on previous token (doesnʼt exist in training)
■ Need to maintain KV cache longer
■ Higher memory requirements



Latency-Optimal Schedule

● Previous works go row by row in the compute graph



Latency-Optimal Schedule

● Previous works go row by row in the compute graph
○ Low latency



Motivation

● Make large models more accessible



Motivation

Latency oriented tasks 
(e.g. chatbots)

Throughput oriented tasks 
(e.g. offline document processing)



Throughput-Optimal Schedule

● Previous works go row by row in the compute graph
○ Low latency
○ High IO



Throughput-Optimal Schedule

● Reuse layer weights
● Offload activations and KV cache



Overlapping Memory Access

1 2 3 4

1

3

Activations & KV Cache on CPU / Disk



Overlapping Memory Access



Tensor Placement

wg, wc, wd: percentage of weights placed on GPU, CPU, and disk

hg, hc, hd: activations

cg, cc, cd: KV cache



Tensor Placement

● Weights: layer granularity
● KV cache, activations: tensor granularity



Cost Model

T: latency

T_pre: prefilling latency for one layer (multiple blocks)

l: number of layers

T_gen: decoding latency for one layer (multiple blocks)

n: generation length



Cost Model

ctog: latency of transfer from CPU -> GPU, etc.



Cost Model

ctog: latency of transfer from CPU -> GPU, etc.



Cost Model Assumptions

● Perfect overlapping
● All latencies are estimated by summing up IO events
● Computation term is estimated by summing up matrix multiplication



Cost Model

Bls: effective batch size (batch size * # GPU blocks)



Policy Search



CPU Compute

Size of KV cache:

Size of activation: 

IO reduction by s times if we compute attention scores on CPU



CPU Compute

Purple: CPU->GPU Blue: CPU compute



Multiple GPUs

● Pipeline parallelism
○ Low communication costs

● Add micro-batches in inner loop 



Quantization

● Group quantization to 4 bits for weights and KV cache

● Group weights along output dim and KV cache along hidden dim
● CPU compute is turned off due to overhead
● Further reduces IO cost



Sparse Attention

● Compute scores given Q
● Only load top 10% K with highest scores
● Select corresponding Vs



Experimental Setup

● T4 GCP instances
● 2 GB/s read and 1 GB/s write for SSD
● OPT models: 6.7B, 30B, 175B
● Synthetic dataset with padded prompts
● Prompt length: 512, 1024
● Generation length: 32



Baseline

● DeepSpeed Inference
● HuggingFace Accelerate
● Petals

○ Collaborative inference over network
○ 10 ms latency and 1Gbps bandwidth



Throughput Results

● Petals uses 1, 4, and 24 GPUs respectively for the three model sizes



Multi-GPU Scaling

● 4 GPUs, per GPU throughput reported
● Superlinear scaling for decoding throughput with pipeline parallelism
● Generation (prefilling + decode) doesnʼt scale superlinearly with n = 32



Latency-Throughput Tradeoff



Quantization Results



Comparisons with Collaborative Inference



Ablation Study



Runtime Breakdown



Compression Throughput

(batch x bls, wg, wc, cg, cc, hg, hc)



Takeaways

● Efficient offload strategy
○ Formulate cost model and search space for offloading policy

● 4-bit quantization on KV cache and weights
● Scaled to multi-GPU with pipeline parallelism


