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Inference Scenario 1: Online Q&A

b what are famous quote from shakespeare what are famous quote from shakespeare GO Qle Q

Web Images ViEEE Maps N All Images News Shopping Videos More Settings Tools

About 7,370,000 results (0.88 seconds)
3,330,000 RESULTS Any time ~

William Shakespeare Quotes - BrainyQuote William Shakespeare / Quotes

Brainyquote > quotes > authors > ... » william_shakespeare ~

Enjoy the best William Shakespeare Quotes at BrainyQuote. Quotations by William

Shakespeare, English Dramatist, Born April 23, 1564. Share with your friends. Be not afraid of greatness: some are born great, some achieve greatness, and some have greatness
thrust upon them.

Shakespeare Quotes: Top 50 Famous Shakespeare Quotes To thine own self be true, and it must follow, as the night the day, thou canst not then be false to any
Nosweatshakespeare > quotes > famous-shakespeare-quotes v man.

wkkkd 4.3/5- 19 ratings - By Ed

Read Shakespeare's most famous quotes. ... and can now offer what we belive to be the The course of true love never did run smooth.

50 most famous Shakespeare quotes. So, without further ado, ...

Shakespeare Quotes - eNotes.com Feedback
Enotes » shakespeare-quotes v
Shakespeare quotes with explanations at eNotes.com. eNotes Home; Homework Help;

Study Guides; Study Tools ... and is one of Shakespeare's most famous quotes. ® Question d nd Answer Scena riO
* Direct answer not a list of webpages
* Good quality of answer

William Shakespeare Quotes at AbsoluteShakespeare.com
Absoluteshakespeare » trivia » quotes » quotes.htm ~

William Shakespeare quotes such as "To be, ... Other famous Shakespeare quotes
such as "l 'll not budge an inch", "We have seen better ...



Inference Scenario 2: Online ChatBot

What are some fun places to visit at Urbana Champaign?

./ Searching for: fun places to visit at Urbana Champaign

~ Generating answers for you...

There are many fun places to visit at Urbana Champaign, depending on your interests and preferences.
Here are some of the most popular ones:

e If you love nature and animals, you might enjoy visiting the Anita Purves Nature Center " where you

a restored historic venue that hosts concerts, movies, and shows.

o If you are feeling adventurous and sporty, you might have fun at the University of Illinois Ice Arena,
where you can skate, play hockey, or watch games.

These are just some of the fun places to visit at Urbana Champaign. You can find more information and

reviews on Tripadvisor or Bing. | hope you have a great time exploring the city! &

Learnmore v~ 1 @ experiencecuorg 2 X kam.llinois.edu 3 Q bing.com

H 9 0 L e 20f30 ®
ST UUBBINDS VUWND
w Anita.Purves
Nature Ce...
SAWGRASS Q
45
STALEY. Champaign Q Urbana 150/——Count

Q Spurlock Museum

e ChatBot Scenario

 Human-like responses with
fewer hallucination
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Inference Challenge 1: Long Latency

* Long serving latency blocks deployment
e Support advance models while meeting latency SLA and saving cost

Original Latency Latency Target

Turing Prototype 2 ~100ms < 10ms

Turing Prototype 3 ~107ms < 10ms
10~12ms for [query, 1 doc]

Dee ery Document Similarit < 6bms
b Query N mitarity X 33 docs
Malta Click Features L0k el st 4L [presere] <5ms
x 150 passages
Ads seq2seq model for query ~51ms <5ms

rewriting

11



Inference Challenge 2: Limited Parallelism

e Small batch size = Low data reuse

e Autoregressive generation = Sequential dependency

Input Vector

8192

N=2K, 4K, ...

&

Weight

8192

4096

I
Output Vector

N

4096

Training |t

: Weight
Input Vector
|
11 |® 8192
; 8192
; 4096
|
» | Inference

1

Output Vector

4096
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Inference Challenge 3: Large Memory
Footprint

 Model parameters
* # Layers
 # Hidden dim K\
Parameters Cache
e KV cache ~30%
* Batch size (26GB, 65%) ( 0)
e Sequence length
* # Layers
e # Hidden
Others

e Activation and others OPT-13B on A100 40 GB

Efficient Memory Management for Large Language Model Serving with
PagedAttention, by Kwon et al., 2023



https://ar5iv.labs.arxiv.org/html/2309.06180

Inference Challenge 4: Putting DNN Models
Into Production Takes Long Time

e Large-scale

« DNN training * Customized « Hardware
architecture * Parallelism operators acceleration
Ideation e>_<p|orat|on * Hyperparame e Compression o Multi-
* Discover ter tuning e Parallelism tenancy
models/data e Training data . ‘
e Locality e Compliance

transfer

14



Inference Optimization Goals

* Reduce the inference latency to satisfy latency SLA
* Improve the inference throughput to save cost

* Reduce the memory footprint of the model by using fewer GPU
devices and less GPU memory

* Improve agility from DNN prototype to deployment

15



Model Compression



Compression Engine (DeepSpeed Compression)

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

Accuracy
A .
/"“’
h
4 Latency
Faster L >
DeepSpeed Compression ACC,U‘\ran
Sma"er‘ © or0% &
" @ 4 ms
Model size

B { F 10 M8 (50x)
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Compression Engine

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

. Compression
composer

Optimized
= @ Y inference
Compressed engine

model

Accuracy
A .
o/‘v‘
16
f Latency
Faster ' >
Accuracy
A e ® ¢ ¢
Smaller ‘ s & 91.0%
° @ 4 ms
Model size

B { F 10 M8 (50x)
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Compression Engine

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

Accuracy
A
o/‘v‘
16
f Latency
c ) Optimized Faster Accuracy >
» 22:5%555::” » @ =Y inference A A
p Compressed engine Smaller < @ 91.0% E
model ! @ 4
.. ° ms Edge
Training Model size :

1 B { F 10 M8 (50x)

* XTC: Extreme compression (NeurlPS’22 Oral)

Great model size reduction (>50x) via layer reduction and weight binarization techniques

Network
Architecture

{Semi=)Structured

Pruning * ZeroQuant: zero-cost quantization (NeurlPS’22 Spotlight)

Quantizing models with >5000x compression cost reduction and no training data

AD?: Adversarial knowledge distillation (AAA’22)

2x latency reduction via deep knowledge distillation and adversarial data augmentation

[ 1.2] 0.9] 09 1.8
T
[ 1] 1] of 2]

Quantization *

Distillation

* NxMTransformer: Semi-structured sparsification (NeurlPS’21)
2x latency reduction via N:M semi-structured sparsity and ADMM
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Compression Engine

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

Accuracy
A
o/‘v‘
16
f Latency
c ) Optimized Faster Accuracy >
» ?:gqrgrissselc:n » @ =Y inference A A
p Compressed engine Smaller < @ 91.0% E
model ! @ 4
.. ° ms Edge
Training Model size :

1 B { F 10 M8 (50x)

* XTC: Extreme compression (NeurlPS’22 Oral)
Great model size reduction (>50x) via layer reduction and weight binarization techniques

Network
Architecture

{Semi=)Structured

Pruning * ZeroQuant: zero-cost quantization (NeurlPS’22 Spotlight)

Quantizing models with >5000x compression cost reduction and no training data

AD?: Adversarial knowledge distillation (AAA’22)

2x latency reduction via deep knowledge distillation and adversarial data augmentation

[ 1.2] 0.9] 09 1.8
T
[ 1] 1] of 2]

Quantization *

Distillation

* NxMTransformer: Semi-structured sparsification (NeurlPS'21)
2x latency reduction via N:M semi-structured sparsity and ADMM
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XTC: Extreme Compression

A technique that achieves great model size reduction (>50x) via layer reduction and weight
binarization techniques



Quantization: Quick Recap

* Reduce the bits per weight, saving memory consumption
* Accelerate inference speed on supporting hardware

float32
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8-bit Weight Quantization
r L
-

B-o@om-

X 3

L

_—J

, I I I IS IS S B . \ FP32 weight matrix 8-bit quantization
* 8-bit weight quantization 1.1] 2.2[0.1 |-0.1|-5.5|-6.6 Scaling | 21 (42 |2 |-2 |106|-127
I I Factor

1/s

X . . (" *

I Xguantize — round (Clamp(g, —Zb?'t_lj QbZt_l — 1))' ~ 0.05

1.1/2.1]0.1|-0.1] -4.8/-6.6 21140 | 2 |-2 |-92|-127
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8-bit Activation Quantization

- B
-
1B

r
Wv

@ C-Y--K-1-L%

|
, I S S S S e e . \ FP32 input matrix 8-bit quantization
I° 8-bit activation 1.1/ 2.2]0.1]-0.1|-5.5|-6.6 i;i{g‘rg 21042 | 2 |2 |106|-127
(Input to the linear layer) e 1/5
I Xquantize = round (Clamp(g, _2bzt—1’ szt—l o 1))' ~ 0.05
1.12.1 [ 0.1 |-0.1| -4.8)-6.6 21140 12 -2 1 -92)-127
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Weight Ternarization
-

@

X 3

b-o@meom.

_—J

I - O S o - o -y, FP32 weight matrix 2-bit quantization

Ternarization (weight - N -

(weight) | 1.1/ 2.2/0.1|-0.1|-5.5|-6.6 Scaling | 1 1|00

I W: weight matrix, FP32. Factor a

Q(W): Quantization mapping, 2-bit. I ~ 506
I With a=||W||{/n, for some scalar s ~~

a- 51gn(WU) when [W;;| > s I
l QW) = when |W;;| < S,
1.1/2.1 | 0.1 [-0.1| -4.8-6.0




Weight Binarization
-

@

X 3

B-o@om-

i_J
FP32 weight matrix 1-bit quantization

f o . ™S 1.1/ 2.2/ 0.1 |-0.1|-5.5|-6.6 1 1 1
I * Binarization (weight) I

W: weight matrix, FP32. ~ 14
I Q(W): Quantization mapping, 1-bit. I ~

With a= [|[W][{/n Scaling | -
| QW) = a-sigmwy) | |- Factor a|

A EEE S S s s s 1.112.1 10.1|-0.1| -4.8/-6.0 1 1 1




How Does Extreme Compression Work?

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (8MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
0 i T

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT 7



https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

How Does Extreme Compression Work?

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (8MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
h 8 —
. Task-agnostic Smaller : :
6L BERT (255MB)
o FP32 (1.6x)
Existing
: P>
Works General KD
[1,2,3,4] pretraining

~360 GPU hours on
: training on large-
: scale text corpus

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT ;g
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How Does Extreme Compression Work?

Task-specific Smaller

Task-agnostic Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (3MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
h 8 —
: Task-agnostic Smaller : :
6L BERT (255MB)
o : FP32 (1.6x) :
Existing : : :
: —

EZRRINE  pretraining MNLI: ~24 GPU hours

Tuning efforts on learning :
rates and training iterationsé
for different stages :

~360 GPU hours on
: training on large-
: scale text corpus

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT ;g
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https://arxiv.org/pdf/1909.10351.pdf
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https://arxiv.org/abs/2012.15701

How Does Extreme Compression Work?

Task-agnostic

Task-specific Smaller

Task-specific Smaller
6L BERT (3MB)

12L BERT (418MB) 6L BERT (255MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
b : —
: Task-agnostic Smaller :  Task-specific Smaller :
6L BERT (255MB) 6L BERT-half (174MB)
o FP32 (1.6x) FP32 (2.4x)
Existing :
>
[1,2,3,4] pretraining MNLI: ~24 GPU hours  : MNLI: ~24

~360 GPU hours on
: training on large-
: scale text corpus

Tuning efforts on learning GPU hours to
rates and training iterations§ train half
for different stages : width model

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT 3



https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

How Does Extreme Compression Work?

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (3MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
b : —
. Task-agnostic Smaller : Task-specific Smaller  Task-specific Smaller :
6L BERT (255MB) °  G6LBERT-half (174MB) 6L BERT-half (11MB)
o FP32 (1.6x) FP32 (2.4x) 2-bit (38x)
Existing : >
Works General KD Stage-Il KD Pruning = Weight-Splitting

[1,2,3,4] § __pretraining MNLI: ~24 GPU hours i MNLI:~24  MNLI: ~12 GPU

Tuning efforts on learning i GPU hours to hours to train
rates and training iterations§ train half ternary weight
for different stages : width model

~360 GPU hours on
: training on large-
: scale text corpus

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT 31



https://arxiv.org/pdf/1910.01108.pdf
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How Does Extreme Compression Work?

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (8MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
: : —
: Task-agnostic Smaller : Task-specific Smaller  Task-specific Smaller :
6L BERT (255MB) 6L BERT-half (174MB) 6L BERT-half (11MB)
o FP32 (1.6x) FP32 (2.4x) 2-bit (38x)
Existing :

Weight-Splitting | Stage-1 KD Stage-Il KD

Works General KD Stage-1 KD Stage-Il KD Pruning

[1,2,3,4] SIS MNLI: ~24 GPU hours i MNL::~24  MNL: ~12GPU  MNLI: ~24 GPU hours
: ~360 GPU hours on Tuning efforts on learning GPU hours to hours to tréin Tuning effort.s on I.earni.ng :
: training on large- rates and training iterations: train half ternary weight rates and training iterations :
: for different stages : width model for different stages :

: scale text corpus

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT 3,



https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

How Does Extreme Compression Work?

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (8MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
: : —
: Task-agnostic Smaller : Task-specific Smaller  Task-specific Smaller :
6L BERT (255MB) 6L BERT-half (174MB) 6L BERT-half (11MB)
FP32 (1.6x) FP32 (2.4x) 2-bit (38x)

Existing
Works
[1,2,3,4]

Stage-Il KD Pruning Weight-Splitting Stage-Il KD

General KD

i pretraining MNLI: ~24 GPU hours i MNL::~24  MNL: ~12GPU  MNLI: ~24 GPU hours
: ~360 GPU hours on Tuning efforts on learning GPU hours to hours to tréin Tuning effort.s on I.earni.ng :
: training on large- rates and training iterations: train half ternary weight rates and training iterations :
: for different stages : width model for different stages :

: scale text corpus

@ Limitations:
- High compression cost and long training time in practice
- Too many stages lead to complicated engineering and tuning effort

33



XTC: Effective Extreme Compression

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (8MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
: : —
: Task-agnostic Smaller : Task-specific Smaller  Task-specific Smaller :
6L BERT (255MB) 6L BERT-half (174MB) 6L BERT-half (11MB)
o FP32 (1.6x) FP32 (2.4x) 2-bit (38x)
Existing :

Works General KD Stage-1 KD Stage-Il KD Pruning Stage-IKD  Stage-ll KD

[1,2,34] SEIGIEIL: MNLI: ~24 GPU hours i MNLI:~24  MNLE: ~12GPU  MNLI: ~24 GPU hours

: i ing : hours to train i '
: ~360 GPU hours on Tuning effort_s _on I_earm_ng : GPp hours to : Tuning effort.s Fm I.earm.ng _
rates and training iterations: train half ternary weight rates and training iterations :

for different stages width model for different stages

Weight-Splitting

: training on large-
: scale text corpus

XTC (Lightweight layer reduction) Single-stage KD
MNLI: ~24 GPU hours (16x reduction)

34



XTC: Effective Extreme Compression

Task-agnostic Task-specific Smaller Task-specific Smaller
12L BERT (418MB) 6L BERT (255MB) 6L BERT (3MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)
b : —
: Task-agnostic Smaller . Task-specific Smaller  Task-specific Smaller :
6L BERT (255MB) *  GLBERT-half (174MB) 6L BERT-half (11MB)
o FP32 (1.6x) FP32 (2.4x) 2-bit (38x)
Existing :

Works General KD Stage-1 KD Stage-Il KD Pruning  Weight-Splitting | Stage-lKD | Stage-ll KD
[1,2,3,4] pretraining MNLI: ~24 GPU hours i MNL::~24  MNL: ~12GPU  MNLI: ~24 GPU hours
~360 GPU hours on Tuning efforts on learning GPU hours to hours to trr?uin Tuning effort.s on I.earni.ng :
: training on large- rates and training iterations: train half ternary weight rates and training iterations
scale text corpus for different stages width model for different stages

XTC (Lightweight layer reduction) Single-stage KD

Single-stage KD
MNLI: ~24 GPU hours (16x reduction) MNLI: ~24 GPU hours (2.5x reduction)

35



XTC: Effective Extreme Compression

BERT (418MB) BERT (255MB) BERT (8MB) @ reduce the compression time, make compression
FPR2 (1) FP32 (1.6x) 1-bit (52x) easy to implement, and save enormous amount of
Single-stage KD Single-stage KD en gine erin g tunin g efforts
Layer Reduction Binarization

* Great model size reduction (>50x)

36



XTC: Effective Extreme Compression

BERT (418MB) BERT (255MB) BERT (8MB) . Stage-I KD Stage-Il KD
FP32 (1x) FP32 (1.6x) 1-bit (52x) 5 MNLI: ~24 GPU hours
Single-stage KD Single-stage KD ~360 GPU hours on Tuning effort.s on I.earni‘ng
_ _ - training on large- rates and training iterations
Layer Reduction Binarization scale text corpus for different stages
o G reat model Size red UCtion (>50x) (Lightweight layer reduction) Single-stage KD
. ~ MNLI: ~24 GPU hours (16x reduction)
e Layer Reduction (~2x)
No pre-training data needed Jistil distill
Flexible to choose any layers of teacher model _§ _3 —
— — —
— — ——
= = 2=
) —— (—
— :1> —
Task-agnostic  Task-specific ~ Task-specific
teacher student student

model model 1 model 2 37



XTC: Effective Extreme Compression

BERT (418MB) BERT (255MB) BERT (8MB)
FP32 (1x) FP32 (1.6x) 1-bit (52x)

Single-stage KD Single-stage KD

Weight-Splitting | Stage-1 KD Stae~

Layer Reduction Binarization

* Great model size reduction (>50x)
e Layer Reduction (~2x)

No pre-training data needed .
Flexible to choose any layers of teacher model 5'“g'eStage KD :
: ) .. MNLI: ~24 GP 2. i
* Weight Binarization (32x) GPU hours (2.5x reduction)

Train longer (+ learning rate decay)
Deep knowledge distillation
-- Mimic logits, feature map, attention map
Data augmentation
-- Word-level replacement 28




Lessons from Extreme Compression

e Simple schedule, e.g., longer training iterations with learning rate decay,
is highly preferred for closing the accuracy gap of extreme quantization.

* Single-stage training, e.g., single-stage knowledge distillation, save
enormous amount of engineering tuning efforts.

* Avoid pre-training compression as much as possible due to its expensive
cost.



New Challenges to Compress Generative LLMs



Challenges to Quantize LLMs

|

— LLMr\fli(ri::Q(?d | ///u/. .

8-bit baseline | ="
0.7 —— 16-bit baseline /.r‘-"”"
e Standard quantization : A
. S 0.6 o

strategy leads to catastrophic ¢ / |
accuracy drop g / |
s |
S |
0.4 |
emergence of —— |
outlier features |
0.3 [

I I I S S

Parameters

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, NeurlPS 2022
41



https://arxiv.org/abs/2208.07339

Challenges to Quantize LLMs

Activation Range of Each Token for Different Layers

w
o
L

B
o
1

w
o
L

* High dynamic ranges of activation,
leading to large quantization errors

N
o
i

Max Abs Value of Each Token

=
o

o
I

0123456 7 8 91011121314151617181920212223
Layer Number

42



Challenges to Quantize LLMs

* Difficult to quantize large-scale models within limited time/resource

budget

Quantization Aware Training

FP16/FP32 Model

Training Data

Retraining W
Training GPUs Parameter Tuning

g Quantized INT8 Model

43



Challenges to Quantize LLMs

* Difficult to quantize large-scale models within limited time/resource

budget

Quantization Aware Training

FP16/FP32 Model

Retraining

Parameter Tuning

g Quantized INT8 Model

44



Fine-grained Quantization

* Per-tensor quantization Jpertensor quant. ] per-tensor quant.
* Low accuracy A G - E
e Fast to quantize/dequantize o7 X > e V€7
e N
* Per-token/channel quantization AT Ay G
* High accuracy C, | = ;
* Slower to quantize/dequantize r X * e \?;7
e Custom kernels required

per-token quant. per-channel quafif.
(b) per-token + per-channel quantization

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, NeurlPS 2022
45



https://arxiv.org/abs/2206.01861

Mixed Precision Quantization

* Weights follow Gaussian

diStribUtion f»-';;:ii”:;;?‘ 3bt?§ g!‘t%,s,b,t,?c,t, re“lton
i e m o [
125000 - D - Lover meieoresey BN iy
- (0 i origi > 100000 PR e e R llo\l [l
* Outliers remain in original g 100000 .o —— Layer 25 ¢ S/ 7o EIEEEAEEOCAE: |
form, quantize the rest of the § °°®] I D Tt | ree =
T 50000 - ¢ abit/ obit 7 A ||°" o ﬂHh :
values 70 AN | e
25000 - /‘\\ -
0 S ...-&’ \\-._.. S St/ bt """"""" 1 ’7 ||°|| " ” ” " ” “
—04 -03 -02 -01 00 01 02 03 .
* Different bits for different Weight Value
layers Per-layer weight distribution of BERT model

GOBO: Quantizing Attention-Based NLP Models
for Low Latency and Energy Efficient Inference, MICRO 2020 16



https://arxiv.org/pdf/2005.03842.pdf
https://arxiv.org/pdf/2005.03842.pdf

Mixed Precision + Second Order Information

* Analyze the loss curvature (Hessian matrices) to help identify layer
sensitivity

(a) MNLI 4™ layer (b) MNLI 10" layer (c) CoNLL-03 4™ layer (d) CONLL-03 11" layer

Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT, AAAI 2019 47



https://arxiv.org/pdf/1909.05840.pdf

Outlier Smoothing

e Activation X is hard to quantize outlier IX| |W|
because outliers stretch the 3" ~ —"
quantization range, leaving few " lo“ﬁ?{‘:t\f"e bits
effective bits for most values. = .
hard to quantize very easy to quantize

* One can migrate the scale variance
from activations to weights W during
offline to reduce the quantization

(a) Original

. migrate difficulty

Smﬁmhed 1X| T~ W |

o 1 1
difficulty of activations. z \/\/\/vvw V\/\w/
* The smoothed activation X" and the %u 0
adjusted weight W™ are both easy to easy to quantize easy to quantize
guantize. (b) SmoothQuant

SmoothQuant: Accurate and Efficient Post-Training Quantization for
Large Language Models, ICML 2023
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https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
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