E.T.: Re-Thinking Self-Attention for Transformer Models on GPUs

2024.03.28

• System/Algorithm optimizations for transformer model inference

E.T.

- System/Algorithm optimizations for transformer model inference
 - A novel self-attention architecture with new operators
 - With tensor-tile pruning algorithms and attention-aware pruning

E.T.

- Kernel optimizations
 - Kernel fusion
 - Tailored attention
 - Incremental/decode/generation phase: maximize thread occupancy and minimize on-device high-bandwidth memory (HBM) access (i.e., using shared memory or registers)

E.T.

 2.5x speedup compared with TensorRT

Figure 1: The architecture of a four-head encoder. The time consumption is measured on WikiText-2 dataset [30], where the input sequence has 128 tokens. Our pruning ratio is 80%.

Challenge #1: Long Turnaround Time

Challenge #1: Long Turnaround Time

ExecutionContext::enqueue [6.518 ms]							
.)	(Unnamed Layer* 5) [PluginV2DynamicExt] [127.956 μs]	(Unnamed Layer* 6) [PluginV2Dyna (Un (Unnamed Layer* 8) [Fully Connected] [75 PWN((Unnamed La ((Un (Unname				
.)	cudaLa cu c	cu cu cudaLaunchKernel cu	cu				

Challenge #2: Gigantic model size

Kernels are not free

Think self-attention as a primitive

Think self-attention as a primitive

Head 1 Head 2

Compute the self-attention on-the-fly

Pre-computed linear transformer operator

ator. (b) On-the-fly attention operator *w*/pre-computed linear transformation operator.

Evaluate on-the-fly attention

BERT_base:

- Model Size: 768
- Number of heads: 12

Transformer:

- Model Size: 800
- Number of heads: 4

Pruning make the model small

Using emerging hardware

[1]. <u>https://www.amd.com/en/technologies/cdna</u>
[2]. <u>https://www.nvidia.com/en-us/data-center/tensor-cores</u>

All-New Matrix Core Technology for HPC and AI

Powered by the all-new Matrix Core technology, this powerful engine delivers nearly 3.5x performance boost for HPC (FP32 matrix) and nearly 7x for AI (FP16) workloads compared to the prior generation AMD data center GPU.²

 All-New FP32 and FP16 Matrix Core Technology

BFloat16 operations for AI

Enhar
opera'
 PASCAL
 VOLTA TENSOR CORES

VOLTA TENSOR CORES

First Generation

Designed specifically for deep learning, the first-generation Tensor Cores in NVIDIA Volta" deliver groundbreaking performance with mixed-precision matrix multiply in FP16 and FP32—up to 12X higher peak teraFLOPS (TFLOPS) for training and 6X higher peak TFLOPS for inference over NVIDIA Pascal. This key capability enables Volta to deliver 3X performance speedups in training and inference over Pascal.

LEARN MORE ABOUT VOLTA >

Efficient computing on sparse models

Prune the model as fine-tuning

Original loss

Regularizer

Prune the model as fine-tuning

- Initialization: start with pre-trained model
- Check the current epoch falls into the pre-defined milestones. If yes,
 - Divide weight matrix
 - Compute l2-norm of each tile and update tile penalty factor
 - Update the model loss
 - min $f(\{\mathbf{W}^k\}_{k=1}^N, \{\mathbf{b}^k\}_{k=1}^N) + \lambda \sum_{k=1}^{\bar{N}} \sum_{i=1}^p \sum_{j=1}^q \beta_{ij}^k \|\mathbf{W}_{ij}^k\|_2,$ Train Transformer model
 - Prune weights based on L2 norm
 - Retrain the non-zero entries for several epochs

Prune weights based on L2 norm

Efficient computing on sparse models

Irregular			Row						
	0	0	6	0		4	3	6	g
	0	7	0	2		0	0	0	C
	0	8	0	0		4	8	3	2
	5	2	0	0		0	0	0	C

Tensor-tile Pruning					
0	0	6	9		
0	0	6	2		
4	8	0	0		
5	2	0	0		

	Irregular	Row	Column	Tensor-tue
Accuracy		$\langle \rangle$		
Latency				

Attention-aware pruning

 $W_Q \& W_K$: Tile-based pruning

If not pre-computed linear transformation: column pruned W_V , tensor tile pruned W_O

Attention-aware pruning

cor. (b) On-the-fly attention operator w/ pre-computed linear transformation operator.

If pre-computed linear transformation:

row pruned W_0 (to benefit step 6), dense W_V (no sparsity changes from pruning, prevent pruning others)

Evaluate pruning algorithms

Compare with state-of-the-art

Discussion

- V100
- \rightarrow Other hardware platforms
- Inference
- →Training
- Combined with other kernel optimizations

References

• https://dl.acm.org/doi/10.1145/3458817.3476138