CS 598

AI Efficiency: Systems and Algorithms

Minjia Zhang

Computer Science Department University of Illinois at Urbana-Champaign

The Large Language Model Revolution

What is Language Model?

Evolution of DNN Models

Larger models \rightarrow better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger models than smaller ones to same accuracy

Code Continuation and Generation

""" Python 3 Get the current value of a Bitcoin in US dollars using the bitcoincharts api """
<pre>import requests import json</pre>
<pre>def get_bitcoin_price(): url = 'http://api.bitcoincharts.com/v1/weighted_prices.json' response = requests.get(url) data = json.loads(response.text) return data['USD']['7d']</pre>
<pre>ifname == 'main': print(get_bitcoin_price())</pre>

<u>Suggest code and entire function in your editor – Github/OpenAl Codex</u>

Dialogue/New Search

GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models

Tyna Eloundou¹, Sam Manning^{1,2}, Pamela Mishkin^{*1}, and Daniel Rock³

¹OpenAI ²OpenResearch ³University of Pennsylvania

March 21, 2023

Abstract

We investigate the potential implications of Generative Pre-trained Transformer (GPT) models and related technologies on the U.S. labor market. Using a new rubric, we assess occupations based on their correspondence with GPT capabilities, incorporating both human expertise and classifications from GPT-4. Our findings indicate that approximately 80% of the U.S. workforce could have at least 10% of their work tasks affected by the introduction of GPTs, while around 19% of workers may see at least 50% of their tasks impacted. The influence spans all wage levels, with higher-income jobs potentially facing greater exposure. Notably, the impact is not limited to industries with higher recent productivity growth. We conclude that Generative Pre-trained Transformers exhibit characteristics of general-purpose technologies (GPTs), suggesting that as these models could have notable economic, social, and policy implications.

ChatGPT: Optimizing Language Models for Dialogue

Feedback

Image Generation from Text

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

that is a portal to another dimension that looks like a monster as a planet in the universe

as digital art in the style of Basquiat drawn on a cave wall

 \rightarrow

DALL-E 2

DALL·E: Creating Images from Text - OpenAl

Autonomous Driving

A Language Agent for Autonomous Driving

Transformers for Language Modeling

[1] Vaswani et al. "Attention Is All You Need", https://arxiv.org/abs/1706.03762, 2018

[2]Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2019, <u>https://arxiv.org/abs/1810.04805</u> [3] Brown et al. "Language Models are Few-Shot Learners", 2020, https://arxiv.org/abs/2005.14165

AI Efficiency Challenges

AI Efficiency Challenges

- Too slow to train high-quality models on massive data
 - More hardware ≠ higher throughput, bigger model
 - Higher throughput ≠ better accuracy, faster convergence, lower cost
 - Better techniques ≠ handy to use
- Slow and expensive to deploy the models

DL System Desired Capabilities (3E)

Efficiency: Efficient use of hardware for high scalability and throughput

Effectiveness: High accuracy and fast convergence, lowering cost

Easy to use: Improve development productivity of model scientists

Efficiency

Efficient use of hardware for low latency, high scalability and throughput

Training efficiency

- High performance and costefficient training [ATC'21]

(Training **10x larger** model with **same GPUs**, **adopted by major DL frameworks**)

- Graph neural networks [ASPLOS'23]
- Training w. spot instances [NSDI'23, SOSP'24]

Inference efficiency

- Recurrent neural networks [ATC'18] (10x faster latency and hundreds of millions of dollar saving, Microsoft 2018 top-3 "Cool Tech" showcase)
- Transformers [SC'22]

Efficiency

Efficient use of hardware for low latency, high scalability and throughput

Training efficiency

- High performance and costefficient training [ATC'21]

(Training **10x larger** model with **same GPUs**, **adopted by major DL frameworks**)

- Graph neural networks [ASPLOS'23]
- Training w. spot instances [NSDI'23, SOSP'24]

Inference efficiency

- Recurrent neural networks [ATC'18] (10x faster latency and hundreds of millions of dollar saving, Microsoft 2018 top-3 "Cool Tech" showcase)
- Transformers [SC'22]

Effectiveness

High accuracy and fast convergence, lowering cost

□ Model compression

- Extreme compression [NeurIPS'22 Oral] (50x smaller model size, similar accuracy)
- Zero-cost quant. [NeurIPS'22 spotlight]
- 1-bit communication [ICLR'23]
- Data efficiency
- Curriculum learning [NeurIPS'22, spotlight] (Retaining 99% accuracy with 10x less data)
- Adversarial learning [AAAI'22]

Efficient architecture

- Mixture-of-Experts [ICML'22]

Efficiency

Efficient use of hardware for low latency, high scalability and throughput

Training efficiency

- High performance and costefficient training [ATC'21]

(Training 10x larger model with same GPUs, adopted by major DL frameworks)

- Graph neural networks [ASPLOS'23]
- Training w. spot instances [NSDI'23, SOSP'24]

Inference efficiency

- Recurrent neural networks [ATC'18] (10x faster latency and hundreds of millions of dollar saving, Microsoft 2018 top-3 "Cool Tech" showcase)
- Transformers [SC'22]

Effectiveness

High accuracy and fast convergence, lowering cost

□ Model compression

- Extreme compression [NeurIPS'22 Oral] (50x smaller model size, similar accuracy)
- Zero-cost quant. [NeurIPS'22 spotlight]
- 1-bit communication [ICLR'23]

Data efficiency

- Curriculum learning [NeurIPS'22, spotlight] (Retaining 99% accuracy with **10x less data**)
- Adversarial learning [AAAI'22]

Efficient architecture

- Mixture-of-Experts [ICML'22]

Easy-to-Use

Improve development productivity of model scientists

DL Compilation

- Hardware heterogeneity [IPDPS'21]

Auto-Tuner

- Adaptive tuning [NeurIPS'20] (3.9x faster optimization speed)
- Multi-task tuning [ICLR'21]

Efficiency

Efficient use of hardware for low latency, high scalability and throughput

Training efficiency

- High performance and costefficient training [ATC'21]

(Training 10x larger model with same GPUs, adopted by major DL frameworks)

- Graph neural networks [ASPLOS'23]
- Training w. spot instances [NSDI'23, SOSP'24]

Inference efficiency

- Recurrent neural networks [ATC'18] (10x faster latency and hundreds of millions of dollar saving, Microsoft 2018 top-3 "Cool Tech" showcase)

- Transformers [SC'22]

Effectiveness

High accuracy and fast convergence, lowering cost

□ Model compression

- Extreme compression [NeurIPS'22 Oral] (50x smaller model size, similar accuracy)
- Zero-cost quant. [NeurIPS'22 spotlight]
- 1-bit communication [ICLR'23]

Data efficiency

- Curriculum learning [NeurIPS'22, spotlight] (Retaining 99% accuracy with **10x less data**)
- Adversarial learning [AAAI'22]

Efficient architecture

- Mixture-of-Experts [ICML'22]

Easy-to-Use

Improve development productivity of model scientists

DL Compilation

- Hardware heterogeneity [IPDPS'21]

Auto-Tuner

- Adaptive tuning [NeurIPS'20] (3.9x faster optimization speed)
- Multi-task tuning [ICLR'21]

DeepSpeed **Stym** Open-source software

Industry products: Bing, Ads, Azure, Office

Training Efficiency: Breaking the Memory Wall

ML/DL Training Problem Definition Recap

- Given model f, data set $\{xi, y_i\}_{i=1}^N$
- Minimize the loss between predicted labels and true labels: $Min \frac{1}{N} \sum_{i=1}^{N} loss(f(x_i, y_i))$
- Common loss function
 - Cross-entropy, MSE (mean squared error)
- Common way to solve the minimization problem
 - Stochastic gradient descent (SGD)
 - Adaptive learning rates optimizers (e.g., Adam)

Gradient Descent

- Model f_w is parameterized by weight w
- $\eta > 0$ is the learning rate

For t = 1 to T $\Delta w = \eta x \frac{1}{N} \sum_{i=1}^{N} \nabla \left(loss(f_w(x_i, y_i)) \right) // compute derivative and update$ $w -= \Delta w // apply update$ End

Adaptive Learning Rates (Adam)

- Model f_w is parameterized by weight w
- $\eta > 0$ is the learning rate

For t = 1 to T

$$\Delta w = \eta \times \frac{1}{N} \sum_{i=1}^{N} \nabla \left(loss(f_w(x_i, y_i)) \right)$$

$$w = \Delta w // \text{ apply update}$$
End

$$\begin{split} \nu_t &= \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t \\ s_t &= \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2 \\ \Delta \omega_t &= -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t \end{split}$$

$$g_t : \text{Gradient at time t along } \omega^j \\ \nu_t : \text{Exponential Average of gradients along } \omega_j \\ s_t : \text{Exponential Average of squares of gradients along } \omega_j \\ \beta_1, \beta_2 : \text{Hyperparameters} \end{split}$$

[1] Kingma and Ba, "Adam: A Method for Stochastic Optimization", 2014, https://arxiv.org/abs/1412.6980

Parallel/Distributed Gradient Descent

- Model f_w is parameterized by weight w
- $\eta > 0$ is the learning rate

For t = 1 to T $\Delta w = \eta x \frac{1}{N} \sum_{i=1}^{N} \nabla \left(loss(f_w(x_i, y_i)) \right) // \text{ compute derivative and update}$ $W \to \Delta w // \text{ apply update}$ End

Data Parallelism (DP)

 Partition the training data
 Parallel training on different machines

3. Synchronize the local updates

4. Refresh local model with new parameters, then go to 2

Implemented as standard component in DL training frameworks, such as PyTorch DDP

Distributed Data Parallel Training in GPU Clusters

Large Model Training Challenges

	Bert-		Turing	
	Large	GPT-2	17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

Large Model Training Challenges

	Bert-		Turing	
	Large	GPT-2	17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

Out of Memory

NVIDIA V100 GPU memory capacity: 16G/32G NVIDIA A100 GPU memory capacity: 40G/80G

DNN Training Hit the Memory Wall

How to Break the Memory Wall?

A 16-layer transformer model = 1 layer

*<u>Mixed Precision Training</u> (ICLR '18) with Adam Optimizer

Each cell represents GPU memory used by its corresponding transformer layer

*Mixed Precision Training (ICLR '18) with Adam Optimizer

• FP16 parameter

- FP16 parameter
- FP16 Gradients

- FP16 parameter
- FP16 Gradients
- FP32 Optimizer States
 - Gradients, Variance, Momentum, Parameters

- FP16 parameter : 2M bytes
- FP16 Gradients : 2M bytes
- FP32 Optimizer States : 16M bytes
 - Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn't include:

Input batch + activations

*<u>Mixed Precision Training</u> (ICLR '18) with Adam Optimizer

Distributed Training Strategies

- Pipeline Parallelism
- Tensor Parallelism
- 3D Parallelism
- ZeRO-Style Data Parallelism

Pipeline Parallelism

Supported in:

- <u>PyTorch</u>
- DeepSpeed
- Megatron-LM

- Naïve model parallelism leads to severe underutilization
- Gpipe divides batch into micro-batches, enabling different device to work on different micro-batches, reducing pipeline bubbles and improving utilization

Tensor Parallelism

Splice tensors across GPUs

+

synchronization primitives
(e.g., all-reduce)

Supported in:

- DeepSpeed
- <u>Megatron-LM</u>

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

3D Parallelism

DeepSpeed-extreme-scale-model-training-for-everyone

ZeRO-Style Data Parallelism

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages)

Supported in: •<u>DeepSpeed</u> •PyTorch

Large Models Need Parallelism

	Max Parameter (in billions)	Max Parallelism	Compute Efficiency	Usability (Model Rewrite)
Data Parallel (DP)	Approx. 1.2	>1000	Very Good	Great
Tensor Parallel (TP)	Approx. 20	Approx. 16	Good	Needs Model Rewrite
TP + DP	Approx. 20	> 1000	Good	Needs Model Rewrite
Pipeline Parallel (PP)	Approx. 100	Approx. 128	Very Good	Needs Model Rewrite
PP + DP	Approx. 100	> 1000	Very Good	Needs Model Rewrite
TP + PP + DP	> 1000	> 1000	Very Good	Needs Significant Model Rewrite
ZeRO	> 1000	> 1000	Very Good	Great

More Interesting Work on Training

- Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning, OSDI 22
- Sequence Parallelism: Making 4D Parallelism Possible, ACL 2023
- Tutel: An efficient mixture-of-experts implementation for large DNN model training, 2023
- Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs, NSDI 2023

•

Tentative Schedule

Hardware Resource

Delta

- Home page: https://www.ncsa.illinois.edu/res earch/project-highlights/delta/
- 100 quad A100 GPU node, each with 4 A100
- 100 quad A40 GPU node, each with 4 A40
- 5 8-way A100 GPU, each with 8 A100
- 1 MI100 node, 8 MI100

Delta Onboarding Page

https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/acc essing.html

Support and Services

Getting Help

USER GUIDE

System Architecture

Account Administration

Delta Login Methods

🕀 Direct Access Login Nodes

Open OnDemand

VS Code

Good Cluster Citizenship

Data Management

Programming Environment (Building Software)

Job Accounting

Running Jobs

Installed Software

Visualization

Containers

Services

Debugging and Performance Analysis

Acknowledging Delta

☆ / Delta Login Methods

C Edit on GitHub

Delta Login Methods

Direct Access Login Nodes

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

See NCSA Allocation and Account Management for the steps to change your NCSA password for direct access and set up NCSA Duo.

For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page and scroll to the bottom for the **Resource Provider Site Usernames** table. If you do not know your NCSA username, submit a support request (Getting Help) for assistance.

Login Node Hostnames

Login Node Hostname	Example Usage with SSH
dt-login01.delta.ncsa.illinois.edu	ssh -Y username@dt-login01.delta.ncsa.illinois.e
	(-Y allows X11 forwarding from Linux hosts)

Step 1: Create ACCESS ID

ALLOCATIONS SUPPORT OPERATIONS METRICS

🕈 Q 🗏 Login

Home	Get Started	Available Resources	ACCESS Impact	Policies & How-To	About

Need access to computing, data analysis, or storage resources?

You're in the right place! Read more below, or **login** to get started.

What is an allocation?	Which resources?	Ready to get started?	
To get started, you need an ACCESS project and some	We've got modeling and analysis systems. GPU-oriented systems.	It costs you nothing (really!), and you don't need an NSF award. To begin,	
resource units you can spend.	large-memory nodes, storage,	you just need to	
Your ACCESS project and resource units are what we refer to as an Allocation. An	and more. Resource providers have designed their systems to serve a wide range of research		
allocation is your project to use a	and education needs — including	or	

Step 2: Submit Resource Requests

Ô	https://allocation	s.access-c	i.org						A" \$	[] ∑≡
			SS ocations							
	My Proj	ects	Get Started	Available R	esourc	es A	CCESS Impact	Policies 8	How-To	About
ſ	My Project	S					REQUEST NEW	PROJECT -	GET H	IELP -
	▼ : Al efficie	ncy res	earch projects	;					Inc	omplete
	Accelerate: S	ubmitted	Jan 17, 2024				~		ت DE	LETE
	You are viewi	ng an inc	complete request. \	′ou cannot man	age res	ources or	users for this reques	t.		
	Overview	Cred	its + Resources	Users + R	oles	Histor	У			
	Role		Use	ers		Action I	Details		Status	
	& PI	lanager	Min	iia Zhang iia Zhang		<u>New: Ja</u> ∢	an 17, 2024 🖉 🗑		Incomplete	•
		anagor			•					

Step 2: Submit Resource Requests

- EXPLORE Great for resource evaluation, graduate student projects, small classes and training events, benchmarking, code development and porting, and similar small-scale uses.
- DISCOVER Designed for research grants with modest resource needs, Campus Champions, large classes and training events, NSF graduate fellowships, benchmarking and code testing at scale, and gateway development.
- ACCELERATE Best for experienced users with midscale resource needs, consolidating multi-grant programs, collaborative projects, preparing for Maximize ACCESS requests, and gateways with growing communities.
- MAXIMIZE The choice for large-scale research activities that need more resources than the limit for Accelerate ACCESS projects.

Step 3: SSH Login

- Support ssh login
- Maintaining Persistent Sessions: tmux

Delta Login Methods

Direct Access Login Nodes

Direct access to the Delta login nodes is via SSH using your NCSA username, password, and NCSA Duo MFA. See the NCSA Allocation and Account Management page for links to NCSA Identity and NCSA Duo services. The login nodes provide access to the CPU and GPU resources on Delta.

See NCSA Allocation and Account Management for the steps to change your NCSA password for direct access and set up NCSA Duo.

For ACCESS awarded projects, to find your local NCSA username go to your ACCESS Profile page and scroll to the bottom for the **Resource Provider Site Usernames** table. If you do not know your NCSA username, submit a support request (Getting Help) for assistance.

Login Node Hostnames				
Login Node Hostname	Example Usage with SSH			
dt-login01.delta.ncsa.illinois.edu	ssh -Y username@dt-login01.delta.ncsa.illinois.e			
	(-Y allows X11 forwarding from Linux hosts)			
dt-logip02 dolta pesa illipois odu	ssh -l username dt-login02.delta.ncsa.illinois.e			
	(-I username alt. syntax for user@host)			
login.delta.ncsa.illinois.edu (round robin DNS name for the set of login nodes)	ssh username@login.delta.ncsa.illinois.edu			

Delta

- Please give it a try
 - Request access (A100, A40, AMD,...)
 - Ssh login
 - Run a small training/inference job, say PyTorch examples
 - Do preliminary performance profiling
- Let me know if you run into any issues
 - Single GPU allocation
 - Multi-GPU allocation
 - Interactive development
 - Isolation
 - Persistent storage