e 10+ Trillion parameters
I@ deepspeed

e Fast & scalable training
Enabling efficient trillion parameter scale training
for deep learning models

Compressed Training
https://github.com/microsoft/DeepSpeed * Boosted efficiency

Accelerated inference
* Faster & cheaper

Presented by: Olatunji (Tunji) Ruwase ‘ Usability
On behalf of the DeepSpeed team - e Few lines of code changes



https://github.com/microsoft/DeepSpeed

Motivation: Why large language models?

Model Size (in billions of parameters)
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Larger models = better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger
models than smaller ones to same
accuracy



System Challenges/Opportunities of Large language models?

1000

GPT-3 (175B) —__
Q
% 100 Megatron-Turing NLG (530B)
: »Mem
: emory
2 Megatron-LM (8.3B)
“ Turing-NLG (17.2B)
n 10 o
e 7\
0 ©~ \T5(11B)
=
s » Compute
g 1 ~~GPT-2 (1.5B)
n
K
3
= BERT-Large (340M) D
0.1 > ata
L ELMo (94M)
0.01

2018 2019 2020 2021 2022



/eRO,
/eRO-0Offload,
/eRO-Infinity

Breaking the GPU Memory Wall for DL Training

ZeRO: Memory Optimizations Toward Training
Trillion Parameter Models

Samyam Rajbhandari*, Jeff Rasley®, Olatunji Ruwase, Yuxiong He

{samyamr, jerasley, olruwase, yuxhe}@microsoft.com

ABSTRACT
Large deep learning models offer significant accuracy gains,
but training billions to trillions of parameters is challenging.
Existing solutions such as data and model parallelisms exhibit
fundamental limitations to fit these models into limited device

common settings like mixed precision and ADAM optimizer
[6]. Other existing solutions such as Pipeline Parallelism (PP),
Model Parallelism (MP), CPU-Offloading, etc, make trade-
offs between functionality, ility, as well as memory and
compute/communication efficiency, all of which are crucial to

ZeRO-Offload: Democratizing Billion-Scale Model Training

Jie Ren* , Samyam Rajbhandari® , Reza Yazdani Aminabadi' , Olatunji Ruwase'
Shuangyan Yang* , Minjia Zhang' , Dong Li* , Yuxiong He'
*Microsoft, *University of California, Merced
(jren6, syangl27, dli35)@ucmerced.edu, {samyamr, yazdani.reza, olruwase, minjiaz, yuxhe}@microsoft.com

Abstract parameters. With the three orders of magnitude growth in

e . model size since 2017, the model accuracy continues to im-
Large-scale model training has been a playing ground for a 5 el si R
limited few requiring complex model refactoring and access to ve lh . i s l ]' nt

ZeRO-Infinity: Breaking the GPU Memory Wall
for Extreme Scale Deep Learning

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He

{samyamr, olruwase, jerasley, shsmit, yuxhe}@microsoft.com

ABSTRACT

In the last three years, the largest dense deep learning models have

grown over 1000x to reach hundreds of billions of parameters, while

the GPU memory has only grown by 5x (16 GB to 80 GB). Therefore,

the growth in model scale has been supported primarily though

system innovations that allow large models to fit in the aggregate

GPU memory of multiple GPUs. However, we are getting close to 16T

the GPU memory wall. It requires 800 NVIDIA V100 GPUs just to 002 1T 016 a on .

fit a trillion parameter model for training, and such clusters are B

simply out tnlmng 'NVADIA V100 DGX-2 Nodes



Understanding Memory Consumption

Data,

FP16 Parameters
FP16 Gradient

FP32 Gradient

GPUO FP32 Variance GPU1
FP32 Momentum
FP32 Parameters

* FP(BF)16 parameter: 2M bytes
* FP(BF)16 Gradients : 2M bytes
* FP32 Optimizer States : 16M bytes

« Gradients, Variance, Momentum, Parameters Input batch + activations

M = number of parameters in the model

*Mixed Precision Training (ICLR ¢18) with Adam Optimizer

FP16 Parameters
FP16 Gradient

FP32 Gradient
FP32 Variance
FP32 Momentum
FP32 Parameters

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:


https://arxiv.org/pdf/1710.03740.pdf

/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)
* Offloading DL state to CPU or NVMe memories



/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)
* Offloading DL state to CPU or NVMe memories
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/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)
* Offloading DL state to CPU or NVMe memories

gPU, gpy; gPUpy_¢

Baseline

P, Stage 1 (P
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Parameters Gradients Optimizer States



/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL

state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)

* Offloading DL state to CPU or NVMe memories

gPU,

Baseline

Pos

gpy;

gPUp.1

Pos+g

Parameters

Gradients

Optimizer States

Stage 2 (P,,,)



/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL

state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)

* Offloading DL state to CPU or NVMe memories

gPU,

Baseline

Pos

gpy;

gPUp.1

Pos+g

P

0S+g+p

Parameters

Gradients

Optimizer States

Stage 3 (P,q.g:p)
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/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)
* Offloading DL state to CPU or NVMe memories

gpu, gpu, gpUy. Bytes/param/GPU
Baseline 0+2+16 = 20
P, 2+2+(16/N)<5
Prase 2 +((2+16)/N) <3
- (2+2+16)/N <

Parameters Gradients Optimizer States



/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)

* Offloading DL state to CPU or NVMe memories Offload ZeRO-Offload

gPUg gPY; EPUy.y cpu nvme

Baseline

Pos

Pos+g

P

0S+g+p

Parameters Gradients Optimizer States
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/eR0O: Overcoming GPU memory wall

* Family of composable optimizations to reduce GPU memory costs of DL
state (params, grads, optimizer)

* Partitioning DL state across data parallel GPUs (3 stages)

* Offloading DL state to CPU or NVMe memories Offload ZeRO-Infinity

gpuo gpui ngN-1 CpU nvme

Baseline

Pos

P

0S+8

P

0S+g+p

Parameters Gradients Optimizer States
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/eRO-Infinity

Breaking the GPU Memory Wall for DL Training



Large model training landscape

- GPU Memory Wall Al and Memory Wall
1T (10T) params: 800 (8K) V100 GPUs 10000, 1078 Baidu Recsys
* HOW dO we Support the grOWth in Transformer Size: 240x/ 2 yrs 2TB Baidu RecSys
model size? 1000 Al HW Memory: 2x/2yrs -
T 5 e
2 GPT-3
ey ey .. — ®
* Accessibility to large model training 2 1004
i 256 GPUS tO flne'tune GPT‘S g i - ¢ tﬂ:‘crost:tT-NLG A100-80 (BOGB)
. . . | egatron P
* Limited access to suchresources & 193 o vioo orea] A B e
5 i §"F150"d%es) @ TPUv2 (16GB) GI:'-z ( !
. o 1
* Model code refactoring * 1 o’ ALBERT o
ere . i a [ ]
* Re-writing the model using 3D 0.0 e weanextios Transtormer @ ELECTRA
parallelism (tensor-slicing + pipeline ] Resicts0 Py >
parallelism) 0.01 — — — ,
. 2016 2017 2018 2019 2020 2021
* Painful and error prone YEAR
15

*Al and Memory Wall. (This blogpost has been written in... | by Amir Gholami | riselab | Medium



https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Beyond the GPU Memory

Modern clusters have
heterogeneous memory systems.

GPU memory is a small fraction

Leverages GPU/CPU/NVMe memory

Memory available on a Single DGX-2 Node

B GPU Memory B CPU Memory B NVMe Storage

05 15 28

Memory (TB)

Model Size on a Single DGX-2 Node

GPU Only ]20
* 32T params on 32 nodes
* 1T params on a single node CPU + GPU 70
NVMe+CPU+GPU 1000

Fine-tune GPT-3 size on single node

Trainable Model Parameter in Billions

16



Recap: Large model training landscape today

- GPU Memory Wall Al and Memory Wall
1T (10T) params: 800 (8K) V100 GPUs 10000, 1078 Baidu Recsys
¢ HOW dO we Support the grOWth in Transformer Size: 240x/ 2 yrs 2TB Baidu RecSys
model size? 1000 Al HW Memory: 2x/2yrs -
T 5 e
2 GPT-3
T . . = [
* | Accessibility to large model training 2 1004
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* Re-writing the model using 3D 0.0 e weanextios Transtormer g FLecTRA
parallelism (tensor-slicing + pipeline ] Resicts0 Py >
parallelism) 0.01 — — — ,
. 2016 2017 2018 2019 2020 2021
* Painful and error prone YEAR
17

*Al and Memory Wall. (This blogpost has been written in... | by Amir Gholami | riselab | Medium



https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Redefining the landscape with ZeRO-Infinity

Beyond GPU Memory
* 50x larger models

32T params on 512 GPUs (instead of
25K)

Broader access to large model traini

* GPT-3 sized fine-tuning on a single
node/GPU (instead of 16 nodes)

Excellent Throughput and Scalability
* Comparable to 3D-parallelism

Ease of Use
* No model refactoring necessary

Paper: ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale
Deep Learning (arxiv.org)
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https://arxiv.org/pdf/2104.07857.pdf
https://arxiv.org/pdf/2104.07857.pdf

DeepSpeed

DeepSpeed-MoE: Advancing Mixture-of-
Experts Inference and Training to Power
Next-Generation Al Scale

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Ammar
Ahmad Awan, Jeff Rasley, Yuxiong He Proceedings of the 39th International Conference on Machine
Learning, PMLR 162:18332-18346, 2022.

Abstract

As the training of giant dense models hits the boundary on the availability and capability of the
hardware resources today, Mixture-of-Experts (MoE) models have become one of the most promising
model architectures due to their significant training cost reduction compared to quality-equivalent dense;
models. Their training cost saving is demonstrated from encoder-decoder models (prior works) to a 5x
saving for auto-aggressive language models (this work). However, due to the much larger model size
and unique architecture, how to provide fast MoE model inference remains challenging and unsolved,

mitina their practica agae, To tackle this. we prese an end-to-end Mo aining

A Hybrid Tensor-Expert-Data Parallelism Approach to Opti
Mixture-of-Experts Training

Siddharth Singh Olatunji Ruwase Ammar Ahmad Awan
ssingh37@umd.edu olruwase@microsoft.com ammar.awan@microsoft.com
Department of Computer Science, Microsoft, Inc. Microsoft, Inc.
University of Maryland Redmond, Washington, USA Redmond, Washington, USA
College Park, Maryland, USA

Samyam Rajbhandari Yuxiong He Abhinav Bhatele
samyamr@microsoft.com yuxhe@microsoft.com bhatele@cs.umd.edu
Microsoft, Inc. Microsoft, Inc. Department of Computer Science,
Redmond, Washington, USA Redmond, Washington, USA University of Maryland
College Park, Maryland, USA

ABSTRACT 1 INTRODUCTION

Mixture-of-Experts (MoE) is a neural network architecture that Contemporary state-of-the-art Al algorithms have come to rely on
adds sparsely activated expert blocks to a base model, increasing neural networks such as GPT-3 [4] and MT-NLG [34] with hundreds
the number of parameters without impacting computational costs. of billion of parameters. However, training or running inference

Mixture of Experts (MoE

Improving Compute Efficiency for DL scaling



Mixture of Experts (MoE): Overview

MoE models have been around for a while..
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer

* Harder to scale, instability during training, and inefficient training

GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

* 600B models beating 96-layer dense models, 10x training speedup, generic
sharding framework (Tensorflow XLA), full precision training

* Less stability with larger models
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

* More efficient training
* Top-1 gating instead of top-2/top-k, Better initialization conditions, Mixed precision
training: FP32 gating (instead of FP16), Stable training with larger models

* SOTA results on language understanding task

20


https://arxiv.org/pdf/2006.16668v1.pdf
https://arxiv.org/abs/2101.03961

MoE: Gshard and

Transfomer — MoE Transfomer — MoE Transfomer Encoder
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Figure 3: Illustration of scaling of Transformer Encoder with MoE Layers. The MoE layer replaces
the every other Transformer feed-forward layer. Decoder modification is similar. (a) The encoder of
a standard Transformer model is a stack of self-attention and feed forward layers interleaved with
residual connections and layer normalization. (b) By replacing every other feed forward layer with
a MoE layer, we get the model structure of the MoE Transformer Encoder. (c) When scaling to
multiple devices, the MoE layer is sharded across devices, while all other layers are replicated.

Switch Transformer

Yy e
7\

[ Add + Normalize

t

[ Switching FFN Layer ]
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[ Add + Normalize ]
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Add + Normalize
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~ . —_—_—m
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~
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More Parameters

Figure 2: Illustration of a Switch Transformer encoder block. We replace the dense feed forward
network (FFN) layer present in the Transformer with a sparse Switch FFN layer (light blue). The
layer operates independently on the tokens in the sequence. We diagram two tokens (x; = “More”
and zo = “Parameters” below) being routed (solid lines) across four FFN experts, where the router
independently routes each token. The switch FFN layer returns the output of the selected FFN
multiplied by the router gate value (dotted-line).
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MoE models are sparse and need less compute

. Transfomer ot MoE Transfomer i, MoE Transfomer Encoder
" Encoder’ Encoder with device placement
Ercader Encoder Encoder
B o
1 T g -
N N\

& t
/> Add & Nora

Feed Forward
FRN

)

Add & Norm

N
1
z
3
S/

Feed Forward
FRN

e All parameters are used in forward and backward paths 5

* Increasing model capacity needs more computation == ﬂ i
e Optimized for dense computation = — |

e Larger model size = Higher compute requirements
(FLOPs)

nr2)x

Add & Worm

fating)

Add & Worm
Multi| Head
Atteftion

\L Device €/

Toput embeddings +
Pos:nT;;:r;mE;dume
Figure 3: Illustration of scaling of Transformer Encoder with MoE Layers. The MoE layer replaces
the every other Transformer feed-forward layer. Decoder modification is similar. (a) The encoder of
a standard Transformer model is a stack of self-attention and feed forward layers interleaved with
residual connections and layer normalization. (b) By replacing every other feed forward layer with
a MoE layer, we get the model structure of the MoE Transformer Encoder. (c) When scaling to
multiple devices, the MoE layer is sharded across devices, while all other layers are replicated.

Sparse MoE models

Vi l-l_l?-l_rl Vzl_l-le
,—-[ . Add + Normalize . ]-7

. ®
¢ o) () () () () () ()

e Sparse utilization of subset of parameters based on input

e Same computation is needed regardless of the model
S | Z e saf»n}ermnn . — Add + Normaize J——

x

Self-Attention

1 1 1 \‘~\ T P ¢ posiional b
* Not-optimized for dense computation N =Ry =g
. . . ' More : Parameters
® L a rge r m O d e l- s I Z e a s I m I l-a r/ S a m e C O m p u t e Figure 2: Illustration of a Switch Transformer encoder block. We replace the dense feed forward
. network (FFN)' layer present in the Transfqrmer with a sparse Svyilch FFN layer (light blue). Ths
re q u I re m e n t s layer operates independently on the tokens in the sequence. We diagram two tokens (z; = “More

and z, = “Parameters” below) being routed (solid lines) across four FEN experts, where the router
independently routes each token. The switch FEN layer returns the output of the selected FFN
multiplied by the router gate value (dotted-line).




What is Expert Parallelism?

* Expert Parallelism --> Data and Model
parallelism within the model

* Non-MoE parameters — replicated
* Like standard data parallelism (DP)
e ZeRO DP in DeepSpeed can shard these too!

 MoE parameters — partitioned (sharded)
 Like model parallelism (MP)

* Two All-to-All(s) in Forward and
Backward

MoE Transfomer Encoder
with device placement

EEEEEEE

uuuuu
nnnnnnnnn

Attention




Next Al Scale on current hardware

e Can we achieve next generation model quality on current generation of hardware?

* From a training perspective MoE provides a promising path

e Scale at sub-linear cost
e 7-Code multi-lingual multi-task model

* MoE is promising butis it practical?
* Limited Scope: Does it work for NLG or NLR or other models?
 Massive Memory Requirements: 8-10x in size compared to quality equivalent dense
* Limited expert scaling: Diminishing returns at 64-128 experts?
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DeepSpeed MoE: Multidimensional Parallelism

Short Name Flexible Parallelism Combinations

Scales the model size by increasing the number of

E Expert experts
Accelerates training throughput by scaling to multiple
E+D Expert | +| Data data parallel groups
Partitions the nonexpert parameters to support larger
E+Z Expert | + ZeRO base models
E+D+M Expert | +| Data |+ | Model
Supports massive hidden sizes and even larger base
models than E+Z
E+D+Z Expert | + Data '+ ZeRO
Leverages both GPU and CPU memory for large MoE
E+Z-Off+M Expert |+ | ZeRO-Offload |+ | Model | = e d GPU resources

Can scale both: 1) Number of experts and
2) Base model sizes



Cheaper NLG Model Training with MoE

2.50

 1.3B+MoE with 128 experts, compared to 1.3Band ... S

6.7B dense

6.7B dense (GPT-3 like)

— 2.35
o
- . 2230
* 5x lower training cost to same accuracy using Mok 5
_(—U' .
° . =220
8xX more parameters to same accuracy using Mok .
2'100 60B 120B 180B 2408B 300B
Tokens
Model size LAMBADA: PIQA: BoolQ: RACE-h: TriviaQA: WebQs:
completion commonsense reading reading question question
prediction reasoning comprehension comprehension answering answering
Dense NLG:
(1) 350M 350M[ 5203 69.31 53.64 31.77 321 157 TraiI“i“Q “émﬂ"l:l“t gai“/
samples per ost Reduction
(2)1.3B 1.3B 63.65 73.39 63.39 35.60 10.05 3.25 I:ec P
(3)6.7B 6.7B|| 71.94 76.71 67.03 37.42 2347 5.12 6.7B dense 70 1x
Standard MoE NLG: 1.3B+MoE-128 372 5x
(4) 350M+MoE-128 13B | 62.70 74.59 60.46 35.60 16.58 5.17
(5) 1.3B+MoE-128 52B 69.84 76.71 64.92 38.09 31.29 7.19
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Parameter Efficient MoE via PR-MoE and MoS

* Challenges of MoE: 8x parameters than quality«-=-. EESEEEEE - 5
equivalent dense models

* Training requires large memory footprint Expert Layer -1 H

* Slow inference due to parameter loading | |
oo (NG - N
f
]
®

* New opportunities

®
* Parameter efficient MoE Expert Layer 2 EI -
T |

* Homogeneous layer structure =2 Pyramid MoE
|
[ ][ [

Expert Layer 1

Token ::Foken
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Parameter Efficient MoE via PR-MoE and MoS

* Challenges of MoE: 8x parameters than qualityer et o -
equivalent dense models

* Training requires large memory footprint Expert Layer -1 o |
* Slow inference due to parameter loading T—‘
Expert Layer L-2 ooo “
J|
L 4

* New opportunities 0

* Parameter efficient MoE Expert Layer 2 -
T

* Homogeneous layer structure =2 Pyramid MoE

* Plain structure 2 Residual MoE ettt ﬂ
t A
¢ Top-2 MoE with extra

communication
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Parameter Efficient MoE via PR-MoE and MoS

* Challenges of MoE: 8x parameters than qualitypeer et ﬂ = -
equivalent dense models

* Training requires large memory footprint Expert tayer (4 - |
* Slow inference due to parameter loading y
Expert Layer L-2 ooo “

* New opportunities

* Parameter efficient MoE Expert Layer 2 ™
« Homogeneous layer structure = Pyramid MoE i~
Expert Layer 1  BI%IN3 H... H
{

* Plain structure = Residual MoE

[N)

!
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Parameter Efficient MoE via PR-MoE and MoS

* Challenges of MoE: 8x parameters than qualityserteer . |
equivalent dense models

* Training requires large memory footprint Expert Layer L-1 o |

* Slow inference due to parameter loading
ExpertLayerL-2
—i

* New opportunities o
* Parameter efficient MoE xpert Layer 2
* Homogeneous layer structure =2 Pyramid MoE —
e Plain structure = Residual MoE i *
o OurdeSign PR-MOE Expert Layer 1 MLP
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Parameter Efficient MoE via PR-MoE and MoS

* Challenges of MoE: 8x parameters than quality
equivalent dense models

* Training requires large memory footprint =vereLaver 13 (] [CA A T -
* Slow inference due to parameter loading T T |
Expert Layer L-4 HHH ooe
1 )

* New opportunities A
« Parameter efficient MoE Hperayert

* Homogeneous layer structure = Pyramid structure e

.

|

e Plain structure = Residual structure
. Expert Layer 1 QYR = 2
* Ourdesign PR-MoE

t i)
* MoS: MoE-to-MoE Knowledge distillation ¢

'
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Parameter Efficient MoE via PR-MoE and MoS

PR-MoE: model size reduction from 1.7x to 3.2x
PR-MoE + MoS: model size reduction from 1.9x to 3.7x

Model size
(Reductio LAMBADA RACE-h TriviaQA WebQs
n)

MoE NLG with 350M base model:
(1) MoE 13B (1x) 62.70 74.59 60.46 35.60 16.58 5.17
(2) PR-MoE 4.0B (3.2x) 63.65 73.99 59.88 35.69 16.30 4.73
(3) PR-MoE + MoS 3.5B (3.7x) 63.46 73.34 58.07 34.83 13.69 5.22
MoE NLG with 1.3B base model:
(4) MoE 52B (1x) 69.84 76.71 64.92 38.09 31.29 7.19
(5) PR-MoE 31B (1.7x) 70.60 77.75 67.16 38.09 28.86 7.73
(6) PR-MoE + MoS 27B (1.9x) 70.17 77.69 65.66 36.94 29.05 8.22

Paper: DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale (ICML’22)
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Deepspeed-TED: Scaling MoE base model

* Enable MoEs with large base models

* Minimize communication times to maintain efficiency.

A three-dimensional hybrid of state-of-the-art parallel training algorithms
T —Tensor Parallelism (Megatron-LM [3])
E — Expert Parallelism (DeepSpeed-MoE [4])
D — Sharded Data Parallelism (ZeRO [5])



3D parallelism helps up train larger models

500 -

# Model Parameters (in billions)

o

LN
o
o

w

o

o
|

N
o
o

100 -

Largest Trainable MoE Models on Summit

—#&— DeepSpeed-TED
-l DeepSpeed-MoE

4.8x increase!

Limit Number
of experts to
128

Limit tensor
parallelismto a
node.



Results

70

60+ M  All-gather
BN All-to-all

50+ B All-reduce
B Other

Nearly 50% time in

communication!!
10 -
0

Baseline DTD DTD+CAC
Batch Time Profile of a 6.7B base model + |6 experts on 128 GPUs of Summit



Results: Communication optimizations

70 -
604 [ All-gather
BN All-to-all

50 B All-reduce )
oy Other R Overall 21% Speedup )
Q
£
i= 30-

20 -

10 -

0

Baseline DTD DTD+CAC

Batch Time Profile of a 6.7B base model + |16 experts on 128 GPUs of Summit



Results (Strong Scaling)

Strong Scaling of a 6.7B Base Model with Varying # Experts
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Data Efficiency

Improving Deep Learning Model Quality and
Training Efficiency via Efficient Data Sampling
and Routing

The Stability-Efficiency Dilemma: Investigating
Sequence Length Warmup for Training GPT Models

Conglong Li Minjia Zhang Yuxiong He
Microsoft Microsoft Microsoft
conglong.li@microsoft.com minjiaz@microsoft.com  yuxhe@microsoft.com

Abstract

Recent works have demonstrated great success in pre-training large-scale autore-

gressive language models (e.g., GPT-3) on massive GPUs. To reduce the wall-clock

training time, a common practice is to increase the batch size and learning rate.
¢ ] ice is often brittle and leads to a so-called stabilitv-efficien

DeepSpeed Data Efficiency: Improving Deep Learning Model Quality and Training
Efficiency via Efficient Data Sampling and Routing

Conglong Li*, Zhewei Yao®, Xiaoxia Wu*, Minjia Zhang, Connor Holmes, Cheng Li, Yuxiong He

Microsoft

Abstract

Recent advances on deep learning models come at the price

of formidable training cost. The increasing model size is one = = P BiGoM

of the root causes, but another less-emphasized fact is that o Lol oo ozl (2022

data scale is actually increasing at a similar speed as model

scale, and the training cost is proportional to both of them. Figure 1: Model scale (number of parameters) and data scale
Compared to the rapidly evolving model architecture, how (number of consumed training tokens ) of representative lan-
to efficiently use the training data (especially for the expen- guage models in the last 5 years (Devlin et al. 2019; Shoeybi
sive foundation model pretraining) is both less explored and et al. 2019; Brown et al. 2020; Scao et al. 2022; Chowdhe:

Random-LTD: Random and Layerwise Token Dropping Brings
Efficient Training for Large-scale Transformers

Zhewei Yao®, Xiaoxia Wu*, Conglong Li, Connor Holmes
Minjia Zhang, Cheng Li, Yuxiong He
Microsoft

{zheweiyao, xiaoxiawu, conglong.li, connorholmes, minjiaz, chenglil, yuxhe}@microsoft.com

November 22, 2022

Abstract

Large-scale transformer models have become the de-facto architectures for various machine learning
applications, e.g., CV and NLP. However, those large models also introduce prohibitive training costs. To




DeepSpeed Data Efficiency

° M - ® - Model scale (Billion) Data scale (Billion)
Why we care about data efficiency v
* Training cost = O(model scale * data scale) 800 yoge
 Data scale is increasing as fast as model scale 600 T
500 . DeepSpeed >
* Our goal 400 w Mool @ Openal
300 e
» Achieve same model quality with less data fgg Google PR o
 Achieve better model quality with same data 0 §----- o "
« No/minimal model architecture change BERT  Turing-NLG ~ GPT-3  BLOOM  PalM

(2018) (2020) (2020) (2022) (2022)



The Stability-Efficiency Dilemma

* When pretraining large-scale language models

- We want large batch sizes & learning rates to increase training efficiency
 But they affect training stability, causing poor convergence or divergence



The Stability-Efficiency Dilemma

* When pretraining large-scale language models

« We want large batch sizes & learning rates to increase training efficiency
 But they affect training stability, causing poor convergence or divergence

« We study this dilemma by in-depth analysis on GPT-2
pretraining
 Larger batch sizes & LR reduces training time, but affect model quality
* (In paper) A correlation between training instability and gradient variance

GPT-2 1.5B model WikiText PPL + | LAMBADA Acc *
time

Batch size 512 341Hr 13.89 57.29%

Batch size 4K, 4x 151Hr 14.76 55.06%
LR



The Stability-Efficiency Dilemma

* When pretraining large-scale language models

« We want large batch sizes & learning rates to increase training efficiency
 But they affect training stability, causing poor convergence or divergence

« We study this dilemma by in-depth analysis on GPT-2
pretraining
 Larger batch sizes & LR reduces training time, but affect model quality

* (In paper) A correlation between training instability and gradient variance
8

wn Bsz 512,
2 S
time g’5_ - seqlenrlK
Batch size 512 341Hr 13.89 57.29% = u i
Batch size 4K, 4x  151Hr 14.76 55.06% A\
LR 2
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Proposed Sequence Length Warmup Method

* Instability mostly at early stage - some sort of “warmup” is needed
LR and batch size warmup didn't help



Proposed Sequence Length Warmup Method

* Instability mostly at early stage - some sort of “warmup” is needed
LR and batch size warmup didn't help
 Our study shows warming up sequence length is promising

SeqlenlkK, baseline
—— Seqlenl28
Seqlen128(90%)+1K(10%)

=

Training loss
N B ®O Nk

e

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Steps



Proposed Sequence Length Warmup Method

* Instability mostly at early stage - some sort of “warmup” is needed
LR and batch size warmup didn't help
 Our study shows warming up sequence length is promising

SeqlenlkK, baseline
—— Seqlenl28
Seqlen128(90%)+1K(10%)

=

Training loss
N B ®O Nk

\_____7_7 .

0 1K 2K 3K 4K SFEE:- pSGK 7K 8K 9K 10K
* The Sequence Length Warmup (SLW) method

« Two configs: starting sequence length, number of warmup steps
* (In paper) Simple truncation-based implementation, low-cost tuning strategy



GPT-2 Evaluation

» Stable training under large batch size & LR
« Same model quality under less token/time

GPT-2 1.5B model Training Training WikiText PPL v | LAMBADA Acc *
time tokens

Batch size 512, baseline 341Hr 157B 13.89 57.29%
Batch size 4K, 4x LR, 151Hr 157B 14.76 55.06%
baseline

Batch size 4K, 4x LR, ours 121Hr 121B 13.88 58.20%



GPT-2 Evaluation

» Stable training under large batch size & LR
« Same model quality under less token/time
 Even better model quality under same token/time

GPT-2 1.5B model Training Training WikiText PPL v | LAMBADA Acc *
time tokens

Batch size 512, baseline 341Hr 157B 13.89 57.29%
Batch size 4K, 4x LR, 151Hr 157B 14.76 55.06%
baseline

Batch size 4K, 4x LR, ours 121Hr 121B 13.88 58.20%

Batch size 4K, 4x LR, ours 155Hr 157B 13.72 58.47%



DeepSpeed: Reshaping the Large Model Training Landscape
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

DeepSpeed Transformation

Training optimization library
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= Microsoft deepspeed

We welcome contributions! Make your first pull request ©

https.//github.com/microsoft/DeepSpeed

www.deepspeed.ai

Follow us on X: @MSFTDeepSpeed

Thank You!

© Copyright Microsoft Corporation. All rights reserved.


https://github.com/microsoft/DeepSpeed
http://www.deepspeed.ai/

ZeRO-Infinity in Action
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