
Enabling efficient trillion parameter scale training
for deep learning models

https://github.com/microsoft/DeepSpeed

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Democratize AI
• Bigger & faster for all

Usability
• Few lines of code changes

Compressed Training
• Boosted efficiency

Accelerated inference
• Faster & cheaper

Presented by: Olatunji (Tunji) Ruwase

On behalf of the DeepSpeed team

https://github.com/microsoft/DeepSpeed

Motivation: Why large language models?

Larger models → better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger
models than smaller ones to same
accuracy

System Challenges/Opportunities of Large language models?

➢Memory

➢Compute

➢Data

ZeRO,
ZeRO-Offload,
ZeRO-Infinity
Breaking the GPU Memory Wall for DL Training

4

GPU0

Data0
Transformer stack

GPU1

Transformer stackData1 FP16 Parameters

FP32 Parameters
FP32 Momentum

FP16 Gradient

FP32 Variance
FP32 Gradient

FP16 Parameters

FP32 Parameters
FP32 Momentum

FP16 Gradient

FP32 Variance
FP32 Gradient

• FP(BF)16 parameter : 2M bytes
• FP(BF)16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

5

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

https://arxiv.org/pdf/1710.03740.pdf

ZeRO: Overcoming GPU memory wall
• Family of composable optimizations to reduce GPU memory costs of DL

state (params, grads, optimizer)
• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

6

ZeRO: Overcoming GPU memory wall

7

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO: Overcoming GPU memory wall

8

Pa
rt

iti
on Stage 1 (Pos)

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO: Overcoming GPU memory wall

9

Pa
rt

iti
on Stage 2 (Pos+g)

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO: Overcoming GPU memory wall

10

Pa
rt

iti
on Stage 3 (Pos+g+p)

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO: Overcoming GPU memory wall

11

Pa
rt

iti
on

Bytes/param/GPU

2 + 2 + 16 = 20

2 + 2 + (16/N) < 5

2 + ((2+16)/N) < 3

(2 + 2 + 16)/N < 1

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO: Overcoming GPU memory wall

12

cpu nvme

ZeRO-OffloadOffload

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO: Overcoming GPU memory wall

13

Offload

cpu nvme

ZeRO-Infinity

• Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

• Partitioning DL state across data parallel GPUs (3 stages)
• Offloading DL state to CPU or NVMe memories

ZeRO-Infinity
Breaking the GPU Memory Wall for DL Training

14

Large model training landscape

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in

model size?

• Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D

parallelism (tensor-slicing + pipeline
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium
15

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Beyond the GPU Memory
Memory available on a Single DGX-2 Node

Model Size on a Single DGX-2 Node

GPU Only

CPU + GPU

NVMe+CPU+GPU

16

• Modern clusters have
heterogeneous memory systems.

• GPU memory is a small fraction

• Leverages GPU/CPU/NVMe memory
• 32T params on 32 nodes
• 1T params on a single node

• Fine-tune GPT-3 size on single node

Recap: Large model training landscape today

• GPU Memory Wall
• 1T (10T) params: 800 (8K) V100 GPUs
• How do we support the growth in

model size?

• Accessibility to large model training
• 256 GPUs to fine-tune GPT-3
• Limited access to such resources

• Model code refactoring
• Re-writing the model using 3D

parallelism (tensor-slicing + pipeline
parallelism)

• Painful and error prone

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium
17

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Redefining the landscape with ZeRO-Infinity
• Beyond GPU Memory

• 50x larger models
• 32T params on 512 GPUs (instead of

25K)

• Broader access to large model training
• GPT-3 sized fine-tuning on a single

node/GPU (instead of 16 nodes)

• Excellent Throughput and Scalability
• Comparable to 3D-parallelism

• Ease of Use
• No model refactoring necessary

Paper: ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale
Deep Learning (arxiv.org)

18

https://arxiv.org/pdf/2104.07857.pdf
https://arxiv.org/pdf/2104.07857.pdf

DeepSpeed
Mixture of Experts (MoE)

Improving Compute Efficiency for DL scaling

19

Mixture of Experts (MoE): Overview

• MoE models have been around for a while..

• Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
• Harder to scale, instability during training, and inefficient training

• GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
• 600B models beating 96-layer dense models, 10x training speedup, generic

sharding framework (Tensorflow XLA), full precision training
• Less stability with larger models

• Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
• More efficient training

• Top-1 gating instead of top-2/top-k, Better initialization conditions, Mixed precision
training: FP32 gating (instead of FP16), Stable training with larger models

• SOTA results on language understanding task

20

https://arxiv.org/pdf/2006.16668v1.pdf
https://arxiv.org/abs/2101.03961

MoE: Gshard and Switch Transformer

21

MoE models are sparse and need less compute

• All parameters are used in forward and backward paths
• Increasing model capacity needs more computation
• Optimized for dense computation
• Larger model size →Higher compute requirements

(FLOPs)

Dense Models:

• Sparse utilization of subset of parameters based on input
• Same computation is needed regardless of the model

size
• Not-optimized for dense computation
• Larger model size → Similar/Same Compute

requirements

Sparse MoE models

22

What is Expert Parallelism?

• Expert Parallelism --> Data and Model
parallelism within the model

• Non-MoE parameters – replicated
• Like standard data parallelism (DP)
• ZeRO DP in DeepSpeed can shard these too!

• MoE parameters – partitioned (sharded)
• Like model parallelism (MP)

• Two All-to-All(s) in Forward and
Backward

23

Next AI Scale on current hardware

• Can we achieve next generation model quality on current generation of hardware?

• From a training perspective MoE provides a promising path
• Scale at sub-linear cost

• Z-Code multi-lingual multi-task model

• MoE is promising but is it practical?
• Limited Scope: Does it work for NLG or NLR or other models?
• Massive Memory Requirements: 8-10x in size compared to quality equivalent dense
• Limited expert scaling: Diminishing returns at 64-128 experts?

24

DeepSpeed MoE: Multidimensional Parallelism

Can scale both: 1) Number of experts and
 2) Base model sizes 25

Cheaper NLG Model Training with MoE

Case Model size LAMBADA:

completion

prediction

PIQA:

commonsense

reasoning

BoolQ:

reading

comprehension

RACE-h:

reading

comprehension

TriviaQA:

question

answering

WebQs:

question

answering

Dense NLG:

(1) 350M 350M 52.03 69.31 53.64 31.77 3.21 1.57

(2) 1.3B 1.3B 63.65 73.39 63.39 35.60 10.05 3.25

(3) 6.7B 6.7B 71.94 76.71 67.03 37.42 23.47 5.12

Standard MoE NLG:

(4) 350M+MoE-128 13B 62.70 74.59 60.46 35.60 16.58 5.17

(5) 1.3B+MoE-128 52B 69.84 76.71 64.92 38.09 31.29 7.19

Training

samples per

sec

Throughput gain/

Cost Reduction

6.7B dense 70 1x

1.3B+MoE-128 372 5x

• 1.3B+MoE with 128 experts, compared to 1.3B and
6.7B dense (GPT-3 like)

• 5x lower training cost to same accuracy using MoE
• 8x more parameters to same accuracy using MoE

26

E1 E2 E3 E4 E5 ENE6 E7Expert Layer 1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer 2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L

Token

E1 E2 E3Expert Layer 1

E1 E2 E3Expert Layer 2

E1 E2 E3Expert Layer L-2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L

Token

EN/2

EN/2

EN/2

27

• Challenges of MoE: 8x parameters than quality
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE

Parameter Efficient MoE via PR-MoE and MoS

E1 E2 E3 E4 E5 ENE6 E7Expert Layer 1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer 2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-2

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L-1

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L

Token

28

• Challenges of MoE: 8x parameters than quality
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE
• Plain structure→ Residual MoE

Parameter Efficient MoE via PR-MoE and MoS

Top-2 MoE with extra
communication

29

• Challenges of MoE: 8x parameters than quality
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE
• Plain structure→ Residual MoE

Parameter Efficient MoE via PR-MoE and MoS

Token

Expert Layer L-1 E1 E2 E3 E4 E5 ENE6 E7MLP

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L MLP

+

+

Expert Layer L-2 MLP E1 E2 E3

Expert Layer 2 MLP E1 E2 E3

Expert Layer 1 MLP E1 E2 E3

+

E4 E5 ENE6 E7

E4 E5 ENE6 E7

E4 E5 ENE6 E7

30

• Challenges of MoE: 8x parameters than quality
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid MoE
• Plain structure→ Residual MoE
• Our design PR-MoE

Parameter Efficient MoE via PR-MoE and MoS

Token

Expert Layer L-1 E1 E2 E3 E4 E5 ENE6 E7MLP

E1 E2 E3 E4 E5 ENE6 E7Expert Layer L MLP

+

+

Expert Layer L-2 MLP E1 E2 E3 EN/2

Expert Layer 2 MLP E1 E2 EN/2E3

Expert Layer 1 MLP E1 E2 E3 EN/2

+

31

• Challenges of MoE: 8x parameters than quality
equivalent dense models
• Training requires large memory footprint
• Slow inference due to parameter loading

• New opportunities
• Parameter efficient MoE

• Homogeneous layer structure → Pyramid structure
• Plain structure→ Residual structure
• Our design PR-MoE

• MoS: MoE-to-MoE Knowledge distillation

Parameter Efficient MoE via PR-MoE and MoS

Token

Expert Layer L-4 E1 E2 E3 E4 E5 ENE6 E7MLP

E1 E2 E3 E4 E5 ENE6 E7MLP

+

Expert Layer L-5 MLP E1 E2 E3 EN/2

Expert Layer 1 MLP E1 E2 EN/2E3

+

Expert Layer L-3

Parameter Efficient MoE via PR-MoE and MoS

Case
Model size
(Reductio

n)
LAMBADA PIQA BoolQ RACE-h TriviaQA WebQs

MoE NLG with 350M base model:
(1) MoE 13B (1x) 62.70 74.59 60.46 35.60 16.58 5.17
(2) PR-MoE 4.0B (3.2x) 63.65 73.99 59.88 35.69 16.30 4.73
(3) PR-MoE + MoS 3.5B (3.7x) 63.46 73.34 58.07 34.83 13.69 5.22
MoE NLG with 1.3B base model:
(4) MoE 52B (1x) 69.84 76.71 64.92 38.09 31.29 7.19
(5) PR-MoE 31B (1.7x) 70.60 77.75 67.16 38.09 28.86 7.73
(6) PR-MoE + MoS 27B (1.9x) 70.17 77.69 65.66 36.94 29.05 8.22

• PR-MoE: model size reduction from 1.7x to 3.2x
• PR-MoE + MoS: model size reduction from 1.9x to 3.7x

32
Paper: DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale (ICML’22)

https://arxiv.org/abs/2201.05596

Deepspeed-TED: Scaling MoE base model

• Enable MoEs with large base models

• Minimize communication times to maintain efficiency.

33

• A three-dimensional hybrid of state-of-the-art parallel training algorithms

• T – Tensor Parallelism (Megatron-LM [3])

• E – Expert Parallelism (DeepSpeed-MoE [4])

• D – Sharded Data Parallelism (ZeRO [5])

- Limit Number
of experts to
128

- Limit tensor
parallelism to a
node.

4.8x increase!
34

3D parallelism helps up train larger models

Results

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit

35

Nearly 50% time in
communication!!

Duplicate Token Dropping:
64% reduction in All-to-All time

Comm-Aware Activation
Checkpointing:

33% reduction in All-Reduce time

Results: Communication optimizations

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit

Overall 21% Speedup

36

Results (Strong Scaling)

37

22-29%
speedups!

Machine - Summit

Data Efficiency
Improving Deep Learning Model Quality and
Training Efficiency via Efficient Data Sampling
and Routing

DeepSpeed Data Efficiency

• Why we care about data efficiency
• Training cost = O(model scale * data scale)

• Data scale is increasing as fast as model scale

• Our goal
• Achieve same model quality with less data

• Achieve better model quality with same data

• No/minimal model architecture change

39

The Stability-Efficiency Dilemma

• When pretraining large-scale language models
• We want large batch sizes & learning rates to increase training efficiency

• But they affect training stability, causing poor convergence or divergence

The Stability-Efficiency Dilemma

• When pretraining large-scale language models
• We want large batch sizes & learning rates to increase training efficiency

• But they affect training stability, causing poor convergence or divergence

• We study this dilemma by in-depth analysis on GPT-2
pretraining
• Larger batch sizes & LR reduces training time, but affect model quality

• (In paper) A correlation between training instability and gradient variance

GPT-2 1.5B model Training
time

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512 341Hr 13.89 57.29%

Batch size 4K, 4x
LR

151Hr 14.76 55.06%

The Stability-Efficiency Dilemma

• When pretraining large-scale language models
• We want large batch sizes & learning rates to increase training efficiency

• But they affect training stability, causing poor convergence or divergence

• We study this dilemma by in-depth analysis on GPT-2
pretraining
• Larger batch sizes & LR reduces training time, but affect model quality

• (In paper) A correlation between training instability and gradient variance

GPT-2 1.5B model Training
time

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512 341Hr 13.89 57.29%

Batch size 4K, 4x
LR

151Hr 14.76 55.06%

Proposed Sequence Length Warmup Method

• Instability mostly at early stage → some sort of “warmup” is needed
• LR and batch size warmup didn’t help

Proposed Sequence Length Warmup Method

• Instability mostly at early stage → some sort of “warmup” is needed
• LR and batch size warmup didn’t help

• Our study shows warming up sequence length is promising

Proposed Sequence Length Warmup Method

• Instability mostly at early stage → some sort of “warmup” is needed
• LR and batch size warmup didn’t help

• Our study shows warming up sequence length is promising

• The Sequence Length Warmup (SLW) method
• Two configs: starting sequence length, number of warmup steps

• (In paper) Simple truncation-based implementation, low-cost tuning strategy

GPT-2 Evaluation

• Stable training under large batch size & LR

• Same model quality under less token/time

GPT-2 1.5B model Training
time

Training
tokens

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512, baseline 341Hr 157B 13.89 57.29%

Batch size 4K, 4x LR,
baseline

151Hr 157B 14.76 55.06%

Batch size 4K, 4x LR, ours 121Hr 121B 13.88 58.20%

GPT-2 Evaluation

• Stable training under large batch size & LR

• Same model quality under less token/time

• Even better model quality under same token/time

GPT-2 1.5B model Training
time

Training
tokens

WikiText PPL ↓ LAMBADA Acc ↑

Batch size 512, baseline 341Hr 157B 13.89 57.29%

Batch size 4K, 4x LR,
baseline

151Hr 157B 14.76 55.06%

Batch size 4K, 4x LR, ours 121Hr 121B 13.88 58.20%

Batch size 4K, 4x LR, ours 155Hr 157B 13.72 58.47%

DeepSpeed: Reshaping the Large Model Training Landscape

System capability to efficiently train models with trillions of parameters

Powered Massive Models
o METRO-LM (5.4B)
o Microsoft-Turing NLG (17B)
o GPT Neo-X (20B)
o AlexaTM (20B)
o IDEFICS (80B)
o YaLM (100B)
o GLM (130B)
o BLOOM: Big Science (176B)
o Jurrasic-1 (178B)
o Megatron-Turing NLG (530B)
o …

Powered Frameworks

…

Accelerator support

…

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

DeepSpeed Transformation

Training optimization library

Past Today and Future

Multi-purpose DL optimization suite

Training
• Speed Scale Cost
• Democratization
• MoE models
• Long sequence
• RLHF

Inference
• Large models
• Latency
• Serving cost
• Agility

Compression
• Model size
• Latency
• Composability
• Runnable on

client devices

Science
• Speed
• Scale
• Capability
• Diversity

Training
• Speed
• Scale
• Cost
• Democratization

T S

I C

49

© Copyright Microsoft Corporation. All rights reserved.

We welcome contributions! Make your first pull request ☺

https://github.com/microsoft/DeepSpeed

www.deepspeed.ai

Follow us on X: @MSFTDeepSpeed

Thank You!

https://github.com/microsoft/DeepSpeed
http://www.deepspeed.ai/

ZeRO-Infinity in Action

51

	Default Section
	Slide 1: Enabling efficient trillion parameter scale training for deep learning models https://github.com/microsoft/DeepSpeed

	Overview
	Slide 2: Motivation: Why large language models?
	Slide 3: System Challenges/Opportunities of Large language models?

	ZeRO
	Slide 4: ZeRO, ZeRO-Offload, ZeRO-Infinity
	Slide 5
	Slide 6: ZeRO: Overcoming GPU memory wall
	Slide 7: ZeRO: Overcoming GPU memory wall
	Slide 8: ZeRO: Overcoming GPU memory wall
	Slide 9: ZeRO: Overcoming GPU memory wall
	Slide 10: ZeRO: Overcoming GPU memory wall
	Slide 11: ZeRO: Overcoming GPU memory wall
	Slide 12: ZeRO: Overcoming GPU memory wall
	Slide 13: ZeRO: Overcoming GPU memory wall

	ZeRO Infinity
	Slide 14: ZeRO-Infinity
	Slide 15: Large model training landscape
	Slide 16: Beyond the GPU Memory
	Slide 17: Recap: Large model training landscape today
	Slide 18: Redefining the landscape with ZeRO-Infinity

	DeepSpeed-MoE
	Slide 19: DeepSpeed Mixture of Experts (MoE)
	Slide 20: Mixture of Experts (MoE): Overview
	Slide 21: MoE: Gshard and Switch Transformer
	Slide 22: MoE models are sparse and need less compute
	Slide 23: What is Expert Parallelism?
	Slide 24: Next AI Scale on current hardware
	Slide 25: DeepSpeed MoE: Multidimensional Parallelism
	Slide 26: Cheaper NLG Model Training with MoE
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Parameter Efficient MoE via PR-MoE and MoS
	Slide 33: Deepspeed-TED: Scaling MoE base model
	Slide 34: 3D parallelism helps up train larger models
	Slide 35: Results
	Slide 36: Results: Communication optimizations
	Slide 37: Results (Strong Scaling)

	Data Efficiency
	Slide 38: Data Efficiency
	Slide 39: DeepSpeed Data Efficiency
	Slide 40: The Stability-Efficiency Dilemma
	Slide 41: The Stability-Efficiency Dilemma
	Slide 42: The Stability-Efficiency Dilemma
	Slide 43: Proposed Sequence Length Warmup Method
	Slide 44: Proposed Sequence Length Warmup Method
	Slide 45: Proposed Sequence Length Warmup Method
	Slide 46: GPT-2 Evaluation
	Slide 47: GPT-2 Evaluation

	Conclusion
	Slide 48: DeepSpeed: Reshaping the Large Model Training Landscape
	Slide 49: DeepSpeed Transformation
	Slide 50
	Slide 51

