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Algorithms for Efficient AI Inference
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Inference Scenario 1: Online Q&A

• Question and Answer Scenario

• Direct answer not a list of webpages

• Good quality of answer
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Inference Scenario 2: Online ChatBot
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• ChatBot Scenario

• Human-like responses with 
fewer hallucination



Inference Challenge 1: Long Latency 
• Long serving latency blocks deployment

• Support advance models while meeting latency SLA and saving cost
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DL Scenarios Original Latency Latency Target

Turing Prototype 2 ~100ms < 10ms

Turing Prototype 3 ~107ms < 10ms

Deep Query Document Similarity
10~12ms for [query, 1 doc] 

x 33 docs
< 6ms

Malta Click Features
10ms for [query, 1 passage] 

x 150 passages
< 5ms

Ads seq2seq model for query 
rewriting

~51ms < 5ms



Inference Challenge 2: Limited Parallelism

• Small batch size          Low data reuse
• Autoregressive generation         Sequential dependency
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Inference Challenge 3: Large Memory 
Footprint

• Model parameters
• # Layers
• # Hidden dim

• KV cache
• Batch size
• Sequence length
• # Layers
• # Hidden

• Activation and others
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Efficient Memory Management for Large Language Model Serving with 
PagedAttention, by Kwon et al., 2023

OPT-13B on A100 40 GB

https://ar5iv.labs.arxiv.org/html/2309.06180


Inference Challenge 4: Putting DNN Models 
Into Production Takes Long Time

• DNN 
architecture 
exploration

• Discover 
models/data

Ideation

• Large-scale 
training

• Parallelism

• Hyperparame
ter tuning

• Training data 
transfer

Training

• Customized 
operators

• Compression

• Parallelism

• Locality

Optimize

• Hardware 
acceleration

• Multi-
tenancy

• Compliance

Serving
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Inference Optimization Goals

• Reduce the inference latency to satisfy latency SLA

• Improve the inference throughput to save cost

• Reduce the memory footprint of the model by using fewer GPU 
devices and less GPU memory

• Improve agility from DNN prototype to deployment
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Model Compression
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Compression Engine (DeepSpeed Compression)
Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time
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Goal (3Ss): Make inference speed faster, model size smaller, while dramatically shortening the compression time
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• 2x latency reduction via N:M semi-structured sparsity and ADMM
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XTC: Extreme Compression
A technique that achieves great model size reduction (>50x) via layer reduction and weight 
binarization techniques
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Quantization: Quick Recap

• Reduce the bits per weight, saving memory consumption

• Accelerate inference speed on supporting hardware
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• 8-bit weight quantization
   
 

8-bit Weight Quantization
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≈ 0.05 *

1.1   2.2   0.1   -0.1  -5.5  -6.6

…

…

…

…

1.1  2.1    0.1   -0.1   -4.8 -6.6  

  FP32 weight matrix

21   42      2      -2    -106  -127

…

…

…

…

21   40      2      -2      -92  -127

  8-bit quantization

Scaling
Factor 
1/S



• 8-bit activation
 (Input to the linear layer)

x: input, FP32.      
 

8-bit  Activation Quantization
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≈ 0.05*
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• Ternarization (weight)
W: weight matrix, FP32.      
𝑄(W): Quantization  mapping, 2-bit. 
With 𝛼= 𝑊 1/n, for some scalar s

   𝑄(𝑊𝑖𝑗) =  ൝
𝛼 ∙ sign(𝑊𝑖𝑗) when |𝑊𝑖𝑗| > 𝑠

0 when |𝑊𝑖𝑗| < 𝑠

 

Weight Ternarization
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≈ 2.06 *

  2-bit quantization

Scaling
Factor 𝛼

1      1      1    1     -1    -1

…

…

…

…

1     1      1    1        -1    -1

1.1   2.2   0.1   -0.1  -5.5  -6.6

…

…

…

…

1.1  2.1    0.1   -0.1   -4.8 -6.0  

  FP32 weight matrix



• Binarization (weight)
W: weight matrix, FP32.      
𝑄(W): Quantization  mapping, 1-bit. 
With 𝛼= 𝑊 1/n
     𝑄(𝑊𝑖𝑗) =  𝛼 ∙ sign(𝑊𝑖𝑗)    

 

Weight Binarization

26

≈
1.1   2.2   0.1   -0.1  -5.5  -6.6

…

…

…

…

1.1  2.1    0.1   -0.1   -4.8 -6.0  

1.4 *

  FP32 weight matrix   1-bit quantization

Scaling
Factor 𝛼

1      1      1    -1     -1    -1

…

…

…

…

1      1      1    -1     -1    -1



27[1] DistillBERT; [2]TinyBERT; [3]MiniLM; [4] BinaryBERT

Task-specific Smaller
6L BERT (255MB)

FP32  (1.6x)

Task-specific Smaller
6L BERT (8MB)

1-bit (52x)

Task-agnostic
12L BERT (418MB)

FP32 (1x)

How Does Extreme Compression Work?

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://arxiv.org/abs/2012.15828
https://arxiv.org/abs/2012.15701
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Limitations: 
- High compression cost and long training time in practice 
- Too many stages lead to complicated engineering and tuning effort
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• Great model size reduction (>50x)

36

XTC: Effective Extreme Compression

Single-stage KD

 BERT (255MB)
FP32  (1.6x)

 BERT (8MB)
1-bit (52x)

BERT (418MB)
FP32 (1x)

Single-stage KD

Layer Reduction Binarization

reduce the compression time, make compression 
easy to implement, and save enormous amount of 

engineering tuning efforts



• Great model size reduction (>50x)
• Layer Reduction (~2x)

No pre-training data needed

Flexible to choose any layers of teacher model
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XTC: Effective Extreme Compression

Single-stage KD
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Single-stage KD
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pretraining

~360 GPU hours  on 
training on large-
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Stage-I KD Stage-II KD
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Tuning efforts on learning 
rates and training iterations 
for different stages
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(Lightweight layer reduction) Single-stage KD
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Task-specific
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model 1

Task-specific
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model 2
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distill



• Great model size reduction (>50x)
• Layer Reduction (~2x)

No pre-training data needed
Flexible to choose any layers of teacher model

• Weight Binarization (32x)
Train longer (+ learning rate decay)
Deep knowledge distillation 

-- Mimic logits, feature map, attention map
Data augmentation

-- Word-level replacement 38

XTC: Effective Extreme Compression

Single-stage KD

 BERT (255MB)
FP32  (1.6x)

 BERT (8MB)
1-bit (52x)

BERT (418MB)
FP32 (1x)

Single-stage KD

Layer Reduction Binarization Pruning

MNLI: ~24
GPU hours to 
train half 
width model

Weight-Splitting

MNLI:  ~12 GPU 
hours to train 
ternary weight

Stage-I KD

MNLI:  ~24 GPU hours
Tuning efforts on learning 
rates and training iterations 
for different stages

Single-stage KD

Stage-II KD

MNLI:  ~24 GPU hours (2.5x reduction)



• Simple schedule, e.g., longer training iterations with learning rate decay, 
is highly preferred for closing the accuracy gap of extreme quantization.

• Single-stage training, e.g., single-stage knowledge distillation, save 
enormous amount of engineering tuning efforts.

• Avoid pre-training compression as much as possible due to its expensive 
cost.

39

Lessons from Extreme Compression



New Challenges to Compress Generative LLMs

40



Challenges to Quantize LLMs

• Standard quantization 
strategy leads to catastrophic 
accuracy drop

41
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, NeurIPS 2022

https://arxiv.org/abs/2208.07339


Challenges to Quantize LLMs

• High dynamic ranges of activation, 
leading to large quantization errors

42



Challenges to Quantize LLMs

• Difficult to quantize large-scale models within limited time/resource 
budget

43

Quantization Aware Training

FP16/FP32 Model

Training Data

Training GPUs Parameter Tuning

Quantized INT8 Model

Retraining Evaluation



Challenges to Quantize LLMs
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Quantization Aware Training

FP16/FP32 Model

Training Data

Training GPUs Parameter Tuning

Quantized INT8 Model

Retraining Evaluation

• Difficult to quantize large-scale models within limited time/resource 
budget



Fine-grained Quantization

• Per-tensor quantization
• Low accuracy

• Fast to quantize/dequantize

• Per-token/channel quantization
• High accuracy

• Slower to quantize/dequantize

• Custom kernels required

45

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, NeurIPS 2022

https://arxiv.org/abs/2206.01861


Mixed Precision Quantization

• Weights follow Gaussian 
distribution

• Outliers remain in original 
form, quantize the rest of the 
values

• Different bits for different 
layers

46

Per-layer weight distribution of BERT model

GOBO: Quantizing Attention-Based NLP Models
for Low Latency and Energy Efficient Inference, MICRO 2020

https://arxiv.org/pdf/2005.03842.pdf
https://arxiv.org/pdf/2005.03842.pdf


Mixed Precision + Second Order Information

• Analyze the loss curvature (Hessian matrices) to help identify layer 
sensitivity

47Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT, AAAI 2019

https://arxiv.org/pdf/1909.05840.pdf


Outlier Smoothing

• Activation X is hard to quantize 
because outliers stretch the 
quantization range, leaving few 
effective bits for most values. 

• One can migrate the scale variance 
from activations to weights W during 
offline to reduce the quantization 
difficulty of activations. 

• The smoothed activation Xˆ and the 
adjusted weight Wˆ are both easy to 
quantize.

48

SmoothQuant: Accurate and Efficient Post-Training Quantization for 
Large Language Models, ICML 2023

https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
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