
ByteTransformer: A High-Performance Transformer
Boosted for Variable-Length Inputs

Yanzhuo Chen

Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang,
Zizhong Chen, Xin Liu, Yibo Zhu

1

Important metrices for LLM Inference

2

- Throughput = query / s – maximize for batch job speed
to allow more users

- Latency = s / token – minimize for user experience

LLM Inference Is Actually Slow

3

Table Credit: https://www.taivo.ai/__a-wild-speed-up-from-openai-dev-day/

LLM Inference Optimization

4

Tensorflow XLA, PyTorch JIT
- Leverage the domain-specific just-in-time

compilation technique to boost performance

- Does not support kernel fusion or variable
length input

FasterTransformer
- Support variable length input by batching

requests with similar sequence lengths
- Partially support fused MHA (≤ 512)

TurboTransformer
- Support variable length input by batching
requests with similar sequence lengths

ByteTransformer
- Memory-Bound Kernel Fusion
- Variable Length Support
- Fused Multi-Head Attention (MHA)

A lot of redundant
memory &
computation for
batching requests
with different
sequence length!

Bert Transformer Architecture

5

- Batch Size (bs): 16
- Head Number: 12
- Head Size: 64

𝑘 = 12×64 = 768
m: sequence length

Fusing Memory-bound Operations

6

CTA

M
ax_seq

* batch size

CTA

Hidden

Hidden
+LayerNorm ()

Fused Add bias & layernorm

Fusing Memory-bound Operations

7

Fused Gemm with add bias & activation

However, there is still computation redundancy!

Zero Padding Algorithm

8

Zero Padding Algorithm

9

MHA cannot benefit
from zero padding
without modification

Fused Multi Head Attention: Short Sequence

10

Shared Memory

Shared M
em

ory

×LayerNorm ()

Split Sequence

Sequence

Shared memory×

Sequence

Launch grid={head_num, seq_len / split_seq_len, batch_size}

𝑄

𝐾!
𝑉

Fused Multi Head Attention: Long Sequence

11

Grouped GEMM

Fused Multi Head Attention: Long Sequence

12

Tile Scheduling

Problem0

Problem2

Hidden

0
1
2
3

5
6
7
8
9
10

11
12

…

Every block handles one tile, suppose we have a tile_id=t,
we need to know
1. problem_id
2. Tile_offset inside that problem

To get the Q, K, V pointer and offset in Q

Problem1
Compute number of tile

Prefix Sum

Which problem has the tile_id=t (sum of tild ≥ tild_id)

Warp sync problem_id, tile_start, tile_end inside the problem

Fused Multi Head Attention: Long Sequence

13

Stepwise Optimization

14

Grouped Gemm Q x K

reduction

Grouped Gemm QK x V

Evaluation: Fusion Kernel

15

Evaluation: Fusion MHA

16

Evaluation: Fusion MHA

17

Evaluation: End-To-End

18

Discussion

19

ByteTransformer provides a high-performance implementation that supports variable sequence
length input and achieves an average of 50% speedup end-to-end on different models.

However, there are other possible optimizations to concern…

- Tail Effect

