
Enabling efficient trillion parameter scale training 
for deep learning models

https://github.com/microsoft/DeepSpeed

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Faster & cheaper

Presented by: Olatunji (Tunji) Ruwase

On behalf of the DeepSpeed team
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Motivation: Why large language models?

Larger models → better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger 
models than smaller ones to same 
accuracy



System Challenges/Opportunities of Large language models?

➢Memory

➢Compute

➢Data



ZeRO, 
ZeRO-Offload, 
ZeRO-Infinity
Breaking the GPU Memory Wall for DL Training
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Data0
Transformer stack
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Transformer stackData1 FP16 Parameters
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FP32 Momentum

FP16 Gradient

FP32 Variance
FP32 Gradient

FP16 Parameters

FP32 Parameters
FP32 Momentum

FP16 Gradient

FP32 Variance
FP32 Gradient

• FP(BF)16 parameter : 2M bytes
• FP(BF)16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model
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Understanding Memory Consumption 

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

https://arxiv.org/pdf/1710.03740.pdf


ZeRO: Overcoming GPU memory wall
• Family of composable optimizations to reduce GPU memory costs of DL 

state (params, grads, optimizer) 
• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories
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ZeRO: Overcoming GPU memory wall
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• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO: Overcoming GPU memory wall

8

Pa
rt

iti
on Stage 1 (Pos)

• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO: Overcoming GPU memory wall
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• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO: Overcoming GPU memory wall
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Pa
rt

iti
on Stage 3 (Pos+g+p)

• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO: Overcoming GPU memory wall
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Pa
rt

iti
on

Bytes/param/GPU

2 + 2 + 16       =  20

2 + 2 + (16/N ) < 5

2 + ((2+16)/N)  < 3

(2 + 2 + 16)/N   < 1

• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO: Overcoming GPU memory wall

12

cpu nvme

ZeRO-OffloadOffload

• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO: Overcoming GPU memory wall

13

Offload

cpu nvme

ZeRO-Infinity

• Family of composable optimizations to reduce GPU memory costs of DL 
state (params, grads, optimizer) 

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories



ZeRO-Infinity
Breaking the GPU Memory Wall for DL Training
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Large model training landscape

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in 

model size?

•  Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D 

parallelism (tensor-slicing + pipeline 
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium
15

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Beyond the GPU Memory
Memory available on a Single DGX-2 Node

Model Size on a Single DGX-2 Node

GPU Only

CPU + GPU

NVMe+CPU+GPU
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• Modern clusters have 
heterogeneous memory systems.

• GPU memory is a small fraction

• Leverages GPU/CPU/NVMe memory
• 32T params on 32 nodes
• 1T params on a single node

• Fine-tune GPT-3 size on single node



Recap: Large model training landscape today

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in 

model size?

•  Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D 

parallelism (tensor-slicing + pipeline 
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Redefining the landscape with ZeRO-Infinity
• Beyond GPU Memory  

• 50x larger models
• 32T params on 512 GPUs (instead of 

25K)

• Broader access to large model training 
• GPT-3 sized fine-tuning on a single 

node/GPU (instead of 16 nodes)

• Excellent Throughput and Scalability
• Comparable to 3D-parallelism

• Ease of Use
• No model refactoring necessary

Paper: ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale 
Deep Learning (arxiv.org)
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https://arxiv.org/pdf/2104.07857.pdf
https://arxiv.org/pdf/2104.07857.pdf


DeepSpeed
Mixture of Experts (MoE)

Improving Compute Efficiency for DL scaling
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Mixture of Experts (MoE): Overview

• MoE models have been around for a while..

• Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
• Harder to scale, instability during training, and inefficient training

• GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
• 600B models beating 96-layer dense models, 10x training speedup, generic 

sharding framework (Tensorflow XLA), full precision training
• Less stability with larger models

• Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
• More efficient training

• Top-1 gating instead of top-2/top-k, Better initialization conditions, Mixed precision 
training: FP32 gating (instead of FP16), Stable training with larger models

• SOTA results on language understanding task
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https://arxiv.org/pdf/2006.16668v1.pdf
https://arxiv.org/abs/2101.03961


MoE: Gshard and Switch Transformer
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MoE models are sparse and need less compute 

• All parameters are used in forward and backward paths
• Increasing model capacity needs more computation
• Optimized for dense computation
• Larger model size →Higher compute requirements 

(FLOPs)

Dense Models:

• Sparse utilization of subset of  parameters based on input
• Same computation is needed regardless of the model 

size
• Not-optimized for dense computation
• Larger model size → Similar/Same Compute 

requirements

Sparse MoE models
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What is Expert Parallelism?

• Expert Parallelism -->  Data and Model 
parallelism within the model

• Non-MoE parameters – replicated 
• Like standard data parallelism (DP)
• ZeRO DP in DeepSpeed can shard these too!

• MoE parameters – partitioned (sharded)
• Like model parallelism (MP)

• Two All-to-All(s) in Forward and 
Backward
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Next AI Scale on current hardware

• Can we achieve next generation model quality on current generation of hardware?

• From a training perspective MoE provides a promising path
• Scale at sub-linear cost 

• Z-Code multi-lingual multi-task model 

• MoE is promising but is it practical?
• Limited Scope: Does it work for NLG or NLR or other models?
• Massive Memory Requirements: 8-10x in size compared to quality equivalent dense 
• Limited expert scaling: Diminishing returns at 64-128 experts?
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DeepSpeed MoE: Multidimensional Parallelism

Can scale both: 1) Number of experts and 
         2) Base model sizes 25



Cheaper NLG Model Training with MoE

Case Model size LAMBADA:

completion 

prediction

PIQA:

commonsense 

reasoning

BoolQ:

reading 

comprehension

RACE-h:

reading 

comprehension

TriviaQA:

question 

answering

WebQs:

question 

answering

Dense NLG:

(1) 350M 350M 52.03 69.31 53.64 31.77 3.21 1.57

(2) 1.3B 1.3B 63.65 73.39 63.39 35.60 10.05 3.25

(3) 6.7B 6.7B 71.94 76.71 67.03 37.42 23.47 5.12

Standard MoE NLG:

(4) 350M+MoE-128 13B 62.70 74.59 60.46 35.60 16.58 5.17

(5) 1.3B+MoE-128 52B 69.84 76.71 64.92 38.09 31.29 7.19

Training 

samples per 

sec

Throughput gain/ 

Cost Reduction

6.7B dense 70 1x

1.3B+MoE-128 372 5x

• 1.3B+MoE with 128 experts, compared to 1.3B and 
6.7B dense (GPT-3 like)

• 5x lower training cost to same accuracy using MoE
• 8x more parameters to same accuracy using MoE
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E1 E2 E3 E4 E5 ENE6 E7Expert Layer 1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer 2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L

Token

E1 E2 E3Expert Layer 1

E1 E2 E3Expert Layer 2

E1 E2 E3Expert Layer L-2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L

Token

EN/2

EN/2

EN/2
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• Challenges of MoE: 8x parameters than quality 
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities 
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE

Parameter Efficient MoE via PR-MoE and MoS
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• Challenges of MoE: 8x parameters than quality 
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities 
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE
• Plain structure→ Residual MoE

Parameter Efficient MoE via PR-MoE and MoS

Top-2 MoE with extra 
communication
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• Challenges of MoE: 8x parameters than quality 
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities 
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE
• Plain structure→ Residual MoE

Parameter Efficient MoE via PR-MoE and MoS

Token

Expert Layer L-1 E1 E2 E3 E4 E5 ENE6 E7MLP

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L MLP

+

+

Expert Layer L-2 MLP E1 E2 E3

Expert Layer 2 MLP E1 E2 E3

Expert Layer 1 MLP E1 E2 E3

+

E4 E5 ENE6 E7

E4 E5 ENE6 E7

E4 E5 ENE6 E7
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• Challenges of MoE: 8x parameters than quality 
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities 
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE
• Plain structure→ Residual MoE
• Our design PR-MoE

Parameter Efficient MoE via PR-MoE and MoS

Token

Expert Layer L-1 E1 E2 E3 E4 E5 ENE6 E7MLP

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L MLP

+

+

Expert Layer L-2 MLP E1 E2 E3 EN/2

Expert Layer 2 MLP E1 E2 EN/2E3

Expert Layer 1 MLP E1 E2 E3 EN/2

+
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• Challenges of MoE: 8x parameters than quality 
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities 
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid structure
• Plain structure→ Residual structure
• Our design PR-MoE

• MoS: MoE-to-MoE Knowledge distillation

Parameter Efficient MoE via PR-MoE and MoS

Token

Expert Layer L-4 E1 E2 E3 E4 E5 ENE6 E7MLP

E1 E2 E3 E4 E5 ENE6 E7MLP

+

Expert Layer L-5 MLP E1 E2 E3 EN/2

Expert Layer 1 MLP E1 E2 EN/2E3

+

Expert Layer L-3



Parameter Efficient MoE via PR-MoE and MoS

Case
Model size
(Reductio

n)
LAMBADA PIQA BoolQ RACE-h TriviaQA WebQs

MoE NLG with 350M base model:
(1) MoE 13B (1x) 62.70 74.59 60.46 35.60 16.58 5.17
(2) PR-MoE 4.0B (3.2x) 63.65 73.99 59.88 35.69 16.30 4.73
(3) PR-MoE + MoS 3.5B (3.7x) 63.46 73.34 58.07 34.83 13.69 5.22
MoE NLG with 1.3B base model:
(4) MoE 52B (1x) 69.84 76.71 64.92 38.09 31.29 7.19
(5) PR-MoE 31B (1.7x) 70.60 77.75 67.16 38.09 28.86 7.73
(6) PR-MoE + MoS 27B (1.9x) 70.17 77.69 65.66 36.94 29.05 8.22

• PR-MoE: model size reduction from 1.7x to 3.2x
• PR-MoE + MoS: model size reduction from 1.9x to 3.7x

32
Paper: DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale (ICML’22)

https://arxiv.org/abs/2201.05596


Deepspeed-TED: Scaling MoE base model

• Enable MoEs with large base models

• Minimize communication times to maintain efficiency.
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• A three-dimensional hybrid of state-of-the-art parallel training algorithms

• T – Tensor Parallelism (Megatron-LM [3])

• E – Expert Parallelism (DeepSpeed-MoE [4])

• D – Sharded Data Parallelism (ZeRO [5])



- Limit Number 
of experts to 
128

- Limit tensor 
parallelism to a 
node. 

4.8x increase!
34

3D parallelism helps up train larger models



Results

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit
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Nearly 50% time in 
communication!!



Duplicate Token Dropping: 
64% reduction in All-to-All time

Comm-Aware Activation 
Checkpointing:

33% reduction in All-Reduce time

Results: Communication optimizations

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit

Overall 21% Speedup
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Results (Strong Scaling)
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22-29% 
speedups!

Machine - Summit



Data Efficiency
Improving Deep Learning Model Quality and 
Training Efficiency via Efficient Data Sampling 
and Routing 



DeepSpeed Data Efficiency

• Why we care about data efficiency
• Training cost = O(model scale * data scale)

• Data scale is increasing as fast as model scale

• Our goal
• Achieve same model quality with less data

• Achieve better model quality with same data

• No/minimal model architecture change
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The Stability-Efficiency Dilemma

• When pretraining large-scale language models
• We want large batch sizes & learning rates to increase training efficiency

• But they affect training stability, causing poor convergence or divergence



The Stability-Efficiency Dilemma

• When pretraining large-scale language models
• We want large batch sizes & learning rates to increase training efficiency

• But they affect training stability, causing poor convergence or divergence

• We study this dilemma by in-depth analysis on GPT-2 
pretraining
• Larger batch sizes & LR reduces training time, but affect model quality

• (In paper) A correlation between training instability and gradient variance

GPT-2 1.5B model Training 
time

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512 341Hr 13.89 57.29%

Batch size 4K, 4x 
LR

151Hr 14.76 55.06%



The Stability-Efficiency Dilemma

• When pretraining large-scale language models
• We want large batch sizes & learning rates to increase training efficiency

• But they affect training stability, causing poor convergence or divergence

• We study this dilemma by in-depth analysis on GPT-2 
pretraining
• Larger batch sizes & LR reduces training time, but affect model quality

• (In paper) A correlation between training instability and gradient variance

GPT-2 1.5B model Training 
time

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512 341Hr 13.89 57.29%

Batch size 4K, 4x 
LR

151Hr 14.76 55.06%



Proposed Sequence Length Warmup Method

• Instability mostly at early stage → some sort of “warmup” is needed
• LR and batch size warmup didn’t help



Proposed Sequence Length Warmup Method

• Instability mostly at early stage → some sort of “warmup” is needed
• LR and batch size warmup didn’t help

• Our study shows warming up sequence length is promising 



Proposed Sequence Length Warmup Method

• Instability mostly at early stage → some sort of “warmup” is needed
• LR and batch size warmup didn’t help

• Our study shows warming up sequence length is promising 

• The Sequence Length Warmup (SLW) method
• Two configs: starting sequence length, number of warmup steps

• (In paper) Simple truncation-based implementation, low-cost tuning strategy



GPT-2 Evaluation

• Stable training under large batch size & LR

• Same model quality under less token/time

GPT-2 1.5B model Training 
time

Training 
tokens

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512, baseline 341Hr 157B 13.89 57.29%

Batch size 4K, 4x LR, 
baseline

151Hr 157B 14.76 55.06%

Batch size 4K, 4x LR, ours 121Hr 121B 13.88 58.20%



GPT-2 Evaluation

• Stable training under large batch size & LR

• Same model quality under less token/time

• Even better model quality under same token/time

GPT-2 1.5B model Training 
time

Training 
tokens

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512, baseline 341Hr 157B 13.89 57.29%

Batch size 4K, 4x LR, 
baseline

151Hr 157B 14.76 55.06%

Batch size 4K, 4x LR, ours 121Hr 121B 13.88 58.20%

Batch size 4K, 4x LR, ours 155Hr 157B 13.72 58.47%



DeepSpeed: Reshaping the Large Model Training Landscape

System capability to efficiently train models with trillions of parameters

Powered Massive Models
o METRO-LM (5.4B)
o Microsoft-Turing NLG (17B)
o GPT Neo-X (20B)
o AlexaTM (20B)
o IDEFICS (80B)
o YaLM (100B)
o GLM (130B) 
o BLOOM: Big Science (176B)
o Jurrasic-1 (178B)
o Megatron-Turing NLG (530B) 
o …

Powered Frameworks

…

Accelerator support

…

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


DeepSpeed Transformation

Training optimization library

Past Today and Future

Multi-purpose DL optimization suite

Training
• Speed Scale Cost
• Democratization
• MoE models
• Long sequence
• RLHF

Inference
• Large models
• Latency
• Serving cost
• Agility

Compression
• Model size
• Latency
• Composability
• Runnable on 

client devices

Science
• Speed
• Scale
• Capability
• Diversity

Training
• Speed
• Scale
• Cost
• Democratization

T S

I C
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© Copyright Microsoft Corporation. All rights reserved. 

We welcome contributions! Make your first pull request ☺

https://github.com/microsoft/DeepSpeed

www.deepspeed.ai

Follow us on X: @MSFTDeepSpeed

Thank You!

https://github.com/microsoft/DeepSpeed
http://www.deepspeed.ai/


ZeRO-Infinity in Action
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