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Overview of Floating Point Formats
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• 𝑣𝑎𝑙𝑢𝑒 =  −1𝑠𝑖𝑔𝑛 × 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ×
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

• 𝑠𝑖𝑔𝑛 ∈ {0,1} 

• 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑏𝑒𝑥𝑝 − 𝑏𝑖𝑎𝑠

• 𝑏𝑒𝑥𝑝 = σ𝑖=0
𝐸 𝑑𝑖2𝑖 , 𝑑𝑖 ∈ {0,1}

• 𝑏𝑖𝑎𝑠 = 2𝐸−1 − 1

• 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 1 + σ𝑖=0
𝑀 𝑑𝑖2−𝑖 , 𝑑𝑖 ∈ {0,1}

Format E M Max Exp Min Exp Max Normal Min Subnormal Bias

FP32 8 23 127 -126 3.4×1038 1.4×10-45 127

FP16 5 10 15 -14 65504 6.0×10-8 15

BF16 8 7 127 -126 3.4×1038 9.2×10-41 127



• FP8 Formats:

 
• Still in the process of standardization 

• Int8:

• Popularly used in inference to reduce memory overhead, and speedup computation
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8 – bit Floating Point Formats vs 8 – bit Int
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Format E M Max Exp Min Exp Max Normal Min Subnormal Bias

FP8 E5 (a) 5 2 15 -15 57344 7.6 × 10−6 16

FP8 E5 (b) 5 2 15 -14 57344 1.5 × 10−5 15

FP8 E4 (c) 4 3 7 -7 240 9.8 × 10−4 8

FP8 E4 (d) 4 3 8 -6 448 2.0 × 10−3 7

Format Min Max

INT8 -128 127



• FP8 Formats:

 
• Exponentially spaced values 

• Int8:

• Uniformly distributed values over the representable range
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8 – bit Floating Point Formats vs 8 – bit Int
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Format E M Max Exp Min Exp Max Normal Min Subnormal Bias

FP8 E5 (a) 5 2 15 -15 57344 7.6 × 10−6 16

FP8 E5 (b) 5 2 15 -14 57344 1.5 × 10−5 15

FP8 E4 (c) 4 3 7 -7 240 9.8 × 10−4 8

FP8 E4 (d) 4 3 8 -6 448 2.0 × 10−3 7

Format Min Max

INT8 -128 127



• Quantizing from FP32 representation:
• Noise due to rounding (reduction in precision)

• Noise due to clipping (reduction in range)
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Impact of FP-32 Quantization (to fixed-point)
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[1] B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi, “8-bit Numerical Formats for Deep Neural Networks.” arXiv, Jun. 06, 2022. doi: 10.48550/arXiv.2206.02915.

(Conversion to 8-bit fixed point representation)

https://doi.org/10.48550/arXiv.2206.02915


• FP16:
• High and approximately constant SNR 

within the dynamic range

• FP8 from FP16: 
• Reduced dynamic range, constant SNR

• Int8:
• Narrow region with sufficiently high SNR
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Impact of Quantization in Floating Point
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[1] C. Blake, D. Orr, and C. Luschi, “Unit Scaling: Out-of-the-Box Low-Precision Training.” arXiv, May 30, 2023. doi: 10.48550/arXiv.2303.11257.

• Int 8 cannot capture distribution during training

• Need FP format

https://doi.org/10.48550/arXiv.2303.11257
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Quantization in Mixed Precision Training
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• Attention linear layers to project Q,K V matrices

• Attention linear layer after outputs of heads are concatenated

• First feed-forward layer

• Second feedforward layer

• The optimizations in this paper focus on shorter seq lengths

• Linear layers constitute 99.9% of total compute in decoder layer
• Linear layers: complexity quadratic with hidden dimension of model

• Dot products: quadratic with sequence length



• Mixed precision training with FP8 with two different FP8 formats

• Gradients: require more range 
• Need E5 format (5 exponent bits, 2 mantissa bits)
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FP8 Formats for Training and Inference 

T R A I N I N G  A N D  I N F E R E N C E  O F  L A R G E  L A N G U A G E  M O D E L S  U S I N G  8 - B I T  F L O A T I N G  P O I N T

[1] B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi, “8-bit Numerical Formats for Deep Neural Networks.” arXiv, Jun. 06, 2022. doi: 10.48550/arXiv.2206.02915.

https://doi.org/10.48550/arXiv.2206.02915


• Mixed precision training with FP8 with two different FP8 formats

• Gradients: require more range 
• Need E5 format (5 exponent bits, 2 mantissa bits)

• Activations and weights need at least 3 mantissa bits for numerical accuracy
• Need(monolithic) E4 format (4 exponent bits, 3 mantissa bits)
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FP8 Formats for Training and Inference 
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[1] B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi, “8-bit Numerical Formats for Deep Neural Networks.” arXiv, Jun. 06, 2022. doi: 10.48550/arXiv.2206.02915.

https://doi.org/10.48550/arXiv.2206.02915


• Mixed precision training with FP8 with two different FP8 formats

• Gradients: require more range 
• Need E5 format (5 exponent bits, 2 mantissa bits)

• Activations and weights need at least 3 mantissa bits for numerical accuracy
• Need(monolithic) E4 format (4 exponent bits, 3 mantissa bits)

• Mixed precision training:
• FP8 used only for matrix multiplications

• Values accumulated and stored in higher precision (FP32)
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FP8 Formats for Training and Inference 
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• Methods to retain higher-precision range:
• Loss scaling

• Automatic Loss Scaling

• Automatic per-tensor Scaling

• Unit Scaling
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Scaling for Reduced-Precision Training
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• Loss scaling
• Tackles underflow in gradients by multiplying loss with a scalar

• Weight gradients are then divided by the same scalar in the optimizer

• Requires hyperparameter sweep must be conducted to find the loss scale value

• Single scaling factor, no mechanism to combat differences in scale in gradient tensors
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Scaling for Reduced-Precision Training
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[1] C. Blake, D. Orr, and C. Luschi, “Unit Scaling: Out-of-the-Box Low-Precision Training.” arXiv, May 30, 2023. doi: 10.48550/arXiv.2303.11257.

https://doi.org/10.48550/arXiv.2303.11257


• Loss scaling
• Tackles underflow in gradients by multiplying loss with a scalar

• Weight gradients are then divided by the same scalar in the optimizer

• Requires hyperparameter sweep must be conducted to find the loss scale value

• Single scaling factor, no mechanism to combat differences in scale in gradient tensors

• Automatic Loss scaling
• Dynamic adjustment of the loss scale during training

• Remove the need to sweep the initial loss scale

• Combats shifts in tensor distributions during training
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Scaling for Reduced-Precision Training
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[1] C. Blake, D. Orr, and C. Luschi, “Unit Scaling: Out-of-the-Box Low-Precision Training.” arXiv, May 30, 2023. doi: 10.48550/arXiv.2303.11257.

https://doi.org/10.48550/arXiv.2303.11257


• Per-tensor scaling
• Addresses scaling difficulties in FP8 training

• Rescale locally based on runtime statistics

• Additional compute, memory, bandwidth and cross-device communication costs
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Scaling for Reduced-Precision Training
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[1] C. Blake, D. Orr, and C. Luschi, “Unit Scaling: Out-of-the-Box Low-Precision Training.” arXiv, May 30, 2023. doi: 10.48550/arXiv.2303.11257.
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• Per-tensor scaling
• Addresses scaling difficulties in FP8 training

• Rescale locally based on runtime statistics

• Additional compute, memory, bandwidth and cross-device communication costs

• Unit Scaling
• Activations, weight and gradients have approximately unit variance at initialization.

• Insert scaling factors into the forward and backward passes

• Unit scaling determines these scales based on a set of rules for each operation

• Does not address the issue of adapting scales during training
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Scaling for Reduced-Precision Training
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[1] C. Blake, D. Orr, and C. Luschi, “Unit Scaling: Out-of-the-Box Low-Precision Training.” arXiv, May 30, 2023. doi: 10.48550/arXiv.2303.11257.

https://doi.org/10.48550/arXiv.2303.11257
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Scaling for Reduced-Precision Training

T R A I N I N G  A N D  I N F E R E N C E  O F  L A R G E  L A N G U A G E  M O D E L S  U S I N G  8 - B I T  F L O A T I N G  P O I N T

[1] C. Blake, D. Orr, and C. Luschi, “Unit Scaling: Out-of-the-Box Low-Precision Training.” arXiv, May 30, 2023. doi: 10.48550/arXiv.2303.11257.

• Summary of scaling techniques:

• This paper: per-tensor scaling

https://doi.org/10.48550/arXiv.2303.11257
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Per-Tensor Scaling Bias
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• Scaling biases for weights and activations: 𝑏𝑤,𝑠𝑐𝑎𝑙𝑒  and 𝑏𝑥,𝑠𝑐𝑎𝑙𝑒

• Use scaled FP8 values for FP8 computation

• For computation in FP16, unscaling the activations:
• 𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 =  𝑏𝑒𝑥𝑝 − 𝑏𝑖𝑎𝑠 − (𝑏𝑤,𝑠𝑐𝑎𝑙𝑒 + 𝑏𝑥,𝑠𝑐𝑎𝑙𝑒)

• 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑏𝑒𝑥𝑝 − 𝑏𝑖𝑎𝑠

• 𝑠𝑐𝑎𝑙𝑒𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 =  𝑏𝑒𝑥𝑝 − 𝑏𝑖𝑎𝑠 + 𝑏𝑠𝑐𝑎𝑙𝑒
FP8 (E4) FP8 (E5)
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Choosing Per-Tensor Scaling Bias
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• Two ways of selecting scaling bias:
• Just-in-time scaling 

• Constant scaling

• Proposed methodology: Just-in-time scaling (AMAX)
• Choose scaling bias based on maximum value in tensor

• Depends on maximum representable value in the FP8 format (𝑚𝑎𝑥𝑛𝑢𝑚)

• Tradeoff methodology: Constant scaling bias (CSCALE)
• Sweeps of scaling bias values to identify ones that don’t degrade accuracy

• Constant for weights, activations and gradients

• Remains constant throughout the training and inference

𝑎𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑡𝑒𝑛𝑠𝑜𝑟

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑏𝑖𝑎𝑠 = 𝑓𝑙𝑜𝑜𝑟 𝑙𝑜𝑔2 ൗ𝑚𝑎𝑥𝑛𝑢𝑚
𝑎𝑚𝑎𝑥
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AMAX vs CSCALE
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• AMAT:
• Pros: 

• Higher SNR (sets dynamic range based on tensor values)

• Better model accuracy and faster convergence*

• *With hardware support (and sufficient SRAM), can be computed just-in-time

• Cons:
• When SRAM is limited, FP16 tensors reside in L2-cache

• Can result in additional round-trip to memory that can cancel FP8 speedups

• CSCALE:
• Pros:

• Less memory overhead 

• Can enable speedup due to FP8 operations in hardware with less SRAM

• Cons: ??
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Loss Scaling for FP16
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• Loss scaling necessary in FP16 due to narrower dynamic range than FP32
• Gradients can underflow

• Relevance to FP8 quantization: accumulation in FP16
• FP8 accumulation does not work due to 

• limited dynamic range (E4) 

• limited precision (E5)

• FP8 operations actually mixed FP8-FP16 operations

• This paper: uses constant loss scaling
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Applying Per-Tensor Scaling Bias in FP8 Inference 
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Evaluation
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• Hardware: 
• Graphcore IPUs for training
• Does not have native FP8 support – enabled in Software

• Models evaluated:
• GPT-3-like architecture, using dense attention
• Llama 2 model
• Linear layers quantized to FP8, with FP8-AMAX and FP8-CSCALE
• Dot-product and other computation still in FP16
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Inference Results with GPT model
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• FP16 validation accuracy matched for AMAX
• Different scaling biases for weight, activation tensors

• Scaling biases calculated just in time per tensor

• FP16 validation accuracy matched for CSCALE
• Same scaling bias for weights and activations

• Sweep of scaling biases, not all meet accuracy

• Results reported with scaling biases within range
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Inference Results with GPT model
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Inference Results with Llama
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• FP8-AMAX gives comparable results as FP16

• Interestingly, do not provide FP8-CSCALE results
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Training results with GPT model
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• Convergence achieved with FP-AMAX
• Different scaling biases for weight, activation tensors

• Tested for 3 tasks

• Convergence with FP-CSCALE:
• Tested for 1 task

• Convergence achieved with range

• Larger the model, range of scaling biases reduces

• For 7.7B and 13B model, convergence not guaranteed
• A different seed can cause divergence
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Observation: per-tensor scaling bias with FP8-AMAX
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• Weight versus activation scaling bias:
• Weight: larger values and narrower distribution

• Activation: larger distribution

• Size of models: determines range of scaling bias

• Type of linear layer:
• the scaling biases of the attention linear layer after the 

outputs take greater values than the other linear layers
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Conclusions
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• Scaling necessary in FP8 quantization to reduce loss, improve SNR

• Scaling bias can be constant or per-tensor, with trade-offs

• This paper proposes just-in-time scaling bias per tensor

• Matches FP16 accuracy for training and inference tasks
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Discussion
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• Evaluation platform unclear: evaluated on HW without native FP8 support
• Are the overheads of the quantization properly captured?

• Why not compare against NVIDIA H100 with native FP8 support?

• What’s next: FP4 representation
• NVIDIA Blackwell support

• Either E2 or E1: further compression in model weights and activations
• Implications on results from this paper? (For example, requiring E4 or E5)
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