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Background

Sparsity for achieving the real-world deployment of large scale language models.

Many of the parameters, weights or connections, in the network are zero (or close to zero)

Competitive prediction accuracy at a reduced resource utilization footprint i.e., model size, 

inference FLOPs, and working memory.

Unstructured Sparsity 

Structured Sparsity

yields highly sparse and accurate models  enables massive 

parallelization

by pruning out weights based on their importance enforce sparse structure on 

parameter  (e.g. magnitude, gradient, etc..) tensors 

like low-rank, neuron/filter             



Problem

LLM generation latency with memory I/O bottleneck

Earlier on efficient Inference: Quantization, Distillation, Sparsification

➢ Challenging to find sparsity that preserves in-context learning ability

➢ Hard to achieve wall-clock time speedup with sparsity due hardware 

difficulties

→ Objective: Speeding up inference-time sparse LLMs in wall-clock time 

while maintaining quality and in-context learning abilities



Existing Solutions
➢ Preserving in-context learning ability ?

Effective task-dependent pruning (Michel et al., 2019; Bansal et al., 2022), but maintaining 

different models for each task conflicts with the task independence goal of LLMs

➢ Achieving wall-clock time speedup ?

Recent development in zero-shot pruning like SparseGPT (Frantar & Alistarh, 2023) finds 60% 

unstructured sparsity, but does not lead to any wall-clock time speedup

➢ Infeasible pruning (sparsification)

Iterative pruning (Lee et al., 2018; Frankle & Carbin, 2018) only applies to smaller-scale 

models. 

➢ Expensive fine-tuning and retraining



Ideal Sparsity for LLMs,

➢ not require model retraining

➢ maintains accuracy and in-context learning 

ability

➢ speed-up in wall-clock time on modern 

hardware

→ Hypothesis: Contextual Sparsity

Small, input-dependent sets of attention heads and 

MLP parameters that lead to nearly the same output 

as the full model for an input

Contextual Sparsity



To verify, 2 forward passes of the model :

➢ Record attention heads and MLP neurons that yield 

large output norms for the input (because the 

activation function ReLU or GeLU zeros out low 

activation)

➢ Each input example only uses the recorded subset 

of parameters for the computation (pruning)

→ Leads to similar prediction on all in-context learning 

and language modeling tasks (Widely exists in pre-

trained LLMs, e.g., OPT, Llama, GPT…)

Contextual Sparsity : Existence



Contextual Sparsity : Existence

Observation #1

➢ results in 85% contextual sparsity

○ On avg. 85% in attention, 95% in MLP

Observation #2

➢ 7× parameter reduction for each input 

Contextual sparsity depends not only on individual 

input tokens (non-contextual dynamic sparsity), 

but also on their interactions (contextual dynamic 

sparsity)



Evaluation #3

A large portion of attention head/MLP outputs 

yield small norm ~ High contextual sparsity

Token embeddings change slowly across layers due 

to high residual norm, residual connections

Observation #3

Contextual dynamic sparsity for every layer can be 

predicted based on the similarity between layer 

parameters (heads/MLP) and the output from 

the previous layer

Contextual Sparsity : Prediction



Different heads learn different 

projection spaces to perform clustering.

Token embeddings tend to cluster after 

going through more layers 

Hypothesis: Self-attention head is 

regarded as one mean-shift step to push 

input embeddings of different tokens 

together, if they are already neighbors in 

a projection space by 

Contextual Sparsity : Prediction



→ CS Prediction of an MLP layer can be 

formulated as the classical nearest-neighbor 

search problem, based on similarity between 

input & parameters,

○ Query: input at each layer

○ Data: neurons or attention heads

Propose an asynch. lookahead predictor to avoid 

the sequential overhead, since cross-layer design 

suffices for accurate sparsity prediction

Contextual Sparsity : Prediction

Attentionk

Attentionk+1

MLPk



One of the major bottlenecks for the LLM generation :  2/3 of the FLOPs and IOs

Example: For OPT-175B, one MLP block is only 0.2 ms on 8×A100 80GB

How efficient would applying nearest-neighbor search problem be?

High dimensionality and complications of data structure implementation on 

GPUs make the search time longer than the MLP computation. 

→ A low-cost small trainable MLP (two-layer fully connected network) to predict 

CS on the fly.

Contextual Sparsity : Efficiency (MLP) 



Contextual Sparsity : Efficiency (MLP) 

➢ Given y, the sparsity predictor SPM predicts set SM

of important neurons in weights W1

➢ Compute the sparsified MLP defined in 

Since slowly evolving embedding phenomenon 

provides opportunities to relax the sequential 

computation to parallel asynchronously,

→ Overall latency now also includes prediction 

latency. CS for Attention and MLP blocks pays off. 



Contextual Sparsity : Efficiency (Attention) 

Similar to the MLP blocks, a fast selection of attention heads without full 
computation 

Only a few heads perform important computations for a given input token.

Challenges:

➢ It is unclear whether the past token’s key and value caches are needed for 

sparse prediction. 

➢ It is unclear how to handle the missing KV cache of past tokens for the current 

token computation at the selected head.



Method:

➢ For the predicted attention head of input y, compute the 

corresponding keys & values to store them in the KV cache. Also 

save a copy of y for all the other non-selected heads. 

➢ In the future token generation, if there is missing KV cache in the 

selected heads, load stored token embeddings and recompute the 

keys and values together. (This requires almost minimal extra 

memory access).

Contextual Sparsity : Efficiency (Attention) 



Implementation 
Kernel Fusion:

For SpMV, fuse the indexing and the multiplication step. 

(e.g., load a subset of W1 to memory, along with y, perform the 

multiply, SM then write down the result.)

→ 4x improvement over PyTorch’s SpMV with 3x 

memory I/O

Memory Coalescing :

➢ When loading W2
SM, indices in SM point to non-contiguous 

memory. These are stored in column-major format.   

➢ In attention blocks, attention output projection WO is stored 

in column-major.

→ These two techniques make DejaVu hardware-efficient, 

yielding up to 2× speedup in end-to-end time compared to 

FasterTransformer



Results

Ablation on MLP:

➢ MLP sparse predictor introduces no accuracy loss. 

➢ In its training, it achieves high validation accuracy. 

Ablation on Attention:

➢ Attention sparse predictor introduces no accuracy loss at around 50% 

sparsity. 

➢ During its training, the validation accuracy is around 93% in the middle 

layers and near 99% in the shallow and deep layers.



Accuracy: the average accuracy across 

tasks does not drop until 75% sparsity. 

→ Verifies the model’s ability for in-

context learning. 

Added Quantization: Combination 

achieves better accuracy than DejaVu or 

quantization only. 

→ This suggests that the approximation 

errors from these two directions do not get 

compounded.

Results - DejaVu OPT-175B



Conclusion 

✓ Paper observes contextual sparsity can be accurately predicted with 

lightweight learning-based algorithms.

✓ DejaVu is designed to use asynchronous lookahead predictors and hardware-

efficient sparsity to speed up LLM inference in wall-clock time. 

✓ Empirical results validate that contextual sparsity can reduce inference latency 

by over 2× compared to the state-of-the-art FasterTransformer without model 

quality drops. 

→ Paper Discussion…
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