
AI Efficiency: Systems and Algorithms

Minjia Zhang

CS 598

Computer Science Department
University of Illinois at Urbana-Champaign

1

2

Systems for AI Efficiency

System

Parallelism

Pipeline

Data

Tensor

Auto-design

Fusion

3

Systems for AI Efficiency

System

Parallelism

Pipeline

Data

Tensor

Auto-design

Computing

Loop
optimization

Data types

SIMD

Fusion

4

Systems for AI Efficiency

System

Parallelism

Pipeline

Data

Tensor

Auto-design

Computing

Loop
optimization

Data types

SIMD

Hardware

GPU FPGA

ASIC

Fusion

5

Systems for AI Efficiency

System

Parallelism

Pipeline

Data

Tensor

Auto-design

Architecture

N:M sparsity KV cache

Paged Attn

Computing

Loop
optimization

Data types

SIMD

Hardware

GPU FPGA

ASIC

6

Algorithms for AI Efficiency

Algorithm

Training

Coreset

Quantize
-aware

Sparse

?

Fine-tuning

LoRA Adapters

Bias/BitFit

Inference

Post-training
Quantization

Decoding

Pruning

Architecture

Sparse
Attn.

KD

Group
Query

Prompt
NASMoE

Linear
Attn.

SSM

7

Algorithms for AI Efficiency

Algorithm

Training

Coreset

Quantize
-aware

Sparse

?

Fine-tuning

LoRA Adapters

Bias/BitFit

Inference

Post-training
Quantization

Decoding

Pruning

Architecture

Sparse
Attn.

KD

Group
Query

Prompt
NASMoE

Linear
Attn.

SSM

Algorithms for Efficient AI Inference

8

Inference Scenario 1: Online Q&A

• Question and Answer Scenario

• Direct answer not a list of webpages

• Good quality of answer

9

Inference Scenario 2: Online ChatBot

10

• ChatBot Scenario

• Human-like responses with
fewer hallucination

Inference Challenge 1: Long Latency
• Long serving latency blocks deployment

• Support advance models while meeting latency SLA and saving cost

11

DL Scenarios Original Latency Latency Target

Turing Prototype 2 ~100ms < 10ms

Turing Prototype 3 ~107ms < 10ms

Deep Query Document Similarity
10~12ms for [query, 1 doc]

x 33 docs
< 6ms

Malta Click Features
10ms for [query, 1 passage]

x 150 passages
< 5ms

Ads seq2seq model for query
rewriting

~51ms < 5ms

Inference Challenge 2: Limited Parallelism

• Small batch size Low data reuse
• Autoregressive generation Sequential dependency

12

8192

Input Vector

4096

Weight

8192

N

4096

N

Output Vector

8192

Input Vector

4096

8192
1

4096

Output Vector

Weight

1

N=2K, 4K, …
Training Inference

Inference Challenge 3: Large Memory
Footprint

• Model parameters
• # Layers
• # Hidden dim

• KV cache
• Batch size
• Sequence length
• # Layers
• # Hidden

• Activation and others

13

Efficient Memory Management for Large Language Model Serving with
PagedAttention, by Kwon et al., 2023

OPT-13B on A100 40 GB

https://ar5iv.labs.arxiv.org/html/2309.06180

Inference Challenge 4: Putting DNN Models
Into Production Takes Long Time

• DNN
architecture
exploration

• Discover
models/data

Ideation

• Large-scale
training

• Parallelism

• Hyperparame
ter tuning

• Training data
transfer

Training

• Customized
operators

• Compression

• Parallelism

• Locality

Optimize

• Hardware
acceleration

• Multi-
tenancy

• Compliance

Serving

14

Inference Optimization Goals

• Reduce the inference latency to satisfy latency SLA

• Improve the inference throughput to save cost

• Reduce the memory footprint of the model by using fewer GPU
devices and less GPU memory

• Improve agility from DNN prototype to deployment

15

Model Compression

16

Compression Engine (DeepSpeed Compression)
Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

17

Accuracy

Latency91.3%

20 ms

500 MB

Accuracy

Model size

91.1%

2 ms (10x)

100 MB
Faster

Smaller 91.0%

4 ms

10 MB (50x)

GPU

CPU

FPGA

Edge

DeepSpeed Compression

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

18

Accuracy

Latency91.3%

20 ms

500 MB

Accuracy

Model size

91.1%

2 ms (10x)

100 MB
Faster

Smaller 91.0%

4 ms

10 MB (50x)

GPU

CPU

FPGA

Edge

Search and find optimized methods

Compressed
model

Compression
composer

Optimized
inference

engine

Compression Engine

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

19

Accuracy

Latency91.3%

20 ms

500 MB

Accuracy

Model size

91.1%

2 ms (10x)

100 MB
Faster

Smaller 91.0%

4 ms

10 MB (50x)

GPU

CPU

FPGA

Edge

Search and find optimized method

1.2 0.9 -0.2 -1.8

1 1 0 -2

Network
 Architecture

Distillation Quantization

(Semi-)Structured
 Pruning

Training

Compression
composer

Optimized
inference

engineCompressed
model

Compression Engine

• XTC: Extreme compression (NeurIPS’22 Oral)
• Great model size reduction (>50x) via layer reduction and weight binarization techniques

• ZeroQuant: zero-cost quantization (NeurIPS’22 Spotlight)
• Quantizing models with >5000x compression cost reduction and no training data

• AD2: Adversarial knowledge distillation (AAA’22)
• 2x latency reduction via deep knowledge distillation and adversarial data augmentation

• NxMTransformer: Semi-structured sparsification (NeurIPS’21)
• 2x latency reduction via N:M semi-structured sparsity and ADMM

• …

Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time

20

Accuracy

Latency91.3%

20 ms

500 MB

Accuracy

Model size

91.1%

2 ms (10x)

100 MB
Faster

Smaller 91.0%

4 ms

10 MB (50x)

GPU

CPU

FPGA

Edge

Search and find optimized method

1.2 0.9 -0.2 -1.8

1 1 0 -2

Network
 Architecture

Distillation Quantization

(Semi-)Structured
 Pruning

Training

Compression
composer

Optimized
inference

engineCompressed
model

Compression Engine

• XTC: Extreme compression (NeurIPS’22 Oral)
• Great model size reduction (>50x) via layer reduction and weight binarization techniques

• ZeroQuant: zero-cost quantization (NeurIPS’22 Spotlight)
• Quantizing models with >5000x compression cost reduction and no training data

• AD2: Adversarial knowledge distillation (AAA’22)
• 2x latency reduction via deep knowledge distillation and adversarial data augmentation

• NxMTransformer: Semi-structured sparsification (NeurIPS’21)
• 2x latency reduction via N:M semi-structured sparsity and ADMM

• …

XTC: Extreme Compression
A technique that achieves great model size reduction (>50x) via layer reduction and weight
binarization techniques

21

Quantization: Quick Recap

• Reduce the bits per weight, saving memory consumption

• Accelerate inference speed on supporting hardware

22

• 8-bit weight quantization

8-bit Weight Quantization

23

≈ 0.05 *

1.1 2.2 0.1 -0.1 -5.5 -6.6

…

…

…

…

1.1 2.1 0.1 -0.1 -4.8 -6.6

 FP32 weight matrix

21 42 2 -2 -106 -127

…

…

…

…

21 40 2 -2 -92 -127

 8-bit quantization

Scaling
Factor
1/S

• 8-bit activation
 (Input to the linear layer)

x: input, FP32.

8-bit Activation Quantization

24

≈ 0.05*

1.1 2.2 0.1 -0.1 -5.5 -6.6

…

…

…

…

1.1 2.1 0.1 -0.1 -4.8 -6.6

 FP32 input matrix

21 42 2 -2 -106 -127

…

…

…

…

21 40 2 -2 -92 -127

 8-bit quantization
Scaling
Factor
1/S

• Ternarization (weight)
W: weight matrix, FP32.
𝑄(W): Quantization mapping, 2-bit.
With 𝛼= 𝑊 1/n, for some scalar s

 𝑄(𝑊𝑖𝑗) = ൝
𝛼 ∙ sign(𝑊𝑖𝑗) when |𝑊𝑖𝑗| > 𝑠

0 when |𝑊𝑖𝑗| < 𝑠

Weight Ternarization

25

≈ 2.06 *

 2-bit quantization

Scaling
Factor 𝛼

1 1 1 1 -1 -1

…

…

…

…

1 1 1 1 -1 -1

1.1 2.2 0.1 -0.1 -5.5 -6.6

…

…

…

…

1.1 2.1 0.1 -0.1 -4.8 -6.0

 FP32 weight matrix

• Binarization (weight)
W: weight matrix, FP32.
𝑄(W): Quantization mapping, 1-bit.
With 𝛼= 𝑊 1/n
 𝑄(𝑊𝑖𝑗) = 𝛼 ∙ sign(𝑊𝑖𝑗)

Weight Binarization

26

≈
1.1 2.2 0.1 -0.1 -5.5 -6.6

…

…

…

…

1.1 2.1 0.1 -0.1 -4.8 -6.0

1.4 *

 FP32 weight matrix 1-bit quantization

Scaling
Factor 𝛼

1 1 1 -1 -1 -1

…

…

…

…

1 1 1 -1 -1 -1

27[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

28

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Existing
Works

[1,2,3,4]

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

29

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Existing
Works

[1,2,3,4]

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

30

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Pruning

Task-specific Smaller
6L BERT-half (174MB)

FP32 (2.4x)

MNLI: ~24
GPU hours to
train half
width model

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Existing
Works

[1,2,3,4]

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

31

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Pruning

Task-specific Smaller
6L BERT-half (174MB)

FP32 (2.4x)

MNLI: ~24
GPU hours to
train half
width model

Weight-Splitting

Task-specific Smaller
6L BERT-half (11MB)

2-bit (38x)

MNLI: ~12 GPU
hours to train
ternary weight

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Existing
Works

[1,2,3,4]

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

32

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Pruning

Task-specific Smaller
6L BERT-half (174MB)

FP32 (2.4x)

MNLI: ~24
GPU hours to
train half
width model

Weight-Splitting

MNLI: ~12 GPU
hours to train
ternary weight

Stage-I KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Task-specific Smaller
6L BERT-half (11MB)

2-bit (38x)
Existing
Works

[1,2,3,4]
Stage-II KD

[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701

33

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Pruning

Task-specific Smaller
6L BERT-half (174MB)

FP32 (2.4x)

MNLI: ~24
GPU hours to
train half
width model

Weight-Splitting

MNLI: ~12 GPU
hours to train
ternary weight

Stage-I KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Task-specific Smaller
6L BERT-half (11MB)

2-bit (38x)
Existing
Works

[1,2,3,4]
Stage-II KD

Limitations:
- High compression cost and long training time in practice
- Too many stages lead to complicated engineering and tuning effort

34

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

XTC: Effective Extreme Compression

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Pruning

Task-specific Smaller
6L BERT-half (174MB)

FP32 (2.4x)

MNLI: ~24
GPU hours to
train half
width model

Weight-Splitting

MNLI: ~12 GPU
hours to train
ternary weight

Stage-I KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

XTC
MNLI: ~24 GPU hours (16x reduction)

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Task-specific Smaller
6L BERT-half (11MB)

2-bit (38x)

Stage-II KD

Existing
Works

[1,2,3,4]

(Lightweight layer reduction) Single-stage KD

35

Task-specific Smaller
6L BERT (255MB)

FP32 (1.6x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

XTC: Effective Extreme Compression

Task-agnostic Smaller
6L BERT (255MB)

FP32 (1.6x)

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Pruning

Task-specific Smaller
6L BERT-half (174MB)

FP32 (2.4x)

MNLI: ~24
GPU hours to
train half
width model

Weight-Splitting

MNLI: ~12 GPU
hours to train
ternary weight

Stage-I KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

MNLI: ~24 GPU hours (16x reduction) MNLI: ~24 GPU hours (2.5x reduction)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Task-specific Smaller
6L BERT-half (11MB)

2-bit (38x)

Stage-II KD

Existing
Works

[1,2,3,4]

(Lightweight layer reduction) Single-stage KD Single-stage KDXTC

• Great model size reduction (>50x)

36

XTC: Effective Extreme Compression

Single-stage KD

 BERT (255MB)
FP32 (1.6x)

 BERT (8MB)
1-bit (52x)

BERT (418MB)
FP32 (1x)

Single-stage KD

Layer Reduction Binarization

reduce the compression time, make compression
easy to implement, and save enormous amount of

engineering tuning efforts

• Great model size reduction (>50x)
• Layer Reduction (~2x)

No pre-training data needed

Flexible to choose any layers of teacher model

37

XTC: Effective Extreme Compression

Single-stage KD

 BERT (255MB)
FP32 (1.6x)

 BERT (8MB)
1-bit (52x)

BERT (418MB)
FP32 (1x)

Single-stage KD

Layer Reduction Binarization

General KD
pretraining

~360 GPU hours on
training on large-
scale text corpus

Stage-I KD Stage-II KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

MNLI: ~24 GPU hours (16x reduction)

(Lightweight layer reduction) Single-stage KD

Task-agnostic
teacher
model

Task-specific
student
model 1

Task-specific
student
model 2

distill
distill

• Great model size reduction (>50x)
• Layer Reduction (~2x)

No pre-training data needed
Flexible to choose any layers of teacher model

• Weight Binarization (32x)
Train longer (+ learning rate decay)
Deep knowledge distillation

-- Mimic logits, feature map, attention map
Data augmentation

-- Word-level replacement 38

XTC: Effective Extreme Compression

Single-stage KD

 BERT (255MB)
FP32 (1.6x)

 BERT (8MB)
1-bit (52x)

BERT (418MB)
FP32 (1x)

Single-stage KD

Layer Reduction Binarization Pruning

MNLI: ~24
GPU hours to
train half
width model

Weight-Splitting

MNLI: ~12 GPU
hours to train
ternary weight

Stage-I KD

MNLI: ~24 GPU hours
Tuning efforts on learning
rates and training iterations
for different stages

Single-stage KD

Stage-II KD

MNLI: ~24 GPU hours (2.5x reduction)

• Simple schedule, e.g., longer training iterations with learning rate decay,
is highly preferred for closing the accuracy gap of extreme quantization.

• Single-stage training, e.g., single-stage knowledge distillation, save
enormous amount of engineering tuning efforts.

• Avoid pre-training compression as much as possible due to its expensive
cost.

39

Lessons from Extreme Compression

New Challenges to Compress Generative LLMs

40

Challenges to Quantize LLMs

• Standard quantization
strategy leads to catastrophic
accuracy drop

41
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, NeurIPS 2022

https://arxiv.org/abs/2208.07339

Challenges to Quantize LLMs

• High dynamic ranges of activation,
leading to large quantization errors

42

Challenges to Quantize LLMs

• Difficult to quantize large-scale models within limited time/resource
budget

43

Quantization Aware Training

FP16/FP32 Model

Training Data

Training GPUs Parameter Tuning

Quantized INT8 Model

Retraining Evaluation

Challenges to Quantize LLMs

44

Quantization Aware Training

FP16/FP32 Model

Training Data

Training GPUs Parameter Tuning

Quantized INT8 Model

Retraining Evaluation

• Difficult to quantize large-scale models within limited time/resource
budget

Fine-grained Quantization

• Per-tensor quantization
• Low accuracy

• Fast to quantize/dequantize

• Per-token/channel quantization
• High accuracy

• Slower to quantize/dequantize

• Custom kernels required

45

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, NeurIPS 2022

https://arxiv.org/abs/2206.01861

Mixed Precision Quantization

• Weights follow Gaussian
distribution

• Outliers remain in original
form, quantize the rest of the
values

• Different bits for different
layers

46

Per-layer weight distribution of BERT model

GOBO: Quantizing Attention-Based NLP Models
for Low Latency and Energy Efficient Inference, MICRO 2020

https://arxiv.org/pdf/2005.03842.pdf
https://arxiv.org/pdf/2005.03842.pdf

Mixed Precision + Second Order Information

• Analyze the loss curvature (Hessian matrices) to help identify layer
sensitivity

47Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT, AAAI 2019

https://arxiv.org/pdf/1909.05840.pdf

Outlier Smoothing

• Activation X is hard to quantize
because outliers stretch the
quantization range, leaving few
effective bits for most values.

• One can migrate the scale variance
from activations to weights W during
offline to reduce the quantization
difficulty of activations.

• The smoothed activation Xˆ and the
adjusted weight Wˆ are both easy to
quantize.

48

SmoothQuant: Accurate and Efficient Post-Training Quantization for
Large Language Models, ICML 2023

https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf

49

Algorithms for AI Efficiency

Algorithm

Training

Coreset

Quantize
-aware

Sparse

?

Fine-tuning

LoRA Adapters

Bias/BitFit

Inference

Post-training
Quantization

Decoding

Pruning

Architecture

Sparse
Attn.

KD

Group
Query

Prompt
NASMoE

Linear
Attn.

SSM

	Slide 1
	Slide 2: Systems for AI Efficiency
	Slide 3: Systems for AI Efficiency
	Slide 4: Systems for AI Efficiency
	Slide 5: Systems for AI Efficiency
	Slide 6: Algorithms for AI Efficiency
	Slide 7: Algorithms for AI Efficiency
	Slide 8: Algorithms for Efficient AI Inference
	Slide 9: Inference Scenario 1: Online Q&A
	Slide 10: Inference Scenario 2: Online ChatBot
	Slide 11: Inference Challenge 1: Long Latency
	Slide 12
	Slide 13: Inference Challenge 3: Large Memory Footprint
	Slide 14: Inference Challenge 4: Putting DNN Models Into Production Takes Long Time
	Slide 15: Inference Optimization Goals
	Slide 16: Model Compression
	Slide 17: Compression Engine (DeepSpeed Compression)
	Slide 18
	Slide 19: Compression Engine
	Slide 20: Compression Engine
	Slide 21: XTC: Extreme Compression
	Slide 22: Quantization: Quick Recap
	Slide 23: 8-bit Weight Quantization
	Slide 24: 8-bit Activation Quantization
	Slide 25: Weight Ternarization
	Slide 26: Weight Binarization
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: New Challenges to Compress Generative LLMs
	Slide 41: Challenges to Quantize LLMs
	Slide 42: Challenges to Quantize LLMs
	Slide 43: Challenges to Quantize LLMs
	Slide 44: Challenges to Quantize LLMs
	Slide 45: Fine-grained Quantization
	Slide 46: Mixed Precision Quantization
	Slide 47: Mixed Precision + Second Order Information
	Slide 48: Outlier Smoothing
	Slide 49: Algorithms for AI Efficiency

