vAttention: Dynamic Memory Management for Serving LLMs

Presenters: Rahul Bothra, Chengyi Wang 11th October 2024

> Our **comments** in purple boxes

Contents

- 1. LLM Inference primer + KV Cache
- 2. Prior work on memory management (Orca and Paged Attention)
- 3. vAttention Design (Design and Challenges (CUDA paging size))
- 4. vAttention Evaluation
- 5. Analysis and Future work

LLM Inference Primer

Tokens processed in parallel

Tokens generated one at a time

LLM Inference memory footprint

KV Cache Memory Management

- KV-cache is **large, dynamic** and **size** is **unknown/variable**
- GPT-3: 1000 tokens = 4.5GB memory
- Grows one-token at a time (autoregressive decoding)
- Don't know request lengths in advance

Why care about memory management?

Comment: Predicting the final KV cache size in advance could be useful.

Why is memory management important?

• LLM Inference throughput depends on batch size

• Batch size depends on memory (KV-cache) allocator

A simple KV Cache Memory Manager

- **Assume** length(R*ⁱ)*== max context length
- Allocate all memory upfront
	- e.g., max model length for GPT-3 = 4K
	- allocate 18GB memory for each request (= 4*4.5GB)

Can't serve more requests (though memory is underutilized)

A better approach – vLLM (SOSP '23)

- Dynamic fine-grained memory allocation for KV-cache
- **Dynamic:**
	- On demand allocation
- **Fine-grained:**
	- Divide memory into fixed-size blocks (e.g., 16 tokens)
	- Allocate one block at a time

(3 tokens, 1 block)

GPU Memory (block size = 4)

GPU Memory (block size = 4)

GPU Memory (block size = 4)

vLLM and Paged Attention

$$
Attention(q_i, K, V) = softmax(\frac{q_i K^T}{scale})V
$$

- Conventional implementations expect **contiguous K and V**
	- No longer possible in vLLM
- **PagedAttention**
	- Compute attention over non-contiguous blocks of K and V

Programming Overhead

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Performance

Redundant address translation has a cost

Performance Overhead

[* Dao-AILab/flash-attention: Fast and memory-efficient exact attention \(github.com\)](https://github.com/Dao-AILab/flash-attention)

** [flashinfer-ai/flashinfer: FlashInfer: Kernel Library for LLM Serving \(github.com\)](https://github.com/flashinfer-ai/flashinfer)

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Performance

Redundant address translation has a cost

Portability

Kernels are not compatible!

Why care about portability?

Issues with PagedAttention

Programming

Writing performant GPU code is non-trivial

Performance

Redundant address translation has a cost

Portability

Kernels are not compatible (different formats)

Can we do better?

- Non-contiguous layout is not ideal.
- Ideal solution:
	- **Dynamic** memory allocation
	- **Contiguous** memory layout

These goals are usually conflicting

Can we resolve the conflict?

Enabling contiguous dynamic allocation

vAttention

 $\sum_{i=1}^{N} \frac{1}{N}$ \leq Decoupling virtual and physical memory allocation

 $\sum_{i=1}^{N} \frac{1}{2}$ Leveraging system support for demand paging

 $\sum_{i=1}^{N} \sum_{i=1}^{N}$ Optimizations (co-design with LLM inference)

Memory Allocation in vAttention

Each worker allocates 2*N virtual buffers in advance

- N = number of layers hosted on the worker
- Separate tensors for K and V at each layer
- Buffer size based on max context length and batch size

One virtual buffer (batch size=4, each block is a token)

Memory Allocation in vAttention

Each worker allocates 2*N virtual buffers in advance

- N = number of layers hosted on the worker
- Separate tensors for K and V at each layer
- Buffer size based on max context length and batch size

One virtual buffer (batch size=4, each block is a token)

How is this feasible?

Create contiguous virtual memory!

CUDA APIs allow implementing vAttention

Create dynamic physical memory!

Comment: How are page faults handled?

Challenges for vAttention

Allocating a physical memory page requires a syscall

CUDA drivers allocate only large pages (>=2MB)

Challenges 1 – Memory Allocation Latency

- CUDA API calls are expensive Allocating one page takes **~40**
- Need to allocate multiple pages at once
	- Latency overhead grows proportionally
- Example: **Yi-34B**
	- 60 layers == 120 virtual tensors
	- **5ms** (=120*40 μ s) latency overhead per request
	- **50ms** overhead if 10 requests need new pages at once

Optimization: Overlap allocation with compute

- Each decode iteration generates **one** token (per request)
- Memory requirement is known ahead-of-time (dream property!)
- Track progress of each request to determine Q when a new page is required
- **Asynchronously** allocate pages for iteration **i+1** when iteration **i** is executing

Challenge 2: Fragmentation (Physical memory)

- Min page size in CUDA is **2MB**
- vAttention allocates 2^{*}N pages at once
- Fragmentation proportional to:
	- Number of layers
	- Degree of tensor-parallelism

Challenge 2: Fragmentation (Physical memory)

- Example: **Yi-34B**
	- 60 layers == 120 virtual tensors (per TP-worker)

Maximum memory wasted (per request) for Yi-34B

Optimization: Allocate smaller physical pages

GPUs natively support 4KB, 64KB and 2MB pages.

Solution: Update CUDA drivers to allocate small (64KB) pages

Challenge: CUDA drivers are closed source, so all CUDA APIs had to be rewritten

Maximum memory wasted (per request) for Yi-34B

vAttention Challenges

Allocating a physical memory pages requires a syscall

CUDA drivers allocate only large pages (>=2MB)

vAttention Optimization

Deferred reclamation

If a new request joins right after an old request has completed, transfer the physical and virtual memory.

Eager Allocation

Pre-allocate some virtual tensors even before a request arrives

Evaluation

• Prefill and decode phases

- LLM serving throughput
- Effect of each of our optimizations

Prefill Evaluation

Small contexts

Decode Evaluation

End-to-end Throughput Evaluation

•P:D-ratio of prefill to decode tokens

Hiding allocation latency

This experiment used a batch of 32 requests and initialized the prefill context length of each request to be in between 4K–8K (chosen randomly).

Deferred reclamation

• Synchronous memory allocation using CUDA APIs for prefills incurs overhead of up to 1.15× with 64KB pages and up to 1.03× with 2MB pages. • Memory allocation bandwidth

• Effect of page size

• Programming Effort

-import flash_attn as fa +import flashinfer as fi

-def flash_attn_prefill(q, k_cache, v_cache, kv_len):

- $k = k$ cache[:, :kv_len, :, :]
- $v = v_{\text{ }}$ cache[:, :kv_{\text{ }}: $, :]$
- return fa.flash_attn_func(q, k, v, causal=True)

+def flash_infer_prefill(q, k_cache, v_cache, kv_len):

- $q = q$. squeeze (0)
- $k = k$ cache.squeeze(0)[: kv len, :, :] $\ddot{}$
- $\ddot{}$ $v = v_{\text{cache}}.\text{space}(0)[:kv_{\text{len}}, :, :]$
- $\ddot{}$ return fi.single_prefill_with_kv_cache(q, k, v, causal=True)

vAttention

• **vAttention:** An alternative to PagedAttention

• Leveraging system support for demand paging

Strengths

vAttention

- **vAttention:** An alternative to PagedAttention
	- Leveraging system support for demand paging

Room for Improvement

Adding support for non-NVIDIA architectures

Bringing up to parity with GMLake (Same approach as vAttention, but for training)