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Abstract
Efficient management of GPU memory is essential for high
throughput LLM inference. Prior systems used to reserve
KV-cache memory ahead-of-time that resulted in wasted
capacity due to internal fragmentation. Inspired by demand
paging, vLLM proposed PagedAttention to enable dynamic
memory allocation for KV-cache. This approach eliminates
fragmentation and improves serving throughout. However,
to be able to allocate physical memory dynamically, Page-
dAttention changes the layout of KV-cache from contiguous
virtual memory to non-contiguous virtual memory. As a conse-
quence, one needs to rewrite the attention kernels to support
paging, and implement a memory manager in the serving
framework. This results in both performance and program-
ming overheads, as well as portability challenges in adopting
state-of-the-art attention kernels.
In this paper, we propose vAttention, a new approach

for dynamic KV-cache memory management. In contrast to
PagedAttention, vAttention stores KV-cache in contiguous
virtual memory and leverages OS support for on-demand
allocation of physical memory. vAttention thus enables one
to use state-of-the art attention kernels out-of-the-box by
adding support for dynamic allocation of physical memory
without having to re-write their code. We implement vAt-
tention in the vLLM serving stack to show that it also helps
improve decode throughput by up to 1.99× over vLLM, and
the end-to-end serving throughput by up to 1.22× and 1.29×,
compared to using the state-of-the-art PagedAttention based
kernels of FlashAttention and FlashInfer.

1 Introduction
Large Language Models (LLMs) are deployed in a wide range
of applications e.g., chat bots, search engines and coding as-
sistants [1–5, 37, 47]. Given the size and scale of modern LLM
deployments, optimizing inference has become extremely
important [31, 41, 43, 44, 49, 61, 65]. LLM inference happens
in two phases: a compute-bound prefill phase, followed by
several iterations of memory-bound decode phase. Batch-
ing is a powerful technique to boost LLM serving through-
put [30, 44, 49, 61], as it amortizes the cost of fetching model
weights from HBM to the on-device SRAM during decodes.

∗Contributed to this work as an intern at Microsoft Research India.

System/library and issues related to PagedAttention
vLLM: Pioneered PagedAttention. Despite being in an ac-
tively maintained code repository, vLLM’s PagedAttention
kernel is up to 2.8× slower than FlashAttention (Table 6).
Further, changing block size changes the execute latency of
the kernel by as much as 3× (Figure 3).
FlashAttention: PagedAttention based prefill kernel is up
to 28% slower than the non-paged kernel (Figure 2) while
the decode kernel is up to 12% slower. Initial attempts to add
paging support failed unit tests [13].
TensorRT-LLM: Serving throughput dropped by more than
10% in a Python front-end [11]. Recommends using the C++
front-end. Evenwith C++, we observe up to 5% higher latency
in some cases with PagedAttention.
FlashInfer: PagedAttention based prefill kernel is up to 24%
slower than the non-paged kernel (Figure 2).

Table 1. The PagedAttention approach requires an appli-
cation to explicitly manage dynamically allocated physical
memory, including re-writing of attention kernels. These
examples highlight the complexity, performance and main-
tenance challenges associated with this approach.

Careful allocation of GPU memory is key to enabling
larger batch sizes. For each request, the serving framework
stores the activations of all the tokens processed so far in
GPU memory and reuses them for the subsequent token
generation. This is called the KV-cache [31, 49, 61] which
accounts for a majority of GPU memory usage during infer-
ence. Efficiently allocating GPU memory for the KV-cache of
a batch of requests is challenging for two reasons. First, the
per-request KV-cache grows slowly (one token per iteration),
and second, a request’s decode length (or its total KV-cache
size) is not known ahead of time.
Prior systems like Orca [61] and FasterTransformer [18]

allocate GPU memory for each request based on the max-
imum context length supported by the model (e.g., Yi-34B
model supports context length of up to 200K [27]). However,
in practice, the number of decode tokens generated are far
less; the average decode length for the chat-based sharegpt
dataset is 415 tokens [30]. Therefore, static memory alloca-
tion results in severe internal fragmentation, limiting batch
size and serving throughput.
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Inspired by demand paging in OS-based virtual memory
systems, vLLM introduced PagedAttention [44] to mitigate
KV-cache related memory fragmentation. Instead of reserv-
ing the maximum sequence length of KV-cache memory
ahead-of-time, vLLM allocates small blocks of GPU memory
on demand i.e., when previously allocated blocks are fully
utilized and the model continues to generate more tokens.
This approach provides a near-perfect solution for mitigating
fragmentation and hence, PagedAttention has become the
de facto standard for dynamic memory allocation in LLM
serving systems e.g., in TensorRT-LLM [12], HuggingFace
TGI [6], LightLLM [10] etc.

However, the PagedAttention approach faces a fundamen-
tal consequence of dynamic memory allocation: dynamically
allocated memory blocks are not guaranteed to be contiguous.
Note that user-level objects are allocated in virtual memory.
Therefore, in trying to enable dynamic allocation of physi-
calmemory, PagedAttention ends up changing the layout of
KV-cache from contiguous to non-contiguous virtual mem-
ory. We argue that this approach has several pitfalls (see
Table 1 for empirical evidence and real-world experiences):
1. Requires re-writing the attention kernel (GPU code).
The elements of a virtually contiguous object can be accessed
using index-based lookup which is both simple and efficient.
Many implementations of deep learning operators also ex-
pect virtual contiguity of input tensors. However, by storing
KV-cache in non-contiguous virtual memory, PagedAtten-
tion mandates re-writing GPU code so that the attention
kernel can de-reference all the elements of KV-cache. The
need to re-write code is a major barrier to using new atten-
tion optimizations in production settings.
2. Adds software complexity and redundancy (CPU
code). To stitch together dynamically allocated virtual mem-
ory blocks, PagedAttention forces developers to implement
a memory manager in the serving framework. Typically,
this requires a Block-Table manager in user space which is
essentially a re-implementation of demand paging (an OS
functionality) in user code.
3. Introduces performance overhead. PagedAttention
adds runtime overhead in the critical path of execution in
two ways. First, GPU kernels that compute attention over a
non-contiguous KV-cache need to execute additional instruc-
tions. In many cases, this slows down an attention kernel by
more than 20%, compared to when the KV-cache is virtually
contiguous. Second, the user space memorymanager can add
CPU overhead contributing up to another 10% cost (§3.3).
In this paper, we instead advocate for leveraging the OS

support of virtual memory and demand paging for dynamic
KV-cache memory management. This approach alleviates
the aforementioned issues that appear with PagedAttention.
To support our claims, we present the design and imple-

mentation of vAttention. Leveraging OS support, vAttention
stores KV-cache in contiguous virtual memory without commit-
ting physical memory ahead-of-time, thereby enabling the use

of state-of-the art high-performant attention kernels out-of-
the box. We achieve this by using CUDA support of low-level
virtual memory APIs which expose distinct interfaces for
allocating virtual and physical memory (§5).

Leveraging OS support for memory allocation in an LLM
serving system poses two key efficiency challenges (§5.4).
First, the minimum physical memory allocation granularity
supported by CUDA is 2MB. This can result in significant
wasted capacity and fragmentation. We address this chal-
lenge by modifying the open-source CUDA unified virtual
memory driver, adding support for finer-grained physical
memory allocations in multiples of 64KB. Our evaluation
shows that using 64KB pages as the granularity of virtual-
to-physical address translation does not affect the execu-
tion latency of attention kernels i.e., we do not find any
evidence of TLB thrashing. Second, memory allocation us-
ing CUDA APIs incurs high latency because each allocation
involves a round-trip to the OS kernel. We introduce several
LLM-specific optimizations such as overlapping memory al-
location with compute, opportunistically allocating pages
ahead of time, and deferring memory reclamation. These
optimizations hide the latency cost of memory allocation
from end-users, making vAttention an efficient KV-cache
memory manager.

Overall, wemake the following contributions in this paper:

• We present vAttention – a memory management ap-
proach that retains the virtual contiguity of KV-cache
while enabling dynamic physical memory allocation.
• We implement vAttention in vLLM serving stack to
show that it seamlessly adds dynamic memory man-
agement support to unmodified attention kernels of
FlashAttention [7] and FlashInfer [9].
• We compare vAttention against PagedAttention based
alternatives of vLLM, FlashAttention and FlashInfer
by evaluating Yi-6B, Llama-3-8B and Yi-34B on 1-2
A100 GPUs. Using FlashAttention’s non-paged ker-
nel, vAttention outperforms vLLM by up to 1.99× in
decode throughput, while improving the end-to-end
LLM serving throughput by up to 1.22× and 1.29×,
compared to using the state-of-the-art PagedAttention
based kernels of FlashAttention and FlashInfer.

2 Background
2.1 Large Language Models
Given an input sequence, an LLM predicts the probability
of an output sequence wherein a sequence is a set of to-
kens [44]. Each inference request begins with a prefill phase
that processes all its prompt tokens in parallel. The prefill
phase produces the first output token of a request. There-
after, the decode phase iteratively processes the output token
generated in the previous step and produces the next output
token in every iteration [31].
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LLMs are built atop one of variants of the transformer
architecture [56]. A transformer block contains two types
of operators: position-wise and sequence-wise. The former
category includes feed-forward network, layer normaliza-
tion, activation, embedding layer, output sampling layer, and
residual connections whereas attention is a sequence-level
operator. In this paper, we primarily focus on attention since
it is the primary consumer of GPUmemory in LLM inference.
For the attention operator, the model first computes the

query, key and value vectors from a given sequence of tokens
(𝑥1, 𝑥2, ...., 𝑥𝐾 ) ∈ R𝐾×𝐸 where E represents the embedding
size of the model. For each 𝑥𝑖 , query, key and value vectors
are computed as follows:

𝑞𝑖 =𝑊𝑞𝑥𝑖 , 𝑘𝑖 =𝑊𝑘𝑥𝑖 , 𝑣𝑖 =𝑊𝑣𝑥𝑖 (1)

The resulting 𝑘𝑖 and 𝑣𝑖 are appended to the key and value
vectors of the prior tokens of the corresponding request, pro-
ducing two matrices 𝐾,𝑉 ∈ R𝐿′×(𝐻×𝐷 ) where 𝐿′ represents
the context length of the request seen so far, H is the number
of KV heads and D is the dimension of each KV head. Then,
attention is computed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 , 𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑞𝑖𝐾

𝑇

𝑠𝑐𝑎𝑙𝑒
)𝑉 (2)

The attention score is computed separately for each re-
quest in the batch. Note that in each iteration of a request,
all its preceding 𝑘𝑖 and 𝑣𝑖 are needed to compute attention.
Hence, an inference engine stores the 𝑘𝑖 and 𝑣𝑖 vectors in
memory to reuse them across iterations: we refer to this state
as KV-cache. A request is executed until the model generates
a special end-of-sequence token or reaches the maximum
context length for the request.
Structure of the KV-cache and terminology: An LLM
consists of multiple layers of the transformer block and each
layer maintains its own cache of keys and values. In this
paper, we refer to the cache of all transformer blocks collec-
tively as KV-cache while using the term K-cache or V-cache
for keys and values, respectively. In deep learning frame-
works, the K-cache (or V-cache) at each layer is typically
represented as a 4D tensor of shape [𝐵, 𝐿, 𝐻, 𝐷] where 𝐵
refers to batch size and 𝐿 refers to the maximum possible
context length of a request. We refer to a kernel implementa-
tion that computes attention scores over contiguously stored
K and V as a non-paged kernel.

2.2 Fragmentation and PagedAttention
To improve serving throughput, production systems rely
on batching which requires careful allocation of GPU mem-
ory. This is challenging because the total context length of a
request is not known in advance. Serving systems worked
around this challenge by pre-reserving KV-cache space as-
suming that each context is as long as the maximum length
supported by the model (e.g., 200K for Yi-34B-200K). vLLM

Figure 1. PagedAttention involves two layers of memory
management: one in user space and one in OS kernel space.

shows that this strategy is prone to severe internal frag-
mentation. In fact, vLLM showed that prior reservation is
suboptimal even if the context lengths are known in advance.
This is because the per-request KV-cache grows one token
at a time and hence prior reservation wastes memory over
the entire lifetime of a request.

Inspired by the OS-based virtual memory systems, vLLM
proposed PagedAttention to mitigate fragmentation by dy-
namically allocating memory for the KV-cache. PagedAt-
tention splits KV-cache into fixed-sized blocks and allocates
memory for one block at a time. This way, vLLM allocates
only as much memory as a request needs, and only when
required – not ahead-of-time.

3 Issues with the PagedAttention Model
Despite being inspired by demand paging, the PagedAtten-
tion approach is different from it: PagedAttention mandates
an implementation of paging in user space whereas conven-
tional demand paging is transparent to applications. This sec-
tion elaborates on issues that arise with such an approach.

3.1 Requires Re-writing the Attention Kernel
PagedAttention necessitates re-writing the attention kernel.
This is because conventional implementations of the atten-
tion operator assume that the two input tensors K and V
(Equation 2) are stored in contiguous memory. By departing
from the conventional memory layout, PagedAttention re-
quires an implementation of the attention operator to bemod-
ified so as to compute attention scores over non-contiguous
KV-cache blocks. Writing correct and performant GPU ker-
nels can be challenging for most programmers [13].
Being a fundamental building block of the transformer

architecture, the attention operator has witnessed a tremen-
dous pace of innovation in the systems and ML communities
for performance optimizations [8, 32, 34–36, 38, 39, 42, 53, 60,
64], and this trend is likely to continue. In the PagedAtten-
tionmodel, keeping upwith new research requires continued
efforts in porting new optimizations to a PagedAttention-
aware implementation. Production systems can therefore
easily fall behind research, potentially losing performance
and competitive advantage. To provide an example, Table 6
shows that the paged kernel of vLLM is already up to 2.8×
slower than the FlashAttention kernel [32].
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Figure 2. Overhead of PagedAttention in prefill kernels
(model: Llama-3-8B, one A100 GPU). Numbers on top show
overhead over the corresponding non-paged implementation
of FlashAttention (FA) and FlashInfer (FI).

3.2 Adds Redundancy in the Serving Framework
PagedAttention makes an LLM serving system responsible
for managing the mappings between KV-cache and dynami-
cally allocated memory blocks. For example, consider a re-
quest that allocates four KV-cache blocks over time (left
half of Figure 1). These blocks are usually non-contiguous
in virtual memory. During the computation of Equation 2,
PagedAttention kernel needs to access all the elements of the
four KV-cache blocks. To facilitate this, the serving system
needs to track the virtual memory addresses of KV-cache
blocks and pass them to the attention kernel at runtime. This
approach effectively requires duplicating what the operating
system already does for enabling virtual-to-physical address
translation (right half in Figure 1).

3.3 Performance Overhead
3.3.1 Runtime overhead on the GPU. PagedAttention
slows down attention computation by adding extra code in
the critical path. For example, vLLM acknowledges that their
PagedAttention-based implementation was 20 − 26% slower
than the original FasterTransformer kernel, primarily due
to the overhead of looking up Block-Tables and executing
extra branches (see Figure 18a in [44]).
In addition, Figure 2 shows that incorporating PagedAt-

tention has also added a significant performance overhead in
other state-of-the-art kernel libraries. For example, PagedAt-
tention based prefill kernels of FlashAttention and FlashInfer
are up to 28% and 24% slower than the non-paged kernels
in the corresponding libraries. Our analysis reveals that the
number of instructions executed in PagedAttention kernels
is 7 − 13% higher than the non-paged kernels.
To highlight another example of difficulty involved in

writing an efficient attention kernel with paging support,
Figure 3 shows that the performance of vLLM’s paged decode
kernel is significantly worse with larger block sizes of 64 and
128. Our analysis indicates that this is likely due to L1 cache
efficiency: smaller blocks have a higher memory bandwidth
utilization due to higher hit rates in L1 cache.

3.3.2 Runtime overhead on the CPU. Implementing an
additional memory manager can add performance issues in
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Figure 3. Latency of vLLM’s paged decode kernel is sensitive
to block size (model: Llama-3-8B, one A100 GPU).

the CPU runtime of the serving system. We refer to a few
real-world examples and our own observations on vLLM to
corroborate this argument.

To enable PagedAttention, a serving system needs to sup-
ply Block-Tables to the attention kernel. In vLLM, the latency
of preparing a Block-Table depends on batch composition
and grows proportional to max_num_blocks × batch_size
where max_num_blocks refers to the number of KV-cache
blocks in the longest request of the batch. This is because
vLLM manages a Block-Table as a 2D tensor and aligns the
number of KV-cache blocks in each request by padding un-
occupied slots with zeros. If a batch contains a few long and
many short requests, such padding results in a significant
overhead. In our earlier experiments, we observed that Block-
Table preparation in vLLM was contributing 30% latency in
decode iterations. While a recent fix [19] has mitigated some
of this overhead, we find that it can still be as high as 10%.
High overhead of PagedAttention has also been found in
TensorRT-LLM, degrading throughput by 11%, from 412 to-
kens/sec to 365 tokens/sec [11]. This issue was attributed to
the Python runtime of TensorRT-LLM and moving to a C++
runtime can mitigate the CPU overhead. However, doing so
would be an unwelcome change for most programmers.

Overall, this section shows that the PagedAttention model
adds a significant programming burden while also being in-
efficient. vAttention introduces a more systematic approach
to dynamic KV-cache memory management by leveraging
the existing system support for demand paging. However,
before delving into vAttention, we first highlight some of
the fundamental characteristics of LLM serving workloads
from a memory management perspective.

4 Insights into LLM Serving Systems
To highlight the memory allocation pattern of LLM serving
systems, we experiment with Yi-6B running on a single A100
GPU, and Llama-3-8B and Yi-34B running on two A100 GPUs
with tensor-parallelism. We set the initial context length of
each request to 1K tokens, vary the batch size from 1 to 320
and measure the throughput and memory requirement of the
decode phase (see §5.4 for our discussion and optimizations
for the prefill phase).
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Figure 4. Decode throughput (left) and the rate of physical
memory allocation (right) saturate at large batch sizes.

Observation-1: On a per-iteration basis, KV-cache memory
requirement is known in advance. This is a dream property for
a memory allocator, thanks to the auto-regressive decoding
wherein every forward pass of themodel generates one token
per request. Therefore, with every iteration, the KV-cache
memory footprint of a request grows uniformly by one token
as long as the request is active.
Observation-2: KV-cache does not require high memory al-
location bandwidth. The memory footprint of a single token
across all layers is typically few 10s-100s of kilobytes of
memory. For example, the per-token memory footprint of
Yi-6B, Llama-3-8B and Yi-34B is 64KB, 128KB and 240KB,
respectively. Further, each iteration runs for 10s-100s of mil-
liseconds implying that a request requires at most a few
megabytes of memory per second. While batching improves
system throughput [30, 31, 49, 65], the number of tokens
generated per second plateaus beyond a certain batch size
(Figure 4, left). This implies that the memory allocation band-
width requirement also saturates at large batch sizes (e.g., at
128 for Yi-34B). For all the models we studied, we observe
that the highest memory allocation rate is at most 600MB
per second (Figure 4, right).
In vAttention, we leverage these observations to imple-

ment an efficient dynamic memory management system for
KV-cache. In the next section, we begin with a high-level
overview of vAttention (§5.1), then discuss how vAttention
is used for serving LLMs (§5.3) and finally describe our opti-
mizations (§5.4).

5 vAttention: Design and Implementation
To facilitate dynamic allocation of physical memory to un-
modified attention kernels, vAttention leverages system sup-
port for demand paging instead of implementing it in user
space.

5.1 Design Overview
vAttention builds on the ability to allocate virtual memory
and physical memory separately. Specifically, we allocate
a large contiguous buffer for the KV-cache in virtual mem-
ory ahead-of-time (similar to reservation-based allocators)
while deferring the allocation of physical memory to runtime
(similar to PagedAttention). This way, vAttention preserves

virtual contiguity of KV-cache without wasting physical
memory. This approach is feasible because memory capac-
ity and fragmentation are limiting factors only for physical
memory whereas virtual memory is abundant e.g., modern
64-bits systems provide a 128TB user-managed virtual mem-
ory per process1.

Pre-reserving virtual memory. Since virtual memory is
abundant, we pre-allocate it in size that is large enough to
hold the KV-cache of the maximum batch size (configurable)
that needs to be supported. In doing so, we assume that each
request would generate as many tokens as the maximum
sequence length supported by the model.

Number of virtual memory buffers. A serving frame-
work typically maintains separate K and V tensors for each
layer of the model: we refer to them individually as K-cache
and V-cache. We allocate separate virtual memory buffers
for K-cache and V-cache. For a single GPU job, this requires
pre-reserving 2×𝑁 buffers where 𝑁 is the number of layers
in the model. In a multi-GPU job, each worker reserves 2×𝑁 ′
buffers where 𝑁 ′ is the number of layers managed by that
worker (𝑁 ′ = 𝑁 with tensor-parallelism whereas 𝑁 ′ < 𝑁

with pipeline-parallelism).

Size of a virtual memory buffer. The maximum size of a
buffer is 𝐵𝑆 = 𝐵 × 𝐿 × 𝑆 where B is the maximum batch size,
L is the maximum context length supported by the model,
and 𝑆 is the size of a single token’s per-layer K-cache (or
V-cache) on a worker. Further, 𝑆 = 𝐻 × 𝐷 × 𝑃 , where 𝐻 is
the number of KV heads on a worker, 𝐷 is the dimension of
each KV head and 𝑃 is the number of bytes based on model
precision (e.g., P=2 for FP16/BF16). Note that 𝑆 is constant
for a given model configuration.

Consider Yi-34Bwith FP16 and two-way tensor-parallelism
(TP-2). In this case, 𝑁 = 60, 𝐻 = 4, 𝐷 = 128, 𝑃 = 2 (8 KV
heads of Yi-34B are split evenly on two GPUs), and maxi-
mum supported context length 𝐿 = 200𝐾 . For this model, the
maximum size of K-cache (or V-cache) per-worker per-layer
is 𝑆 = 200𝑀𝐵 (200𝐾 ∗ 4 ∗ 128 ∗ 2). Assuming 𝐵 = 500, the
maximum size of each buffer per-worker is 𝐵𝑆 = 100𝐺𝐵
(500 × 200𝑀𝐵). Therefore, the total virtual memory require-
ment for 60 layers is 120 buffers of 100GB each (12TB to-
tal). Note that the amount of virtual address space available
grows with the number of GPUs e.g., with two TP work-
ers, the amount of virtual address space available is 256TB.
Therefore, virtual memory allocations can be satisfied easily.
Figure 5 shows how vAttention allocates physical memory
pages dynamically.

164-bits systems use only 48 bits for virtual addresses today, providing a per-
process virtual memory space of 256TB which is divided equally between
the user space and (OS) kernel space.
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Figure 5. Dynamic memory management in vAttention for a single K-cache (or V-cache) tensor. (a) shows a virtual tensor for
a batch of two requests with no physical memory allocation yet. (b) R1 is allocated one physical page. (c) R1 is allocated two
pages and R2 is allocated one page. (d) R1 has completed but vAttention does not reclaim its memory (deferred reclamation).
(e) when R3 arrives, vAttention assigns R1’s tensor to it which is already backed by physical memory.

Latency (microseconds)
CUDA VM APIs vAttention VM APIs Description 64KB 128KB 256KB 2MB
cuMemAddressReserve * vMemReserve * Allocate a buffer in virtual memory 18 17 16 2
cuMemCreate * vMemCreate * Allocate a handle in physical memory 1.7 2 2.1 29
cuMemMap vMemMap Map a physical handle to a virtual buffer 8 8.5 9 2
cuMemSetAccess - Enable access to a virtual buffer - - - 38
cuMemUnmap - Unmap physical handle from a virtual buffer - - - 34
cuMemRelease * vMemRelease * Free physical pages of a handle 2 3 4 23
cuMemAddressFree * vMemFree * Free a virtual memory buffer 35 35 35 1

Table 2. CUDA VM (virtual memory) APIs. * represents APIs that we use once while instantiating or terminating the serving
framework. Rest of the APIs are used for (un)mapping physical memory pages at runtime. CUDA APIs (prefixed with cu)
support only 2MB allocation sizes, whereas our CUDA extension APIs (prefixed with v) support fine-grained allocations.

5.2 Leveraging Low-level CUDA Support
The standard GPU memory allocation interface cudaMalloc
does not support demand paging i.e., it allocates virtual mem-
ory and physical memory at the same time. However, recent
CUDA versions provide programmers a fine-grained control
over virtual and physical memory [16, 40]. We leverage these
low-level APIs in vAttention.
5.2.1 CUDA virtual memory APIs. Table 2 provides an
overview of CUDA APIs that allow separating the alloca-
tion of virtual memory from physical memory. The alloca-
tion granularity depends on the page size used by the GPU.
Further, the size of a virtual memory buffer or a physical
memory handle must be a multiple of the physical memory
allocation granularity. It is also important to highlight that
physical memory pages can be allocated (or de-allocated)
to sub-regions in a virtual memory buffer independently of
other sub-regions. For simplicity, we refer to the granularity
of physical memory allocation as page size.

5.2.2 Extending PyTorch caching allocator. KV-cache
is a collection of tensors. In current deep learning frame-
works such as PyTorch, a tensor allocated via APIs such
as torch.empty comes with pre-allocated physical mem-
ory. This is because the PyTorch caching allocator uses the
cudaMalloc interface to allocate GPU memory (both virtual

and physical). Relying on the low-level API support from
CUDA, we extend the PyTorch caching allocator to allow an
application to reserve a virtual memory buffer for a tensor
without committing physical memory ahead-of-time. We
refer to tensors allocated via these APIs as virtual tensors.

5.2.3 Request-level KV-cache indexing. Note that each
virtual tensor represents the K-cache (or V-cache) of a layer
for the maximum batch size B. In these tensors, different
requests occupy different non-overlapping sub-regions (say
sub-tensors). We locate the sub-tensor of a request with a
unique integer identifier reqId that lies in the range of 0 to
𝐵 − 1 (note that at most 𝐵 requests run simultaneously). The
K-cache (or V-cache) offset of a request’s sub-tensor in the
virtual tensor of the entire batch is reqId × 𝑆 where 𝑆 is the
maximum K-cache (or V-cache) size of a request on a worker.
The request identifier reqId is allocated by vAttention.

5.3 Serving LLMs with vAttention
We build vAttention as a Python library that internally uses
a CUDA/C++ extension for interacting with CUDA drivers.
Our library exposes a set of simple APIs to the serving frame-
work (see Table 3 and Algorithm 1).
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APIs Description
init Initializes vAttention with model parameters.

arguments: 𝑁 ′, 𝐵, 𝐿, 𝐻 ′, 𝑃 , page_size.
return value: a list of KV-cache tensors.

alloc_reqid Allocates an unused reqId and marks it active
arguments: None
return value: an integer reqId

free_reqid Frees a reqId and marks it inactive
arguments: an integer reqId
return value: None

step Ensures physical memory pages are mapped
arguments: an array of size B containing sequence
lengths of each reqId
return value: 0 (success), -1 (failure).

Table 3.Key APIs that vAttention exposes to a serving frame-
work for dynamic KV-cache memory management.

5.3.1 Initial setup. When the serving framework starts,
each model worker loads the vAttention library and config-
ures it with model parameters 𝑁 ′, 𝐻, 𝐷, 𝑃 , 𝐵 and a preferred
page size via the init API. Internally, vAttention reserves
2 × 𝑁 ′ virtual tensors (using our modified PyTorch caching
allocator) for the KV-cache at each worker. These virtual ten-
sors are reserved for the lifetime of the serving application.
In addition, vAttention also pre-allocates physical memory
pages during initialization. However, these pages are not
mapped into the KV-cache yet.

5.3.2 Scheduling a new request. When a new request is
scheduled for the first time, the serving framework obtains
a new reqId from vAttention via alloc_reqid. All subse-
quent memory management operations of the request are
tagged with this reqId.

5.3.3 Model execution. Before scheduling a batch for ex-
ecution, the framework needs to ensure that the KV-cache
sub-tensors of each active request are backed by physical
memory. For this purpose, before dispatching the first kernel
of an iteration to the GPU, the framework invokes the step
API, specifying the current context length of each request
(context length is set to 0 for each inactive reqId). Internally,
vAttention ensures that enough physical pages are mapped
for each active reqId before returning execution back to
the framework. If vAttention cannot satisfy the memory de-
mand, it returns with a failure in response to which a serving
framework can preempt one or more requests to allow for-
ward progress (this is similar to vLLM’s default behavior).
We leave more sophisticated policies such as swapping out
KV-cache to CPU memory as future work.

Depending on whether a request is in the prefill phase or
decode phase, different number of physical memory pages
may need to be mapped for a given iteration. The prefill
phase processes the input tokens of given prompt in parallel
and populates one slot in the K-cache (and V-cache) of the
request at each layer of the model. Therefore, the number

Algorithm 1 Using vAttention in a serving framework.
1: max_batch_size← B
2: cache_seq_len← [0]*B
3: req_batch_idx← dict()
4: vattention.init_cache(config_params)
5: while !request_pool.is_empty() do
6: for 𝑅𝑖 in new_requests do
7: if can_schedule(𝑅𝑖 ) then
8: idx← vattention.alloc_reqid()
9: req_batch_idx[𝑅𝑖]← idx
10: cache_seq_len[idx]← prompt_len(𝑅𝑖 )
11: end if
12: end for
13: vattention.step(cache_seq_len)
14: model.forward()
15: for 𝑅𝑖 in active_requests do
16: idx← req_batch_idx[𝑅𝑖]
17: if is_complete(𝑅𝑖 ) then
18: cache_seq_len[idx]← 0
19: vattention.free_reqid(idx)
20: else
21: cache_seq_len[idx] + = 1
22: end if
23: end for
24: end while

of pages needed to be mapped depends on the number of
prompt tokens being scheduled. If the total K-cache size of all
prompt tokens at one layer of the model is 𝑠 and page size is
𝑡 , then each worker needs to ensure that at least (𝑠 + 𝑡 − 1)/𝑡
physical memory pages are mapped in each of the 2 × 𝑁 ′
KV-cache sub-tensors of the given reqId.
For a request in the decode phase, the number of new

pages required is at most one per request. This is because
each iteration produces only one output token for a request.
vAttention internally tracks the number of pages mapped
for each request and maps a new page only when the last
page allocated to that request is fully utilized.

5.3.4 Request completion. A request terminates when a
user specified context length or the maximum context length
supported by the model is reached, or when the model pro-
duces a special end-of-sequence token. The framework noti-
fies vAttention of a request’s completion with free_reqid.
Internally, vAttention may unmap the pages of a completed
request or defer them to be freed later.

5.4 Optimizations
There are two primary challenges in using CUDA virtual
memory support for serving LLMs. First, cuMemCreate cur-
rently allocates a minimum of 2MB physical memory page.
Large pages can waste physical memory due to internal frag-
mentation. Second, invoking CUDA APIs incurs high latency.
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This section details a set of simple-yet-effective optimiza-
tions that we introduce to overcome these limitations.

5.4.1 Mitigating internal fragmentation. We mitigate
internal fragmentation by reducing the granularity of phys-
ical memory allocation. NVIDIA GPUs natively support at
least three page sizes: 4KB, 64KB and 2MB [22, 33, 46, 62].
Therefore, in principal, physical memory can be allocated
in any multiple of 4KB sizes. The simplest way to achieve
this would be to extend the existing CUDA virtual memory
APIs (listed in Table 2) to also support allocating smaller
pages (similar to how mmap in Linux supports multiple page
sizes). Unfortunately, the CUDA APIs are implemented in
the closed-source NVIDIA drivers which makes it impossible
for us to modify their implementation.

Fortunately, some part of NVIDIA drivers (particularly re-
lated to unified memory management) is open-source. There-
fore, we implement a new set of APIs in the open-source
NVIDIA drivers to mimic the same functionality that existing
CUDA APIs provide but with support for multiple page sizes.
The second column in Table 2 shows our new APIs: most of
our APIs have a one-to-one relationship with existing CUDA
APIs except for vMemMap that combines the functionality
of cuMemMap and cuMemSetAccess, and vMemRelease that
combines the functionality of cuMemUnmap and cuMemRelease
for simplicity. In contrast to CUDA APIs, our APIs can allo-
catememory in 64KB, 128KB and 256KB page sizes. A serving
framework can configure a desired page size in vAttention
while initializing it. The last set of columns in Table 2 shows
the latency of each API with different page sizes.

5.4.2 Hiding memory allocation latency. The serving
framework invokes the step API in every iteration. The
latency of step depends on how many new pages need
to be mapped in the virtual tensors of KV-cache. Consider,
for example, that the KV-cache of one request needs to be
extended for Yi-34B which has 60 layers. This requires 120
calls to cuMemMap + cuMemSetAccess each of which takes
about 40 microseconds. Therefore, growing the KV-cache
of one request by new pages (at all layers) adds about 5
millisecond latency to the corresponding iteration. Further,
the latency overhead grows proportional to the number of
requests that need new pages in a given iteration.We propose
the following optimizations to hide the latency of allocation:

Overlappingmemory allocationwith compute. We lever-
age the predictability of memory demand to overlap memory
allocation with computation. In particular, note that each
iteration produces a single output token for every decode
request. Therefore, memory demand for a decode iteration is
known ahead-of-time. Further, in the decode phase, a request
requires at most one new page. vAttention keeps track of
the current context length and how many physical memory
pages are already mapped for each request. Using this infor-
mation, it determines when a request would need a new page

Model Hardware # Q Heads # KV Heads # Layers
Yi-6B 1 A100 32 4 32
Llama-3-8B 2 A100s 32 8 32
Yi-34B 2 A100s 56 8 60

Table 4. Models and hardware used for evaluation.

and uses a background thread to allocate a new page when
the preceding iteration is executing. For example, consider
that a request R1 would require a new page in iteration i.
When the serving framework invokes step API in iteration
i-1, vAttention launches a background thread that maps
physical memory pages for iteration i. Since iteration la-
tency is typically in the range of 10s-100s of milliseconds,
the background thread has enough time to prepare physical
memory mappings for an iteration before it starts executing.
This way, vAttention hides the latency of CUDA APIs by
mapping physical pages in the KV-cache tensors out of the
critical path. Note that in every iteration, stepAPI still needs
to ensure that physical pages required for the current itera-
tion are actually mapped. If not, required pages are mapped
synchronously.

Deferred reclamation + eager allocation. We observe
that allocating physical memory for a new request can be
avoided in many cases. Consider that a request R1 completed
in iteration i and a new request R2 joins the running batch
in iteration i+1. To avoid allocating new pages to R2 from
scratch, vAttention simply defers the reclamation of R1’s
pages and assigns R1’s reqId to R2. This way, R2 uses the
same tensors for its KV-cache that R1 was using – which are
already backed by physical pages (for security reasons, we
still zero-fill such pages before allowing a new request to use
them). Therefore, new pages are required only if the context
length of R2 is bigger than that of R1.
We further optimize memory allocation by proactively

allocating a small number of physical pages ahead of time.
For this purpose, we try to keep a certain number of pages
(configurable based on expected workload) mapped into the
virtual tensors of one of the inactive reqId. When a new
request arrives, we allocate this reqId and identify a new
reqId to be allocated next and map physical pages for it.
In most cases, these eager allocations obviate the need to
allocate physical pages in the critical path of prefill execu-
tion. Finally, we trigger memory reclamation only when the
number of physical pages cached in vAttention falls below a
certain threshold (e.g., less than 10% of GPU memory). We
delegate both deferred reclamation and eager allocation to
the background thread that the step API spawns.

6 Evaluation
Our evaluation seeks to answer the following questions:
• How does vAttention perform for prefill and decode
phases (§6.1, §6.2)?
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Figure 6. Prefill throughput. vAttention backed systems outperform the paged counterparts of both FlashAttention and
FlashInfer. Throughput for longer contexts is lower due to the quadratic complexity of prefill attention.

• How vAttention impacts LLM serving throughput
(§6.3)?
• What is the effect of each of our optimizations (§6.4)?

Models andhardware:Weevaluate threemodels Yi-6B [28],
Llama-3-8B [21] and Yi-34B [27], using a single NVIDIAA100
GPU for Yi-6B, and two NVLink-connected A100 GPUs for
Llama-3-8B and Yi-34B (see Table 4). Each GPU has 80GB
physical memory. We use tensor-parallelism degree of two
(TP-2) for both Llama-3-8B and Yi-34B.
Evaluation methodology: The computation and memory
allocation pattern of the prefill and decode phases is sub-
stantially different [30, 41, 65]. Attention kernels used for
these two phases are also different and hence we also eval-
uate them separately. The prefill phase requires one time
memory allocation potentially spanning multiple pages. In
comparison, the decode phase requires incremental mem-
ory allocation over the lifetime of a request [44]. We define
throughput as the number of tokens processed (or generated)
per second.
Serving framework: For a fair comparison, we use vLLM
v0.2.7 as a common serving framework in all our experi-
ments. We integrated state-of-the-art kernel libraries of both
FlashAttention v2.5.9 [7, 38, 39] and FlashInfer v0.4.0 [9] as
attention back-ends into vLLM, and further added support
for dynamic memory allocation via vAttention to their non-
paged kernels. While FlashAttention and FlashInfer are both
based on the same underlying techniques (e.g., FlashDecod-
ing [8]), they use different Block-Table formats; the former
use a simple lookup table whereas the latter uses a com-
pressed Block-Table to aid fetching KV-cache block locations.
Baselines: We compare performance obtained by using the
non-paged attention kernels (backed by vAttention for dy-
namic memory allocation), and their paged counterparts. In
addition, we also compare against vLLM’s decode kernel
(note that vLLM does not have a paged prefill kernel). For
a fair comparison, we also profiled each system to find its
best performing configuration. Accordingly, we set KV-cache
block size to 16 for both vLLM and FlashInfer, and 256 for
FlashAttention. Using a higher block size for vLLM increases
its kernel latency by up to 3× as shown in Figure 3, and
using a smaller block size for FlashAttention paged kernel
increases its latency by up to 9% (Table 9). We find that the

Model Context
Length FA_Paged FA_vAttention FI_Paged FI_vAttention

Yi-6B
64K 10.6 (7.0) 9.1 (5.5) 10.9 (6.0) 9.1 (5.4)
128K 37.9 (30.3) 30.5 (23.1) 35.4 (25.4) 30.7 (23.3)
192K 81.5 (70.0) 64.6 (53.6) 73.0 (58.3) 65.1 (53.6)

Llama-3 64K 6.0 (3.4) 5.2 (2.7) 6.7 (3.0) 5.3 (2.8)
-8B 128K 20.4 (15.4) 16.8 (11.6) 20.3 (12.8) 16.8 (11.4)

192K 43.3 (35.6) 34.8 (26.9) 40.9 (29.7) 34.7 (26.7)
64K 25.5 (13.2) 22.8 (10.3) 26.0 (11.2) 22.7 (10.1)

Yi-34B 128K 82.8 (56.9) 68.4 (43.2) 76.0 (46.7) 67.4 (42.5)
192K 170.7 (131.8) 136.9 (98.8) 148.8 (104.7) 134.6 (96.5)

Table 5. Prefill completion and attention (in parenthesis)
time with different attention back-ends (unit: seconds).

choice of page size does not affect vAttention as long as
fragmentation is not a concern (Figure 11).

6.1 Prefill Evaluation
We evaluate four configs for prefill: FA_Paged, FI_Paged,
FA_vAttention and FI_vAttention. Configurations with the
“_Paged” suffix represent the PagedAttention-based kernel
and those with “_vAttention” use the non-paged kernels of
the respective library. Figure 6 shows the prefill throughput
for Yi-6B, Llama-3-8B and Yi-34B. We summarize our key
findings below.
Small contexts: For small contexts, prefill cost is dominated
by the linear operators i.e., attention’s contribution is rela-
tively low [31]. Hence, even though vAttention helps speed
up attention computation, the throughput of both paged and
vAttention back-ends is nearly identical in FlashAttention.
However, for FlashInfer, we find that using vAttention helps
improve prefill throughput even for small contexts. This is
because FlashInfer incurs various other sources of overhead
in the paged version. First, appending a new K or V ten-
sor to the KV-cache requires a single tensor copy operation
in vAttention, whereas in a paged implementation, it re-
quires appending one block at a time (the copy operation has
been optimized for FlashAttention by vLLM [17]). Second,
FlashInfer involves creation and deletion of a few objects
for its compressed Block-Tables in every iteration. vAtten-
tion avoids such overheads because it maintains KV-cache’s
virtual contiguity, eliminating the need for a Block-Table.
Long contexts: The contribution of attention computation
becomes significant at 16K and higher context lengths in
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Figure 7. Decode throughput. FA_vAttention is on par with FA_Paged (note the overlapping lines) which is the best among all
PagedAttention based alternatives, while outperforming FI_Paged and vLLM.

our experiments. Therefore, even for FlashAttention back-
end, vAttention outperforms the paged counterpart. For ex-
ample, at context length 192K, FA_vAttention outperforms
FA_Paged by 1.24×, 1.26× and 1.24× for Yi-6B, Llama-3-8B
and Yi-34B, respectively. Similarly, for FlashInfer back-ends,
FI_vAttention improves prefill throughput by up to 1.25×
and 1.36× for Yi-6B and Llama-3-8B (context length 16K),
and 1.17× for Yi-34B (context length 32K).
Attention time: vAttention’s improvement in prefill through-
put is primarily due to faster attention kernels enabled by a
(virtually) contiguous KV-cache. This is because the prefill
phase of a long prompt is primarily dominated by attention
computation, as can be observed by comparing the num-
bers inside parenthesis with the total prefill completion time
in Table 5. For FlashAttention, nearly all the gains of vAtten-
tion are due to faster attention kernels e.g., prefill gains of 1.5
seconds, 7.4 seconds and 16.9 seconds for Yi-6B are almost
entirely due to gains in attention computation. vAttention
enabled kernels also help with the FlashInfer back-end. In
addition, FI_Paged also has other sources of overheads e.g.,
in the 14 seconds of total savings (Yi-34B, 192K context),
only 7 seconds is due to attention and the rest is due to other
sources.

6.2 Decode Evaluation
For decodes, in addition to FA_Paged and FI_Paged, we also
evaluate the throughput obtained with vLLM’s decode ker-
nel (the first ever kernel to support PagedAttention). For
vAttention, we use FlashAttention’s non-paged kernel. Un-
fortunately FlashInfer’s non-paged decode kernel has sig-
nificantly higher latency compared to all the other kernels
we used in these experiments (up to 14.6×, Table 10). Hence,
while vAttention supports dynamic memory allocation for
FlashInfer’s non-paged decode kernel, we omit it for evalua-
tion in this section (note that vAttention is responsible only
for allocating memory – it cannot make a slow kernel fast).

Figure 7 shows the decode throughput of Yi-6B, Llama-3-
8B and Yi-34B with varying batch size up to 32 (except for
Yi-34B which runs out of memory for batch size 32). We set
the initial context length of each request to 16K tokens and
calculate decode throughput based on the mean latency of
400 decode iterations (see Figure 7).

Model BS vLLM FA_Paged FI_Paged FA_vAttention

Yi-6B 16 32.3 11.5 15.2 11.3
32 64.1 25.5 25.4 25.3

Llama-3
-8B

16 17.8 11.9 12.1 11.8
32 35.3 25.4 23.23 25.3

Yi-34B 12 41.4 17.4 24.1 17.4
16 55.1 21.7 28.8 21.8

Table 6. Total latency of attention kernel (sum of all layers)
per decode iteration (in milliseconds, BS = batch size).

First, vAttention is on par with the best of PagedAttention
as shown by FA_Paged and FA_vAttention in Figure 7. In
comparison, FI_Paged has somewhat lower throughput and
vLLM is the worst for all models and configurations. For
example, FA_Paged and FA_vAttention outperform vLLM by
up to 1.99×, 1.58× and 1.53× for Yi-6B, Llama-3-8B and Yi-
34B, respectively. The primary reason is that vLLM’s decode
kernel has significantly higher latency than the FlashAtten-
tion based kernels; while FlashAttention has continuously
adopted new optimizations (e.g., FlashDecoding [8]), vLLM
has lagged behind. For example, Table 6 shows that vLLM’s
PagedAttention kernel incurs up to 2.8×, 1.5×, and 2.5×
higher latency than FlashAttention kernels for Yi-6B, Llama-
3-8B and Yi-34B. This is despite vLLM being in an actively
maintained open-source serving stack, as well as being used
by various companies for serving LLMs. This is an impor-
tant result that underlines the importance of adopting new
optimizations.
Second, relative gains of FA_vAttention and FA_Paged

increase over vLLM with the batch size e.g., as batch size
increases from 4 to 32 for Llama-3-8B, relative gains increase
from 1.05× to 1.58×. This is because the latency of a decode
attention kernel is proportional to the total number of tokens
in the batch [29]. Therefore, the contribution of attention
kernel in the overall latency – and consequently gains with a
more efficient kernel – increase with the batch size. Further,
for the same reasons as discussed in §6.1 (faster attention and
lower CPU overhead), FA_vAttention delivers up to 1.23×
higher throughput than FI_Paged (Yi-6B, batch size 12).

Finally, note that vAttention is only as good as the state-of-
the-art PagedAttention for decode throughput, as compared
to prefills where it outperforms PagedAttention. We believe
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Figure 8. Makespan of serving a set of 50 requests with varying context lengths and the ratio of prefill to decode tokens.

this is due to memory bound nature of decode attention i.e.,
memory stalls make it possible to hide the effect of addi-
tional compute that paging support requires. This is evident
from Table 6 wherein FA_Paged and FA_vAttention have
similar latency. However, hiding compute overhead in a pre-
fill attention kernel is hard because it is already compute
bound (see Table 5 for latency gains in the prefill attention
kernel).

6.3 End-to-end Throughput Evaluation
For end-to-end performance, we measure the makespan of
serving a static trace of 50 requests for long context scenarios.
To understand system performance for different workloads,
we vary the initial context length of requests from 32K to
128K, and the ratio of prefill to decode tokens (referred as
P:D) from 500 to 50. Note that a higher P:D as well as a longer
context indicates that the workload is more prefill bound;
we expect vAttention to improve performance in such cases.

Figure 8 shows the makespan for all the three models. For
Yi-6B, FA_vAttention is up to 1.22×, 1.16× and 1.13× faster
than FA_Paged for P:D ratio of 500, 100 and 50. FA_vAttention
is also up to 1.19× faster for Llama-3-8B and up to 1.16×
faster for Yi-34B, compared to FA_Paged. Our gains over
FA_Paged are higher at higher P:D ratios, and for a fixed P:D,
our gains increase as the context length grows. These results
are consistent with our expectation since a higher P:D and
context lengths both mean that the system spends more time
processing prefills where use of non-paged attention kernels
outperform paged kernels.
Interestingly, we observe that despite being faster than

FA_Paged in prefills, FI_Paged under-performs FA_Paged in
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Figure 9. Latency of decode iterations with and without
overlapping memory allocation with compute (batch size=32,
context length=4K–8K, model: Llama-3-8B)

end-to-end throughput in most cases (due to inefficient de-
codes as shown in Figure 7). Hence, our gains over FI_Paged
are relatively higher (up to 1.29×), except for some cases
where FI_Paged outperforms FA_Paged (e.g., Yi-6B and Yi-
34B, context length=128K, P:D=500).

6.4 Ablation Studies
6.4.1 Hiding allocation latency. Figure 9 shows the la-
tency of more than 2500 decode iterations of Llama-3-8B.
For this experiment, we used a batch of 32 requests and ini-
tialized the prefill context length of each request to be in
between 4K–8K (chosen randomly). It is evident that over-
lapping memory allocation with compute effectively hides
the latency of allocating memory via CUDA APIs. We used
2MB pages for this experiment to show that even the worst
case latency can be hidden (Table 2 shows that 2MB pages
incur highest latency). In contrast, allocating memory syn-
chronously via CUDA APIs leads to frequent latency spikes
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Figure 10. Prefill completion time of a single prompt of 16K
tokens with different memory allocation strategies.

Config. 64KB 128KB 256KB 2MB
TP-1 7.59 14.56 27.04 35.17
TP-2 15.18 29.12 54.08 70.34

Table 7. Physical memory allocation bandwidth (GB per
second) with varying allocation granularity.

of 5ms–20ms, depending on how many requests need new
physical memory pages.

6.4.2 Deferred reclamation. Figure 10 shows that syn-
chronous memory allocation using CUDA APIs for prefills
incurs overhead of up to 1.15× with 64KB pages and up to
1.03× with 2MB pages. In most cases, deferred reclamation
eliminates the need to invoke CUDA APIs for prefills be-
cause a newly arrived request can simply re-use physical
memory pages that were allocated to a prior request. This
way, deferred reclamation ensures that prefill latency is not
affected by memory allocation.

6.4.3 Memory allocation bandwidth. Table 7 shows
that even with 64KB (our smallest) page size, vAttention
can allocate as much as 7.6GB per second per GPU. This is
more than an order of magnitude higher than the maximum
memory allocation rate of 600MB per second of decodes
(Figure 4). Larger page sizes and higher TP dimensions in-
crease the memory allocation rate proportionally. Therefore,
memory allocation bandwidth of CUDA APIs is more than
enough for LLM inference.

6.4.4 Effect of page size. In many applications, use of
smaller pages can potentially degrade performance due to
TLB thrashing [45, 48, 50, 55]. We find that this is not the
case for LLM inference. For example, Figure 11 shows that
the execution latency of an attention kernel remains largely
unaffected when the page size for KV-cache is reduced to
64KB, from the original 2MB. In a separate experiment, we
find that these results are also consistent with very large
models e.g., Llama-3-70B and GPT-3-175B. We attribute this
to the regular computation pattern of the attention operator
as well as the hand-tuned implementations that explicitly
try to avoid irregular memory accesses.

2K 4K 8K 16K 32K
Context Length (Prefill)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 R
un

ti
m

e

1.
02

x

1.
00

x

1.
00

x

1.
01

x

0.
98

x

2MB 64KB

1*32K 2*32K 4*32K 8*32K 16*32K
Batch Size * Context Length (Decode)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 R
un

ti
m

e

1.
00

x

1.
00

x

1.
02

x

1.
02

x

1.
00

x

2MB 64KB

Figure 11. Effect of page size on the performance of FlashAt-
tention’s prefill (left) and decode (right) attention kernels
(model: Llama-3-8B).
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Figure 12.Maximum batch size obtained with different page
sizes for a dynamic workload. Large pages limit batch size
due to internal fragmentation.

Further, we find that 2MB pages are good enough for many
online serving scenarios where latency constraints limit the
maximum batch size. However, for throughput-oriented sce-
narios, smaller pages may be preferred. For example, using
2MB pages could serve batch sizes of up to 187, 203 and
56 for Yi-6B, Llama-3-8B and Yi-34B on a dynamic trace
(dataset: OpenChat [57], load: 7 queries per seconds). In con-
trast, 64KB pages helped serve batch sizes of up to 240, 258
and 68 for our models (see Figure 12).

6.5 Programming Effort
vAttention makes it feasible to replace one attention kernel
with another with only a few lines of code changes in the
serving framework (Figure 13). In contrast, in PagedAtten-
tion, a developer first needs to write a paged kernel and
then make significant changes in the serving framework.
For example, integrating FlashInfer decode kernels in vLLM
required more than 600 lines of code changes in over 15

Figure 13. Illustration of code changes needed to replace the
prefill attention kernel of FlashAttention by FlashInfer when
using vAttention for dynamic physical memory allocation.
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Model # Tokens in a physical memory block Max memory waste per request
64KB 128KB 256KB 2MB 64KB 128KB 256KB 2MB

Yi-6B (TP-1) 64 128 256 2048 4MB 8MB 16MB 128MB
Yi-6B (TP-2) 128 256 512 4096 8MB 16MB 32MB 256MB
Llama-3-8B (TP-1) 32 64 128 1024 4MB 8MB 16MB 128MB
Llama-3-8B (TP-2) 64 128 256 2048 8MB 16MB 32MB 256MB
Yi-34B (TP-1) 32 64 128 1024 7.5MB 15MB 30MB 240MB
Yi-34B (TP-2) 64 128 256 2048 15MB 30MB 60MB 480MB

Table 8. Block size (number of tokens in a physical memory page) as a function of the page size and degree of tensor parallelism.
Columns on the right show how much physical memory can be wasted per-request in the worst-case.

Batch
Size

FA_Paged
(Block Size = 256)

FA_Paged
(Block Size = 16)Model Ratio

Yi-6B 1 0.085 0.085 1.00×
2 0.093 0.094 1.01×
4 0.109 0.115 1.05×

Llama-3
-8B

1 0.076 0.082 1.08×
2 0.097 0.105 1.07×
4 0.136 0.143 1.05×

Yi-34B
1 0.070 0.076 1.09×
2 0.088 0.095 1.08×
4 0.116 0.117 1.01×

Table 9. Impact of varying block size on the execution la-
tency (in milliseconds) of FlashAttention decode kernel.

files [23, 24, 26]. Implementing the initial paging support
in FlashAttention kernel also required ≈ 280 lines of code
changes [20] and additional efforts to enable support for
smaller block sizes [14].

7 Discussion
7.1 Further Analysis of Internal Fragmentation
vAttention uses page size as the unit of physical memory
allocation as opposed to the PagedAttention’s unit of KV-
cache block size. Therefore, it is natural to ask what is the
relationship between page size and block size. To compute
this relationship, let 𝑆 be the size of a single token’s per-
layer K-cache (or V-cache) on a worker (see §5.1). Then,
page size t translates to KV-cache block size = 𝑡/𝑆 . Note
that 𝑆 = 𝐻 × 𝐷 × 𝑃 , where 𝐻 is the number of KV heads
on a worker, 𝐷 is the dimension of each KV head and 𝑃 is
the number of bytes based on model precision (e.g., P=2 for
FP16/BF16). Therefore, block size = 𝑡/(𝐻 × 𝐷 × 𝑃).
Table 8 shows the block size for different model configu-

rations and physical memory allocation sizes; we show each
model under two TP configurations – TP-1 and TP-2 – to
highlight the effect of TP dimension on block size. In addi-
tion, the table also shows how much physical memory can
be (theoretically) wasted by vAttention due to internal frag-
mentation in the worst-case. The worst-case occurs when a
new page is allocated but remains completely unused.

Context Length Batch Size FI_NonPaged FI_Paged Ratio
8K 4 0.902 0.071 12.7×
8K 8 0.931 0.128 7.3×
8K 16 0.943 0.229 4.2×
16K 4 0.902 0.13 7.2×
16K 8 1.821 0.233 7.8×
16K 16 1.875 0.450 4.2×
32K 4 3.398 0.233 14.6×
32K 8 3.291 0.458 7.2×
32K 16 3.365 0.891 3.8×

Table 10. Latency (in milliseconds) of paged and non-paged
decode attention kernels in FlashInfer. Ratio denotes the
latency of non-paged kernel divided by the latency of paged
kernel (model: Llama-3-8B, 2 A100 GPUs).

vAttention allocates physical memory equivalent to the
page size on each TP worker whereas the per-token physical
memory requirement of a worker goes down as TP dimen-
sion increases (because KV heads get split across TPworkers).
Therefore, block size increases proportionally with the TP
dimension. Table 8 shows that using 2MB pages leads to
large KV-cache block sizes of 1024 (Llama-3-8B and Yi-34B,
TP-1) to 4096 (Yi-6B, TP-2) which could waste significant
amount of physical memory (100s of MBs, per-request). Use
of smaller (e.g., 64KB) pages reduces internal fragmentation
proportionally, resulting in KV-cache block size of 32 (Yi-
34B and Llama-3-8B, TP-1) to 128 (Yi-6B, TP-2), which in
turn limit the maximum theoretical waste of only 4-15MB
physical memory, per request. This shows that controlling
the granularity of physical memory allocation is essential
for reducing fragmentation. If required, page size can be re-
duced further to as low as 4KB which is the minimum page
size supported in almost all architectures today, including
NVIDIA GPUs.

7.2 Effect of Block Size on FlashAttention Kernel
We find that varying the block size of KV-cache also affects
the execution latency of FlashAttention’s decode kernel (in
addition to vLLM wherein using a larger block size increase
the latency of decode kernel by up to 3× as shown in Fig-
ure 3). For example, Table 9 shows that using a smaller block
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size of 16 increases the latency of FlashAttention decode
kernel by up to 5% for Yi-6B, up to 8% for Llama-3-8B and up
to 9% for Yi-34B. This is likely because work distribution and
shared memory usage in a paged kernel needs to explicitly
account for block size. Hence, writing an implementation
that is equally efficient for all block sizes could be non-trivial.
In fact, it is interesting to see that vLLM decode kernel per-
forms better with small block sizes whereas FlashAttention
decode kernel performs better with large block sizes. While
the impact of block size on kernel latency is much less pro-
nounced in FlashAttention compared to vLLM, a degradation
in performance is still undesirable for an operator as impor-
tant as attention. vAttention is free of such implementation
challenges because it does not require a block table.

7.3 FlashInfer Non-paged Decode Attention Kernel
Note that we did not include FlashInfer non-paged decode
kernel in our evaluation (§6). There are two reasons for this.
First, the non-paged kernel has a much higher latency than
the paged counterpart of FlashInfer e.g., Table 10 shows that
the latency of non-paged kernel is up to 14.6× higher than
the paged kernel. Further, the latency of the paged kernel
follows an expected trend i.e., increasing the context length
or batch size leads to a proportional increase in the execution
latency. In contrast, increasing the batch size does not affect
the latency of the non-paged kernel (e.g., context lengths
of 8K and 32K). This behavior of the non-paged kernel is
counter-intuitive and likely due to un-optimized implemen-
tation. Note that the job of a memory allocator is to simply
allocate memory – it cannot accelerate a kernel. Second, the
non-paged decode kernel of FlashInfer does not support vari-
able sequence lengths – a fundamental requirement for LLM
inference.

8 Related Work
Optimizing LLM inference is an active area of research. Var-
ious techniques have been proposed to improve different
aspects of LLM serving like batching [30, 44, 61], disaggrega-
tion [43, 49, 65], scheduling [54, 58]. However, central to all
these techniques is the need for efficient KV-cache memory
management. Since vLLM, PagedAttention has been adopted
in various serving frameworks e.g., TensorRT-LLM [12],
LightLLM [10], and libraries e.g., FlashAttention [7] and
FlashInfer [9]. In contrast, vAttention offers an alternate –
which we believe is also a more principled – approach to
dynamic KV-cache memory management.

In a recent work, GMLake [40] showed that using CUDA
virtual memory support can mitigate fragmentation in DNN
training jobs, increasing training batch size. In particular,
GMLake uses CUDA support to coalesce multiple smaller
physical memory pages into a single virtually contiguous ob-
ject that can prevent out-of-memory errors for large object
allocations. In contrast, vAttention is focused on avoiding

fragmentation for LLM inference. Different from training,
LLM inference is latency sensitive and requires smaller gran-
ularity allocations. We proposed various LLM inference spe-
cific optimizations to meet these requirements.

Similar to our approach, PyTorch also recently added sup-
port for expandable segments [15] that dynamically attach
physical memory pages to a pre-reserved virtual memory
buffer, if enabled. However, PyTorch uses expandable seg-
ments opportunistically, using synchronous memory alloca-
tion, and allocates physical memory pages only in multiples
of 2MB granularity. In contrast, vAttention caters to the
specific requirements of the KV-cache.
Some other concurrent works are also motivated to op-

timize attention kernels [25, 35, 42, 51, 52, 59, 63]. As one
would expect, new research ideas do not start with paging
support in mind. vAttention would make it easier to deploy
them.

9 Conclusion
In this paper, we propose vAttention for dynamic memory
management in LLM serving systems. The key highlight of
vAttention is that it leverages system support for demand
paging instead of implementing it in user space. We present
various examples to show that the vAttention approach re-
duces programming burden while improving portability and
performance compared to the popular PagedAttention ap-
proach that many LLM serving systems use today.
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