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Intro & Motivation

1. Existing diffusion models adopt convolutional U-Net as backbone

2. Explore alternative architecture choices for generative modeling research

3. Introduce diffusion transformers (DiTs) and study the scaling behavior of
transformers with respect to network complexity vs. sample quality

There is a strong correlation
between the network
complexity (in Gflops) and
sample quality (in FID). By
scaling-up DiT and training
with high capacity (118.6
Gflops), the authors achieve
state-of-the-art results (2.27
FID) on ImageNet
generation benchmark.
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Scaling Diffusion Transformers

SOTA Diffusion Models w/ Guidance




Diffusion Transformers - Preliminaries
Forward Noising Process:
x; ~ q(x¢]%0) = N (x5 v/@Xo, (1 — &)I)
Reverse Denoising Process:
pé)(xt—1|xt) = N(xt—l; uo(xt’t)’ 20(xt’t))

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)



Diffusion Transformers - Preliminaries

Learning via variational lower bound:
— Reparameterize g as €g and train with L_simple
— Learn reverse process covariance ), g With L

L(0) = —p(zolz1) + 2y Prr(q" (z1-1]2s, Zo)|[Po(2i-1]21))

— 2
ﬁsimple(e) - ”60(‘77?5) - etl |2
Algorithm 1 Training Algorithm 2 Sampling
;: repeat (x0) 1: xr ~N(0,1)
. | 2: fort="1T,...,1do
5 tNUIllfOI'm({l,...,T}) 3 ZNN(O, I) ift > l,ClSCZ =0
4: e~ N(0,I) y i
5: Take gradient descent step on 4 X1 = oy \ %~ ﬁ@(xtvt)) + o2
Vo ||e — €a(vV/arxo + VI — ave, t)||2 5: end for
6: return xg

6: until converged




Diffusion Transformers - Preliminaries

Classifier-Free Guidance

— Reverse process conditioned on class ¢: pg(zi—1|zt, c)

— ég(zg,¢) = €g(m4,0) + s - Vi logp(z|c) o eg(xs, D)+ 5 (€g(xt, c) —€g(xt, D))
Latent Diffusion Models

— Learn an autoencoder with a learned encoder E

— Train a diffusion model of representations z = E(x) instead of x (E is frozen)

— Off-the-shelf convolutional VAEs & transformer-based DDPMs



Diffusion Transformer Design Space

DiT is largely based on Vision Transformers (ViTs)

For Patching: [||||||||||||||}
T = (I/p)?
— Input is the encoded image z
(o po
— For 256x256x3 image, input z has shape 32x32x4 ’ =
— Patch size p = 2, 4, 8, Token length T = (1 / p) ** 2 k
. —— T 4

— Additionally apply sine-cosine positional embeddings



Diffusion Transformer Design Space

Incorporating Timestamp & Class in DiT Blocks:
— Timestampe t and class c are appended as special tokens
— Additional cross attention layer for (t, c) above self-attention
— Adaptive layer norm (adaLN) by regressing gamma / beta upon (i, c)
— Zero-initializing the final layer in adalLN prior to residual connections
Decoder Blocks:

— Linear decoder to predict noise and covariance (p x p x 2C shape)



Diffusion Transformer Design Space
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Training Diffusion Transformers

Leverage pretrained VAE from stable diffusion
After sampling, decode pixels using VAE decoder
Evaluate with FID scores and 250 DDPM sampling steps
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Model and Patch Size

Increasing transformer size

Decreasing patch size
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Model and Patch Size / DiT Gflops
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Model and Patch Size / DiT Gflops

Model / Patch Size:

1.  Improvements in FID are obtained by
making transformer models larger

2. Improvements in FID are obtained by
reducing patch sizes (scaling tokens)

Gflops:

1. Scaling model Gflops is the key to
improved FID performance

2. Given constant Gflops, different DiT
configs obtain similar FID values
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DiT Model Size / Efficiency

Training compute: 200 . S i | e i
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Further Qualltatlve Examples

Increasing transformer
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Scaling & Sampling

Scaling Model vs. Sampling Compute

1. Consider constant sampling
compute (DiT-XL/2 w/ 128 steps
OR DiT-L/2 w/ 1000 steps)

2. In most cases, scaling-up
sampling compute (steps) cannot
compensate for the lack of model
compute
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Comparison to SOTA Models

For both 256 x 256 and 512 x 512 image resolution, the proposed DiT can

outperform existing methods and Class-Conditional ImageNet 256 x 256
Model FID| SsFID| ISt Precisiont  Recallt
remains compute efficient. BigGAN-deep [2] 695 736 171.4 0.87 0.28
StyleGAN-XL [53] 230 402 26512 078 0.53
ADM [9] 1094  6.02 10098  0.69 0.63
ADM-U 749 513 12749 072 0.63
Class-Conditional ImageNet 512x512 ADM-G 459 525 18670  0.82 0.52
Model FID, sFID, ISt  Precision] Recalll  ADPM-G, ADM-U 394 614 21584 0.3 0.53
BigGAN-deep [2] 843 813 17790  0.88 0.29 CDM [20] 4.88 - 15871 . .
StyleGAN-XL [53] 241 406 26175 077 0.52 LDM-8 [48] 1551 - 79.03 0.65 0.63
ADM [9] 2324 10.19  58.06 0.73 0.60 LDM-8-G 7.76 - 20952 0.84 0.35
ADM-U 996 562 12178 075 0.64 LDM-4 1056 - 10349 071 0.62
ADM-G 772 657 17271 0.87 0.42 LDM-4-G (cfg=1.25) 3.95 - 17822 081 0.55
ADM-G, ADM-U 385 58 22172 084 0.53 LDM-4-G (cfg=1.50) 3.60 - 24767 087 0.48
DiT-XL/2 1203 712 10525 075 0.64 DiT-XL/2 962 685 12150  0.67 0.67
DiT-XL/2-G (cfg=1.25) 464 577 17477 081 0.57 DiT-XL/2-G (cfg=1.25) 322 528 20177  0.76 0.62

DiT-XL/2-G (cfg=1.50)  3.04 5.02  240.82 0.84 0.54 DiT-XL/2-G (cfg=1.50)  2.27 4.60 278.24 0.83 0.57




Additional Results

Metrics

1.

2.

Additional metrics: sFID, Inception
Score, Precision, Recall
FID-driven analysis in the paper
generalizes to the other metrics -
across every metric, scaled-up DiT
models are more compute-efficient
and model Gflops are

highly-correlated with performance.

In particular, Inception Score and
Precision benefit heavily from
increased model scale.
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Additional Results

Training Loss

1.

2.

Training curves for different DIiT
model sizes

Increasing DiT model Gflops (via
transformer size or number of input
tokens) causes the training loss to
decrease more rapidly and saturate
at a lower value. This phenomenon is
consistent with trends observed with
language models, where scaled up
transformers demonstrate both
improved loss curves and
downstream performance.

Loss




Additional Results

Class-Conditional ImageNet 256 x 256, DiT-XL/2-G (cfg=1.5)

VAE Decoder Ablations
Decoder FID| sFID| ISt Precision? Recallt
i i original  2.46 5.18  271.56 0.82 0.57
1. XL/2 continues to outperform all prior %88 0 >0 eoe 085 b
ft-EMA 2.27 4.60 278.24 0.83 0.57

models when using the LDM decoder.




Conclusion

1.

Introduced Diffusion Transformers (DiTs), a simple transformer-based
backbone for diffusion models that outperforms prior U-Net models.

Incorporated a series of improvements upon ViT such as cross attention,
adaptive layer norm etc., leading to improved generation performance

Given the promising scaling results in this paper, future work should continue
to scale DiTs to larger models and token counts. Alternatively, DiT could also
be explored as a drop-in backbone for text-to-image models like DALLE.



Thoughts & Discussion

1.

Conditioned on class

— Text prior is not considered

Only experimented on ImageNet

— Further experiments and evaluation may be beneficial
Focuses on the scaling of DiT rather than efficiency

— Sampling is still somewhat expensive

— Maybe MoE or fewer steps like InstaFlow

— Model size are much smaller than LLMs (33M to 675M)



