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Important metrices for LLM Inference
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- Throughput = query / s – maximize for batch job speed 
to allow more users

- Latency = s / token – minimize for user experience



LLM Inference Is Actually Slow
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Table Credit: https://www.taivo.ai/__a-wild-speed-up-from-openai-dev-day/ 



LLM Inference Optimization
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Tensorflow XLA, PyTorch JIT
- Leverage the domain-specific just-in-time 

compilation technique to boost performance 

- Does not support kernel fusion or variable 
length input

FasterTransformer
- Support variable length input by batching 

requests with similar sequence lengths
- Partially support fused MHA (≤ 512)

TurboTransformer
- Support variable length input by batching 
requests with similar sequence lengths

ByteTransformer
- Memory-Bound Kernel Fusion
- Variable Length Support
- Fused Multi-Head Attention (MHA)

A lot of redundant 
memory & 
computation for 
batching requests 
with different 
sequence length!



Bert Transformer Architecture
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- Batch Size (bs): 16
- Head Number: 12
- Head Size: 64

𝑘 = 12×64 = 768
m: sequence length



Fusing Memory-bound Operations
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Fusing Memory-bound Operations
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Fused Gemm with add bias & activation

However, there is still computation redundancy! 



Zero Padding Algorithm
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Zero Padding Algorithm
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MHA cannot benefit 
from zero padding 
without modification



Fused Multi Head Attention: Short Sequence
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Fused Multi Head Attention: Long Sequence
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Grouped GEMM



Fused Multi Head Attention: Long Sequence
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Tile Scheduling
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…

Every block handles one tile, suppose we have a tile_id=t, 
we need to know
1. problem_id
2. Tile_offset inside that problem

To get the Q, K, V pointer and offset in Q

Problem1
Compute number of tile 

Prefix Sum

Which problem has the tile_id=t (sum of tild ≥ tild_id)

Warp sync problem_id, tile_start, tile_end inside the problem



Fused Multi Head Attention: Long Sequence
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Stepwise Optimization
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Grouped Gemm Q x K

reduction

Grouped Gemm QK x V



Evaluation: Fusion Kernel
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Evaluation: Fusion MHA
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Evaluation: Fusion MHA
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Evaluation: End-To-End
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Discussion
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ByteTransformer provides a high-performance implementation that supports variable sequence 
length input and achieves an average of 50% speedup end-to-end on different models.

However, there are other possible optimizations to concern…

- Tail Effect


