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Intro & Motivation

1. Existing diffusion models adopt convolutional U-Net as backbone
2. Explore alternative architecture choices for generative modeling research
3. Introduce diffusion transformers (DiTs) and study the scaling behavior of 

transformers with respect to network complexity vs. sample quality

There is a strong correlation 
between the network 
complexity (in Gflops) and 
sample quality (in FID). By 
scaling-up DiT and training 
with high capacity (118.6 
Gflops), the authors achieve 
state-of-the-art results (2.27 
FID) on ImageNet 
generation benchmark.



Diffusion Transformers - Preliminaries

Forward Noising Process:

Reverse Denoising Process:



Diffusion Transformers - Preliminaries

Learning via variational lower bound:

→ Reparameterize        as       and train with L_simple

→ Learn reverse process covariance        with L



Diffusion Transformers - Preliminaries

Classifier-Free Guidance

→ Reverse process conditioned on class c: 

→ 

Latent Diffusion Models

→ Learn an autoencoder with a learned encoder E

→ Train a diffusion model of representations z = E(x) instead of x (E is frozen)

→ Off-the-shelf convolutional VAEs & transformer-based DDPMs



Diffusion Transformer Design Space

DiT is largely based on Vision Transformers (ViTs)

For Patching:

→ Input is the encoded image z

→ For 256x256x3 image, input z has shape 32x32x4

→ Patch size p = 2, 4, 8, Token length T = (I / p) ** 2

→ Additionally apply sine-cosine positional embeddings



Diffusion Transformer Design Space

Incorporating Timestamp & Class in DiT Blocks:

→ Timestampe t and class c are appended as special tokens

→ Additional cross attention layer for (t, c) above self-attention

→ Adaptive layer norm (adaLN) by regressing gamma / beta upon (t, c)

→ Zero-initializing the final layer in adaLN prior to residual connections

Decoder Blocks:

→ Linear decoder to predict noise and covariance (p x p x 2C shape)



Diffusion Transformer Design Space



Training Diffusion Transformers 

1. Leverage pretrained VAE from stable diffusion
2. After sampling, decode pixels using VAE decoder
3. Evaluate with FID scores and 250 DDPM sampling steps



Model and Patch Size



Model and Patch Size / DiT Gflops



Model and Patch Size / DiT Gflops

Model / Patch Size:

1. Improvements in FID are obtained by 
making transformer models larger

2. Improvements in FID are obtained by 
reducing patch sizes (scaling tokens)

Gflops:

1. Scaling model Gflops is the key to 
improved FID performance

2. Given constant Gflops, different DiT 
configs obtain similar FID values



DiT Model Size / Efficiency

Training compute:

Model Gflops * batch * training steps * 3

1. Given constant training Gflops, larger 
DiT models are more efficient

2. Models that are identical except for 
patch size have different performance 
profiles even when controlling training 
Gflops

3. Similar observation on qualitative 
examples



Further Qualitative Examples



Scaling & Sampling

Scaling Model vs. Sampling Compute

1. Consider constant sampling 
compute (DiT-XL/2 w/ 128 steps 
OR DiT-L/2 w/ 1000 steps)

2. In most cases, scaling-up 
sampling compute (steps) cannot 
compensate for the lack of model 
compute



Comparison to SOTA Models

For both 256 x 256 and 512 x 512 image resolution, the proposed DiT can 

outperform existing methods and

remains compute efficient.



Additional Results

Metrics

1. Additional metrics: sFID, Inception 
Score, Precision, Recall

2. FID-driven analysis in the paper 
generalizes to the other metrics - 
across every metric, scaled-up DiT 
models are more compute-efficient 
and model Gflops are 
highly-correlated with performance. 
In particular, Inception Score and 
Precision benefit heavily from 
increased model scale.



Additional Results

Training Loss

1. Training curves for different DiT 
model sizes

2. Increasing DiT model Gflops (via 
transformer size or number of input 
tokens) causes the training loss to 
decrease more rapidly and saturate 
at a lower value. This phenomenon is 
consistent with trends observed with 
language models, where scaled up 
transformers demonstrate both 
improved loss curves and 
downstream performance.



Additional Results

VAE Decoder Ablations

1. XL/2 continues to outperform all prior 
models when using the LDM decoder.



Conclusion

1. Introduced Diffusion Transformers (DiTs), a simple transformer-based 
backbone for diffusion models that outperforms prior U-Net models.

2. Incorporated a series of improvements upon ViT such as cross attention, 
adaptive layer norm etc., leading to improved generation performance 

3. Given the promising scaling results in this paper, future work should continue 
to scale DiTs to larger models and token counts. Alternatively, DiT could also 
be explored as a drop-in backbone for text-to-image models like DALLE.



Thoughts & Discussion

1. Conditioned on class

→ Text prior is not considered

2. Only experimented on ImageNet

→ Further experiments and evaluation may be beneficial

3. Focuses on the scaling of DiT rather than efficiency

→ Sampling is still somewhat expensive

→ Maybe MoE or fewer steps like InstaFlow

→ Model size are much smaller than LLMs (33M to 675M)


