ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs

Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang, Zizhong Chen, Xin Liu, Yibo Zhu

Yanzhuo Chen

Important metrices for LLM Inference

- Throughput = query / s maximize for batch job speed to allow more users
- Latency = s / token minimize for user experience

model id	tok out	sec	model name	ms/token
gpt-3.5-turbo-1106	3772	24.3	latest gpt-3.5	6.5
gpt-4-1106-preview	4096	74.7	gpt-4 turbo	18.2
gpt-3.5-turbo-0613	3800	79.5	old gpt-3.5	20.9
gpt-4-0613	4141	400.0	old gpt-4	96.6

Table Credit: https://www.taivo.ai/__a-wild-speed-up-from-openai-dev-day/

LLM Inference Optimization

Tensorflow XLA, PyTorch JIT

- Leverage the domain-specific just-in-time compilation technique to boost performance
- Does not support kernel fusion or variable length input
- FasterTransformer
- Support variable length input by batching requests with similar sequence lengths
- Partially support fused MHA (≤ 512)

TurboTransformer

- Support variable length input by batching requests with similar sequence lengths

A lot of redundant memory & computation for batching requests with different sequence length!

ByteTransformer

- Memory-Bound Kernel Fusion
- Variable Length Support
- Fused Multi-Head Attention (MHA)

Bert Transformer Architecture

Fusing Memory-bound Operations

Fusing Memory-bound Operations

Zero Padding Algorithm

Zero Padding Algorithm

Fused Multi Head Attention: Short Sequence

Launch grid={head_num, seq_len / split_seq_len, batch_size}

Fused Multi Head Attention: Long Sequence

Grouped GEMM

Fused Multi Head Attention: Long Sequence

Tile Scheduling

÷

Every block handles one tile, suppose we have a tile_id=t, we need to know

- 1. problem_id
- 2. Tile_offset inside that problem

To get the Q, K, V pointer and offset in Q

Fused Multi Head Attention: Long Sequence

Stepwise Optimization

	Baseline	Zero Padding	Zero Padding + fused MHA
GEMM0	$6mk^2$	$6(lpha \cdot m)k^2$	$6(lpha\cdot m)k^2$
MHA	$4\frac{m^2}{bs}k$	$4rac{m^2}{bs}k$	$4 \frac{(lpha \cdot m)^2}{bs} k$
GEMM1	$2mk^2$	$2(lpha\cdot m)k^2$	$2(lpha\cdot m)k^2$
GEMM2	$8mk^2$	$8(lpha \cdot m)k^2$	$8(lpha\cdot m)k^2$
GEMM3	$8mk^2$	$8(lpha \cdot m)k^2$	$8(lpha \cdot m)k^2$

Evaluation: Fusion Kernel

Evaluation: Fusion MHA

Evaluation: Fusion MHA

Fig. 13: Comparisons of our FMHA with FlashAttention.

Evaluation: End-To-End

Fig. 16: End-to-end benchmark for other BERT-like models.

Discussion

ByteTransformer provides a high-performance implementation that supports variable sequence length input and achieves an average of 50% speedup end-to-end on different models.

However, there are other possible optimizations to concern...

