
Deja Vu: Contextual Sparsity for
Efficient LLMS at Inference Time

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z., ... & Chen, B. (2023, July).

International Conference on Machine Learning (pp. 22137-22176).

Presented by Selin Yildirim
in UIUC CS 598 AI Efficiency, Spring 2024

Outline

❖ Problem

❖ Existing Solutions

❖ Contextual Sparsity

i.Existence

ii.Prediction

iii.Efficiency

❖ Results

❖ Conclusion

Background

Sparsity for achieving the real-world deployment of large scale language models.

Many of the parameters, weights or connections, in the network are zero (or close to zero)

Competitive prediction accuracy at a reduced resource utilization footprint i.e., model size,

inference FLOPs, and working memory.

Unstructured Sparsity

Structured Sparsity

yields highly sparse and accurate models enables massive

parallelization

by pruning out weights based on their importance enforce sparse structure on

parameter (e.g. magnitude, gradient, etc..) tensors

like low-rank, neuron/filter

Problem

LLM generation latency with memory I/O bottleneck

Earlier on efficient Inference: Quantization, Distillation, Sparsification

➢ Challenging to find sparsity that preserves in-context learning ability

➢ Hard to achieve wall-clock time speedup with sparsity due hardware

difficulties

→ Objective: Speeding up inference-time sparse LLMs in wall-clock time

while maintaining quality and in-context learning abilities

Existing Solutions
➢ Preserving in-context learning ability ?

Effective task-dependent pruning (Michel et al., 2019; Bansal et al., 2022), but maintaining

different models for each task conflicts with the task independence goal of LLMs

➢ Achieving wall-clock time speedup ?

Recent development in zero-shot pruning like SparseGPT (Frantar & Alistarh, 2023) finds 60%

unstructured sparsity, but does not lead to any wall-clock time speedup

➢ Infeasible pruning (sparsification)

Iterative pruning (Lee et al., 2018; Frankle & Carbin, 2018) only applies to smaller-scale

models.

➢ Expensive fine-tuning and retraining

Ideal Sparsity for LLMs,

➢ not require model retraining

➢ maintains accuracy and in-context learning

ability

➢ speed-up in wall-clock time on modern

hardware

→ Hypothesis: Contextual Sparsity

Small, input-dependent sets of attention heads and

MLP parameters that lead to nearly the same output

as the full model for an input

Contextual Sparsity

To verify, 2 forward passes of the model :

➢ Record attention heads and MLP neurons that yield

large output norms for the input (because the

activation function ReLU or GeLU zeros out low

activation)

➢ Each input example only uses the recorded subset

of parameters for the computation (pruning)

→ Leads to similar prediction on all in-context learning

and language modeling tasks (Widely exists in pre-

trained LLMs, e.g., OPT, Llama, GPT…)

Contextual Sparsity : Existence

Contextual Sparsity : Existence

Observation #1

➢ results in 85% contextual sparsity

○ On avg. 85% in attention, 95% in MLP

Observation #2

➢ 7× parameter reduction for each input

Contextual sparsity depends not only on individual

input tokens (non-contextual dynamic sparsity),

but also on their interactions (contextual dynamic

sparsity)

Evaluation #3

A large portion of attention head/MLP outputs

yield small norm ~ High contextual sparsity

Token embeddings change slowly across layers due

to high residual norm, residual connections

Observation #3

Contextual dynamic sparsity for every layer can be

predicted based on the similarity between layer

parameters (heads/MLP) and the output from

the previous layer

Contextual Sparsity : Prediction

Different heads learn different

projection spaces to perform clustering.

Token embeddings tend to cluster after

going through more layers

Hypothesis: Self-attention head is

regarded as one mean-shift step to push

input embeddings of different tokens

together, if they are already neighbors in

a projection space by

Contextual Sparsity : Prediction

→ CS Prediction of an MLP layer can be

formulated as the classical nearest-neighbor

search problem, based on similarity between

input & parameters,

○ Query: input at each layer

○ Data: neurons or attention heads

Propose an asynch. lookahead predictor to avoid

the sequential overhead, since cross-layer design

suffices for accurate sparsity prediction

Contextual Sparsity : Prediction

Attentionk

Attentionk+1

MLPk

One of the major bottlenecks for the LLM generation : 2/3 of the FLOPs and IOs

Example: For OPT-175B, one MLP block is only 0.2 ms on 8×A100 80GB

How efficient would applying nearest-neighbor search problem be?

High dimensionality and complications of data structure implementation on

GPUs make the search time longer than the MLP computation.

→ A low-cost small trainable MLP (two-layer fully connected network) to predict

CS on the fly.

Contextual Sparsity : Efficiency (MLP)

Contextual Sparsity : Efficiency (MLP)

➢ Given y, the sparsity predictor SPM predicts set SM

of important neurons in weights W1

➢ Compute the sparsified MLP defined in

Since slowly evolving embedding phenomenon

provides opportunities to relax the sequential

computation to parallel asynchronously,

→ Overall latency now also includes prediction

latency. CS for Attention and MLP blocks pays off.

Contextual Sparsity : Efficiency (Attention)

Similar to the MLP blocks, a fast selection of attention heads without full
computation

Only a few heads perform important computations for a given input token.

Challenges:

➢ It is unclear whether the past token’s key and value caches are needed for

sparse prediction.

➢ It is unclear how to handle the missing KV cache of past tokens for the current

token computation at the selected head.

Method:

➢ For the predicted attention head of input y, compute the

corresponding keys & values to store them in the KV cache. Also

save a copy of y for all the other non-selected heads.

➢ In the future token generation, if there is missing KV cache in the

selected heads, load stored token embeddings and recompute the

keys and values together. (This requires almost minimal extra

memory access).

Contextual Sparsity : Efficiency (Attention)

Implementation
Kernel Fusion:

For SpMV, fuse the indexing and the multiplication step.

(e.g., load a subset of W1 to memory, along with y, perform the

multiply, SM then write down the result.)

→ 4x improvement over PyTorch’s SpMV with 3x

memory I/O

Memory Coalescing :

➢ When loading W2
SM, indices in SM point to non-contiguous

memory. These are stored in column-major format.

➢ In attention blocks, attention output projection WO is stored

in column-major.

→ These two techniques make DejaVu hardware-efficient,

yielding up to 2× speedup in end-to-end time compared to

FasterTransformer

Results

Ablation on MLP:

➢ MLP sparse predictor introduces no accuracy loss.

➢ In its training, it achieves high validation accuracy.

Ablation on Attention:

➢ Attention sparse predictor introduces no accuracy loss at around 50%

sparsity.

➢ During its training, the validation accuracy is around 93% in the middle

layers and near 99% in the shallow and deep layers.

Accuracy: the average accuracy across

tasks does not drop until 75% sparsity.

→ Verifies the model’s ability for in-

context learning.

Added Quantization: Combination

achieves better accuracy than DejaVu or

quantization only.

→ This suggests that the approximation

errors from these two directions do not get

compounded.

Results - DejaVu OPT-175B

Conclusion

✓ Paper observes contextual sparsity can be accurately predicted with

lightweight learning-based algorithms.

✓ DejaVu is designed to use asynchronous lookahead predictors and hardware-

efficient sparsity to speed up LLM inference in wall-clock time.

✓ Empirical results validate that contextual sparsity can reduce inference latency

by over 2× compared to the state-of-the-art FasterTransformer without model

quality drops.

→ Paper Discussion…

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z., ... & Chen, B. (2023, July).

International Conference on Machine Learning (pp. 22137-22176).

Xia, H., Zheng, Z., Li, Y., Zhuang, D., Zhou, Z., Qiu, X., ... & Song, S. L. (2023). Flash-

llm: Enabling cost-effective and highly-efficient large generative model inference with

unstructured sparsity. arXiv preprint arXiv:2309.10285.

Kusupati, A. (2020). Adapting Unstructured Sparsity Techniques for Structured Sparsity.

https://slideslive.com/39003934/deja-vu-contextual-sparsity-for-efficient-llms-at-

inference-time?ref=speaker-19019

References

https://slideslive.com/39003934/deja-vu-contextual-sparsity-for-efficient-llms-at-inference-time?ref=speaker-19019
https://slideslive.com/39003934/deja-vu-contextual-sparsity-for-efficient-llms-at-inference-time?ref=speaker-19019

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

