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The Large Language Model Revolution



What is Language Model?
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Evolution of DNN Models

Larger models → better accuracy

Model size is still growing

Not reached the accuracy limit yet

More compute-efficient to train larger 
models than smaller ones to same 
accuracy



Code Continuation and Generation

5Suggest code and entire function in your editor – Github/OpenAI Codex

https://github.com/features/copilot


Dialogue/New Search

6ChatGPT: Optimizing Language Models for Dialogue

https://openai.com/blog/chatgpt/


Image Generation from Text

DALL·E: Creating Images from Text - OpenAI

https://openai.com/blog/dall-e/


Autonomous Driving

A Language Agent for Autonomous Driving

https://arxiv.org/pdf/2311.10813.pdf


[1] Vaswani et al. “Attention Is All You Need”, https://arxiv.org/abs/1706.03762, 2018
[2]Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, 2019, https://arxiv.org/abs/1810.04805
[3] Brown et al. “Language Models are Few-Shot Learners”, 2020, https://arxiv.org/abs/2005.14165

Transformers for Language Modeling

BERT GPT

[1] [2] [3]

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805


AI Efficiency Challenges



AI Efficiency Challenges

• Too slow to train high-quality models on massive data

• More hardware ≠ higher throughput, bigger model

• Higher throughput ≠ better accuracy, faster 
convergence, lower cost

• Better techniques ≠ handy to use

• Slow and expensive to deploy the models
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DL System Desired Capabilities (3E)
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Efficiency: Efficient use of hardware for high scalability and throughput

Effectiveness: High accuracy and fast convergence, lowering cost

Easy to use: Improve development productivity of model scientists 



Research Focus (3Es)
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Efficiency

❑ Training efficiency 
- High performance and cost-
efficient training [ATC’21]

   (Training 10x larger model with same GPUs, 
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
  - Recurrent neural networks [ATC’18]

  (10x faster latency and hundreds of millions 

of dollar saving, Microsoft 2018 top-3 “Cool 
Tech” showcase)

  - Transformers [SC’22]

Efficient use of hardware for low latency, 
high scalability and throughput



Research Focus (3Es)
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Efficiency Effectiveness

❑ Training efficiency 
- High performance and cost-
efficient training [ATC’21]

   (Training 10x larger model with same GPUs, 
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
  - Recurrent neural networks [ATC’18]

  (10x faster latency and hundreds of millions 

of dollar saving, Microsoft 2018 top-3 “Cool 
Tech” showcase)

  - Transformers [SC’22]

Efficient use of hardware for low latency, 
high scalability and throughput

High accuracy and fast 
convergence, lowering cost 

❑ Model compression
- Extreme compression [NeurIPS’22 Oral]

   (50x smaller model size, similar accuracy)

- Zero-cost quant. [NeurIPS’22 spotlight]

- 1-bit communication [ICLR’23]

❑ Data efficiency 
- Curriculum learning [NeurIPS’22, spotlight]

   (Retaining 99% accuracy with 10x less data)

- Adversarial learning [AAAI’22]

❑ Efficient architecture 
- Mixture-of-Experts [ICML’22]



Research Focus (3Es)
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Efficiency Effectiveness

❑ Training efficiency 
- High performance and cost-
efficient training [ATC’21]

   (Training 10x larger model with same GPUs, 
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
  - Recurrent neural networks [ATC’18]

  (10x faster latency and hundreds of millions 

of dollar saving, Microsoft 2018 top-3 “Cool 
Tech” showcase)

  - Transformers [SC’22]

Easy-to-Use
Efficient use of hardware for low latency, 
high scalability and throughput

High accuracy and fast 
convergence, lowering cost 

Improve development productivity 
of model scientists 

❑DL Compilation 
- Hardware heterogeneity 
[IPDPS’21]

❑ Auto-Tuner 
- Adaptive tuning [NeurIPS’20]

    (3.9x faster optimization speed)

- Multi-task tuning [ICLR’21]

❑ Model compression
- Extreme compression [NeurIPS’22 Oral]

   (50x smaller model size, similar accuracy)

- Zero-cost quant. [NeurIPS’22 spotlight]

- 1-bit communication [ICLR’23]

❑ Data efficiency 
- Curriculum learning [NeurIPS’22, spotlight]

   (Retaining 99% accuracy with 10x less data)

- Adversarial learning [AAAI’22]

❑ Efficient architecture 
- Mixture-of-Experts [ICML’22]



Efficiency Effectiveness

Open-source software

❑ Training efficiency 
- High performance and cost-
efficient training [ATC’21]

   (Training 10x larger model with same GPUs, 
adopted by major DL frameworks)

- Graph neural networks [ASPLOS’23]

- Training w. spot instances [NSDI’23, SOSP’24]

❑ Inference efficiency
  - Recurrent neural networks [ATC’18]

  (10x faster latency and hundreds of millions 

of dollar saving, Microsoft 2018 top-3 “Cool 
Tech” showcase)

  - Transformers [SC’22]

Research Focus (3Es)
Easy-to-Use

Industry products: Bing, Ads, Azure, Office

Efficient use of hardware for low latency, 
high scalability and throughput

High accuracy and fast 
convergence, lowering cost 

Improve development productivity 
of model scientists 

DeepSpeed
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❑DL Compilation 
- Hardware heterogeneity 
[IPDPS’21]

❑ Auto-Tuner 
- Adaptive tuning [NeurIPS’20]

    (3.9x faster optimization speed)

- Multi-task tuning [ICLR’21]

❑ Model compression
- Extreme compression [NeurIPS’22 Oral]

   (50x smaller model size, similar accuracy)

- Zero-cost quant. [NeurIPS’22 spotlight]

- 1-bit communication [ICLR’23]

❑ Data efficiency 
- Curriculum learning [NeurIPS’22, spotlight]

   (Retaining 99% accuracy with 10x less data)

- Adversarial learning [AAAI’22]

❑ Efficient architecture 
- Mixture-of-Experts [ICML’22]



Training Efficiency: Breaking the Memory Wall
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ML/DL Training Problem Definition Recap

• Given model f, data set {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁

• Minimize the loss between predicted labels and true labels:
Min 

1

𝑁
σ𝑖=1
𝑁 𝑙𝑜𝑠𝑠(𝑓 𝑥𝑖, 𝑦𝑖 )

• Common loss function
• Cross-entropy, MSE (mean squared error) 

• Common way to solve the minimization problem
• Stochastic gradient descent (SGD)
• Adaptive learning rates optimizers (e.g., Adam)



Gradient Descent

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x 
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖 // compute derivative and update

w -= ∆w   // apply update

End

Forward passBackward pass



Adaptive Learning Rates (Adam)

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x 
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖

w -= ∆w   // apply update

End

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization”, 2014, https://arxiv.org/abs/1412.6980

[1]



Parallel/Distributed Gradient Descent

• Model fw is parameterized by weight w

• η > 0 is the learning rate

For t = 1 to T

∆w = η x 
1

𝑁
σ𝑖=1
𝑁 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖 // compute derivative and update

w -= ∆w   // apply update

End

Can we parallelize it?



Data Parallelism (DP)

1. Partition the training data

2. Parallel training on different 
machines

3. Synchronize the local 
updates

4. Refresh local model with 
new parameters, then go to 2
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Implemented as standard component in DL training 
frameworks, such as PyTorch DDP



Distributed Data Parallel Training in GPU Clusters

Intranode Interconnect Intranode Interconnect

Intranode Interconnect Intranode Interconnect

Internode Interconnect

Forward 
Propagation

Backward
Propagation

Compute 
Optimizer 
Specific 
Updates

Mini-Batch

Model

Loss

Average 
Gradients

Updates

Apply Updates

23Distributed GPU ClusterData Parallel Training Loop



Bert-
Large GPT-2

Turing 
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative Computation 1x 4.7x 54x 547x 

Memory Footprint 5.12GB 24GB 275GB 2800GB 

24

Large Model Training Challenges



Bert-
Large GPT-2

Turing 
17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative Computation 1x 4.7x 54x 547x 

Memory Footprint 5.12GB 24GB 275GB 2800GB 
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Large Model Training Challenges

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory



DNN Training Hit the Memory Wall

*AI and Memory Wall. (This blogpost has been written in… | by Amir Gholami | riselab | Medium

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


How to Break the Memory Wall?



GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption 
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A 16-layer transformer model = 1 layer

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf


GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell   represents GPU memory used by its corresponding transformer layer
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Understanding Memory Consumption 

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf


GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters
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Understanding Memory Consumption 

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf


GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP16 Gradient
FP16 Parameters
FP16 Gradient

• FP16 parameter
• FP16 Gradients
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Understanding Memory Consumption 

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf


GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter
• FP16 Gradients
• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters
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Understanding Memory Consumption 

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

https://arxiv.org/pdf/1710.03740.pdf


GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1 FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes
• FP16 Gradients : 2M bytes
• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

33

Understanding Memory Consumption 

*Mixed Precision Training (ICLR ‘18) with Adam Optimizer

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

https://arxiv.org/pdf/1710.03740.pdf


Distributed Training Strategies

• Pipeline Parallelism

• Tensor Parallelism

• 3D Parallelism

• ZeRO-Style Data Parallelism

34



Pipeline Parallelism

• Naïve model parallelism leads to severe underutilization

• Gpipe divides batch into micro-batches, enabling different device to work on different 
micro-batches, reducing pipeline bubbles and improving utilization

35GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Supported in:
• PyTorch
• DeepSpeed
• Megatron-LM

https://arxiv.org/abs/1811.06965
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM


Tensor Parallelism

Splice tensors across GPUs 

+ 

synchronization primitives 
(e.g., all-reduce)

36

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Supported in:
• DeepSpeed
• Megatron-LM

https://arxiv.org/pdf/1909.08053.pdf
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM


3D Parallelism

37

DeepSpeed-extreme-scale-model-training-for-everyone

Supported in:
•DeepSpeed
•Megatron-LM

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM


ZeRO-Style Data Parallelism
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• ZeRO removes the redundancy across data parallel process
• Partitioning optimizer states, gradients and parameters (3 stages)

Supported in:
•DeepSpeed
•PyTorch

https://github.com/microsoft/DeepSpeed


Large Models Need Parallelism
Max Parameter 

(in billions)
Max Parallelism

Compute 
Efficiency

Usability 
(Model Rewrite)

Data Parallel (DP) Approx. 1.2 >1000 Very Good Great

Tensor Parallel (TP) Approx. 20 Approx. 16 Good Needs Model Rewrite

TP + DP Approx. 20 >  1000 Good
Needs Model Rewrite

Pipeline Parallel (PP) Approx. 100 Approx. 128 Very Good Needs Model Rewrite

PP + DP Approx. 100 > 1000 Very Good Needs Model Rewrite

TP + PP + DP > 1000 > 1000
Very Good Needs Significant Model 

Rewrite

ZeRO > 1000 > 1000 Very Good Great



More Interesting Work on Training

• Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed 
Deep Learning, OSDI 22

• Sequence Parallelism: Making 4D Parallelism Possible, ACL 2023

• Tutel: An efficient mixture-of-experts implementation for large DNN 
model training, 2023

• Bamboo: Making Preemptible Instances Resilient for Affordable 
Training of Large DNNs, NSDI 2023

• …

40



Tentative Schedule
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Hardware Resource

42



Delta

• Home page: 
https://www.ncsa.illinois.edu/res
earch/project-highlights/delta/

43

• 100 quad A100 GPU node, each 
with 4 A100

• 100 quad A40 GPU node, each 
with 4 A40

• 5 8-way A100 GPU, each with 8 
A100

• 1 MI100 node, 8 MI100



Delta Onboarding Page
• https://docs.ncsa.illinois.edu/systems/delta/en/latest/user_guide/acc

essing.html

44



Step 1: Create ACCESS ID

45ACCESS Allocations: ACCESS (access-ci.org)

https://allocations.access-ci.org/


Step 2: Submit Resource Requests  

46



Step 2: Submit Resource Requests 

• EXPLORE — Great for resource evaluation, graduate 
student projects, small classes and training events, 
benchmarking, code development and porting, and 
similar small-scale uses.

• DISCOVER — Designed for research grants with 
modest resource needs, Campus Champions, large 
classes and training events, NSF graduate 
fellowships, benchmarking and code testing at scale, 
and gateway development.

• ACCELERATE — Best for experienced users with mid-
scale resource needs, consolidating multi-grant 
programs, collaborative projects, preparing for 
Maximize ACCESS requests, and gateways with 
growing communities.

• MAXIMIZE — The choice for large-scale research 
activities that need more resources than the limit for 
Accelerate ACCESS projects.

47

https://allocations.access-ci.org/prepare-requests
https://allocations.access-ci.org/prepare-requests
https://allocations.access-ci.org/prepare-requests
https://allocations.access-ci.org/prepare-requests


Step 3: SSH Login

• Support ssh login

• Maintaining Persistent 
Sessions: tmux

48



Delta 

• Please give it a try
• Request access (A100, A40, AMD,…)
• Ssh login
• Run a small training/inference job, say PyTorch examples
• Do preliminary performance profiling

• Let me know if you run into any issues
• Single GPU allocation
• Multi-GPU allocation
• Interactive development
• Isolation
• Persistent storage

49
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