
AI Efficiency: Systems and Algorithms

Minjia Zhang

CS 598

Computer Science Department
University of Illinois at Urbana-Champaign

The Large Language Model Revolution

What is Language Model?

3

Evolution of DNN Models

Larger models → better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger
models than smaller ones to same
accuracy

Code Continuation and Generation

5Suggest code and entire function in your editor – Github/OpenAI Codex

https://github.com/features/copilot

Dialogue/New Search

6ChatGPT: Optimizing Language Models for Dialogue

https://openai.com/blog/chatgpt/

Image Generation from Text

DALL·E: Creating Images from Text - OpenAI

https://openai.com/blog/dall-e/

Autonomous Driving

A Language Agent for Autonomous Driving

https://arxiv.org/pdf/2311.10813.pdf

[1] Vaswani et al. “Attention Is All You Need”, https://arxiv.org/abs/1706.03762, 2018
[2]Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, 2019, https://arxiv.org/abs/1810.04805
[3] Brown et al. “Language Models are Few-Shot Learners”, 2020, https://arxiv.org/abs/2005.14165

Transformers for Language Modeling

BERT GPT

[1] [2] [3]

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805

AI Efficiency Challenges

AI Efficiency Challenges

• Too slow to train high-quality models on massive data

• More hardware ≠ higher throughput, bigger model

• Higher throughput ≠ better accuracy, faster
convergence, lower cost

• Better techniques ≠ handy to use

• Slow and expensive to deploy the models

11

DL System Desired Capabilities (3E)

12

Efficiency: Efficient use of hardware for high scalability and throughput

Effectiveness: High accuracy and fast convergence, lowering cost

Easy to use: Improve development productivity of model scientists

Research Focus (3Es)

13

Efficiency

❑ Training efficiency
- High performance and cost-
efficient training [ATC’21]

 (Training 10x larger model with same GPUs,
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
 - Recurrent neural networks [ATC’18]

 (10x faster latency and hundreds of millions

of dollar saving, Microsoft 2018 top-3 “Cool
Tech” showcase)

 - Transformers [SC’22]

Efficient use of hardware for low latency,
high scalability and throughput

Research Focus (3Es)

14

Efficiency Effectiveness

❑ Training efficiency
- High performance and cost-
efficient training [ATC’21]

 (Training 10x larger model with same GPUs,
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
 - Recurrent neural networks [ATC’18]

 (10x faster latency and hundreds of millions

of dollar saving, Microsoft 2018 top-3 “Cool
Tech” showcase)

 - Transformers [SC’22]

Efficient use of hardware for low latency,
high scalability and throughput

High accuracy and fast
convergence, lowering cost

❑ Model compression
- Extreme compression [NeurIPS’22 Oral]

 (50x smaller model size, similar accuracy)

- Zero-cost quant. [NeurIPS’22 spotlight]

- 1-bit communication [ICLR’23]

❑ Data efficiency
- Curriculum learning [NeurIPS’22, spotlight]

 (Retaining 99% accuracy with 10x less data)

- Adversarial learning [AAAI’22]

❑ Efficient architecture
- Mixture-of-Experts [ICML’22]

Research Focus (3Es)

15

Efficiency Effectiveness

❑ Training efficiency
- High performance and cost-
efficient training [ATC’21]

 (Training 10x larger model with same GPUs,
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
 - Recurrent neural networks [ATC’18]

 (10x faster latency and hundreds of millions

of dollar saving, Microsoft 2018 top-3 “Cool
Tech” showcase)

 - Transformers [SC’22]

Easy-to-Use
Efficient use of hardware for low latency,
high scalability and throughput

High accuracy and fast
convergence, lowering cost

Improve development productivity
of model scientists

❑DL Compilation
- Hardware heterogeneity
[IPDPS’21]

❑ Auto-Tuner
- Adaptive tuning [NeurIPS’20]

 (3.9x faster optimization speed)

- Multi-task tuning [ICLR’21]

❑ Model compression
- Extreme compression [NeurIPS’22 Oral]

 (50x smaller model size, similar accuracy)

- Zero-cost quant. [NeurIPS’22 spotlight]

- 1-bit communication [ICLR’23]

❑ Data efficiency
- Curriculum learning [NeurIPS’22, spotlight]

 (Retaining 99% accuracy with 10x less data)

- Adversarial learning [AAAI’22]

❑ Efficient architecture
- Mixture-of-Experts [ICML’22]

Efficiency Effectiveness

Open-source software

❑ Training efficiency
- High performance and cost-
efficient training [ATC’21]

 (Training 10x larger model with same GPUs,
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
 - Recurrent neural networks [ATC’18]

 (10x faster latency and hundreds of millions

of dollar saving, Microsoft 2018 top-3 “Cool
Tech” showcase)

 - Transformers [SC’22]

Research Focus (3Es)
Easy-to-Use

Industry products: Bing, Ads, Azure, Office

Efficient use of hardware for low latency,
high scalability and throughput

High accuracy and fast
convergence, lowering cost

Improve development productivity
of model scientists

DeepSpeed

16

❑DL Compilation
- Hardware heterogeneity
[IPDPS’21]

❑ Auto-Tuner
- Adaptive tuning [NeurIPS’20]

 (3.9x faster optimization speed)

- Multi-task tuning [ICLR’21]

❑ Model compression
- Extreme compression [NeurIPS’22 Oral]

 (50x smaller model size, similar accuracy)

- Zero-cost quant. [NeurIPS’22 spotlight]

- 1-bit communication [ICLR’23]

❑ Data efficiency
- Curriculum learning [NeurIPS’22, spotlight]

 (Retaining 99% accuracy with 10x less data)

- Adversarial learning [AAAI’22]

❑ Efficient architecture
- Mixture-of-Experts [ICML’22]

Training Efficiency: Breaking the Memory Wall

17

ML/DL Training Problem Definition Recap

• Given model f, data set {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁

• Minimize the loss between predicted labels and true labels:
Min

1

𝑁
σ𝑖=1
𝑁 𝑙𝑜𝑠𝑠(𝑓 𝑥𝑖, 𝑦𝑖)

• Common loss function
• Cross-entropy, MSE (mean squared error)

• Common way to solve the minimization problem
• Stochastic gradient descent (SGD)
• Adaptive learning rates optimizers (e.g., Adam)

Gradient Descent

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖 // compute derivative and update

w -= ∆w // apply update

End

Forward passBackward pass

Adaptive Learning Rates (Adam)

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖

w -= ∆w // apply update

End

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization”, 2014, https://arxiv.org/abs/1412.6980

[1]

Parallel/Distributed Gradient Descent

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖 // compute derivative and update

w -= ∆w // apply update

End

Can we parallelize it?

Data Parallelism (DP)

1. Partition the training data

2. Parallel training on different
machines

3. Synchronize the local
updates

4. Refresh local model with
new parameters, then go to 2

22

Implemented as standard component in DL training
frameworks, such as PyTorch DDP

Distributed Data Parallel Training in GPU Clusters

Intranode Interconnect Intranode Interconnect

Intranode Interconnect Intranode Interconnect

Internode Interconnect

Forward
Propagation

Backward
Propagation

Compute
Optimizer
Specific
Updates

Mini-Batch

Model

Loss

Average
Gradients

Updates

Apply Updates

23Distributed GPU ClusterData Parallel Training Loop

Bert-
Large GPT-2

Turing
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

24

Large Model Training Challenges

Bert-
Large GPT-2

Turing
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

25

Large Model Training Challenges

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

DNN Training Hit the Memory Wall

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

How to Break the Memory Wall?

GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption

28

A 16-layer transformer model = 1 layer

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell represents GPU memory used by its corresponding transformer layer

29

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters

30

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP16 Gradient
FP16 Parameters
FP16 Gradient

• FP16 parameter
• FP16 Gradients

31

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter
• FP16 Gradients
• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters

32

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes
• FP16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

33

Understanding Memory Consumption

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

https://arxiv.org/pdf/1710.03740.pdf

Distributed Training Strategies

• Pipeline Parallelism

• Tensor Parallelism

• 3D Parallelism

• ZeRO-Style Data Parallelism

34

Pipeline Parallelism

• Naïve model parallelism leads to severe underutilization

• Gpipe divides batch into micro-batches, enabling different device to work on different
micro-batches, reducing pipeline bubbles and improving utilization

35GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Supported in:
• PyTorch
• DeepSpeed
• Megatron-LM

https://arxiv.org/abs/1811.06965
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM

Tensor Parallelism

Splice tensors across GPUs

+

synchronization primitives
(e.g., all-reduce)

36

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Supported in:
• DeepSpeed
• Megatron-LM

https://arxiv.org/pdf/1909.08053.pdf
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM

3D Parallelism

37

DeepSpeed-extreme-scale-model-training-for-everyone

Supported in:
•DeepSpeed
•Megatron-LM

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM

ZeRO-Style Data Parallelism

38

• ZeRO removes the redundancy across data parallel process
• Partitioning optimizer states, gradients and parameters (3 stages)

Supported in:
•DeepSpeed
•PyTorch

https://github.com/microsoft/DeepSpeed

Large Models Need Parallelism
Max Parameter

(in billions)
Max Parallelism

Compute
Efficiency

Usability
(Model Rewrite)

Data Parallel (DP) Approx. 1.2 >1000 Very Good Great

Tensor Parallel (TP) Approx. 20 Approx. 16 Good Needs Model Rewrite

TP + DP Approx. 20 > 1000 Good
Needs Model Rewrite

Pipeline Parallel (PP) Approx. 100 Approx. 128 Very Good Needs Model Rewrite

PP + DP Approx. 100 > 1000 Very Good Needs Model Rewrite

TP + PP + DP > 1000 > 1000
Very Good Needs Significant Model

Rewrite

ZeRO > 1000 > 1000 Very Good Great

More Interesting Work on Training

• Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed
Deep Learning, OSDI 22

• Sequence Parallelism: Making 4D Parallelism Possible, ACL 2023

• Tutel: An efficient mixture-of-experts implementation for large DNN
model training, 2023

• Bamboo: Making Preemptible Instances Resilient for Affordable
Training of Large DNNs, NSDI 2023

• …

40

Tentative Schedule

41

Hardware Resource

42

Delta

• Home page:
https://www.ncsa.illinois.edu/res
earch/project-highlights/delta/

43

• 100 quad A100 GPU node, each
with 4 A100

• 100 quad A40 GPU node, each
with 4 A40

• 5 8-way A100 GPU, each with 8
A100

• 1 MI100 node, 8 MI100

Delta Onboarding Page
• https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/acc

essing.html

44

Step 1: Create ACCESS ID

45ACCESS Allocations: ACCESS (access-ci.org)

https://allocations.access-ci.org/

Step 2: Submit Resource Requests

46

Step 2: Submit Resource Requests

• EXPLORE — Great for resource evaluation, graduate
student projects, small classes and training events,
benchmarking, code development and porting, and
similar small-scale uses.

• DISCOVER — Designed for research grants with
modest resource needs, Campus Champions, large
classes and training events, NSF graduate
fellowships, benchmarking and code testing at scale,
and gateway development.

• ACCELERATE — Best for experienced users with mid-
scale resource needs, consolidating multi-grant
programs, collaborative projects, preparing for
Maximize ACCESS requests, and gateways with
growing communities.

• MAXIMIZE — The choice for large-scale research
activities that need more resources than the limit for
Accelerate ACCESS projects.

47

https://allocations.access-ci.org/prepare-requests
https://allocations.access-ci.org/prepare-requests
https://allocations.access-ci.org/prepare-requests
https://allocations.access-ci.org/prepare-requests

Step 3: SSH Login

• Support ssh login

• Maintaining Persistent
Sessions: tmux

48

Delta

• Please give it a try
• Request access (A100, A40, AMD,…)
• Ssh login
• Run a small training/inference job, say PyTorch examples
• Do preliminary performance profiling

• Let me know if you run into any issues
• Single GPU allocation
• Multi-GPU allocation
• Interactive development
• Isolation
• Persistent storage

49

	Slide 1
	Slide 2: The Large Language Model Revolution
	Slide 3: What is Language Model?
	Slide 4: Evolution of DNN Models
	Slide 5: Code Continuation and Generation
	Slide 6: Dialogue/New Search
	Slide 7: Image Generation from Text
	Slide 8: Autonomous Driving
	Slide 9: Transformers for Language Modeling
	Slide 10: AI Efficiency Challenges
	Slide 11: AI Efficiency Challenges
	Slide 12: DL System Desired Capabilities (3E)
	Slide 13: Research Focus (3Es)
	Slide 14: Research Focus (3Es)
	Slide 15: Research Focus (3Es)
	Slide 16: Research Focus (3Es)
	Slide 17: Training Efficiency: Breaking the Memory Wall
	Slide 18: ML/DL Training Problem Definition Recap
	Slide 19: Gradient Descent
	Slide 20: Adaptive Learning Rates (Adam)
	Slide 21: Parallel/Distributed Gradient Descent
	Slide 22: Data Parallelism (DP)
	Slide 23: Distributed Data Parallel Training in GPU Clusters
	Slide 24: Large Model Training Challenges
	Slide 25: Large Model Training Challenges
	Slide 26: DNN Training Hit the Memory Wall
	Slide 27: How to Break the Memory Wall?
	Slide 28: Understanding Memory Consumption
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Distributed Training Strategies
	Slide 35: Pipeline Parallelism
	Slide 36: Tensor Parallelism
	Slide 37: 3D Parallelism
	Slide 38: ZeRO-Style Data Parallelism
	Slide 39: Large Models Need Parallelism
	Slide 40: More Interesting Work on Training
	Slide 41: Tentative Schedule
	Slide 42: Hardware Resource
	Slide 43: Delta
	Slide 44: Delta Onboarding Page
	Slide 45: Step 1: Create ACCESS ID
	Slide 46: Step 2: Submit Resource Requests
	Slide 47: Step 2: Submit Resource Requests
	Slide 48: Step 3: SSH Login
	Slide 49: Delta

