
vAttention: Dynamic Memory
Management for Serving LLMs

Presenters: Rahul Bothra, Chengyi Wang
11th October 2024

1

Our comments in
purple boxes

Contents

1. LLM Inference primer + KV Cache

2. Prior work on memory management (Orca and Paged Attention)

3. vAttention Design (Design and Challenges (CUDA paging size))

4. vAttention Evaluation

5. Analysis and Future work

2

LLM Inference Primer

3

Prefill
Iteration 1 Iteration 2 Iteration 3 Iteration 4

Are you
enjoying this

course?

Yes I
am

EOSKV
Cache

KV
Cache

KV
Cache

Decode

Tokens processed in parallel

Tokens generated one at a time

LLM Inference memory footprint

4

KV-cache

Model Weights

Activations

Static

Dynamic (small)

GPU RAM

❑ Large
❑ Dynamic
❑ Size unknown

Requires careful memory management

KV Cache Memory Management

• KV-cache is large, dynamic and size is unknown/variable

• GPT-3: 1000 tokens = 4.5GB memory

• Grows one-token at a time (autoregressive decoding)

• Don’t know request lengths in advance

5

Why care about memory management?

Comment: Predicting the final KV
cache size in advance could be useful.

• LLM Inference throughput depends on batch size

• Batch size depends on memory (KV-cache) allocator

0

60

120

180

240

300

1 2 4 8 20

To
ke

ns
 p

er
 s

ec
on

d

Batch Size

Llama-2-13B on a single A6000 GPU

6

Why is memory management important?

• Assume length(Ri)== max context length

• Allocate all memory upfront
• e.g., max model length for GPT-3 = 4K
• allocate 18GB memory for each request (= 4*4.5GB)

R1
R2
R3
R4

wasted
memory

Can’t serve more requests (though memory is underutilized)
7

A simple KV Cache Memory Manager

• Dynamic fine-grained memory allocation for KV-cache

• Dynamic:
• On demand allocation

• Fine-grained:
• Divide memory into fixed-size blocks (e.g., 16 tokens)

• Allocate one block at a time

8

A better approach – vLLM (SOSP ‘23)

9

R1

GPU Memory (block size = 4)

(3 tokens, 1 block)

Memory Allocation with vLLM

10

R1

R2

(4 tokens, 1 block)

(5 tokens, 2 blocks)

GPU Memory (block size = 4)

Memory Allocation with vLLM

11

R1

R2

R3

(5 tokens, 2 blocks)

(6 tokens, 2 blocks)

(2 tokens, 1 block)

GPU Memory (block size = 4)

Memory Allocation with vLLM

12

R1

R2

R3

(6 tokens, 2 blocks)

(7 tokens, 2 blocks)

(3 tokens, 1 block)

GPU Memory (block size = 4)

Memory Allocation with vLLM

13

R1

R2

R3

R4

(7 tokens, 2 blocks)

(8 tokens, 2 blocks)

(4 tokens, 1 block)

(3 tokens, 1 block)

GPU Memory (block size = 4)

Memory Allocation with vLLM

14

R1

R2

R3

R4

(8 tokens, 2 blocks)

(2 tokens, 1 block)

(5 tokens, 2 blocks)

(4 tokens, 1 block)

GPU Memory (block size = 4)

Memory Allocation with vLLM

Memory allocation with vLLM

▪ Dynamic allocation eliminates fragmentation

▪ Makes KV-cache non-contiguous

non-contiguous

15

R1

R2

R3

R4

(9 tokens, 3 blocks)

(3 tokens, 1 block)

(6 tokens, 2 blocks)

(5 tokens, 1 block)

GPU Memory (block size = 4)

• Conventional implementations expect contiguous K and V
• No longer possible in vLLM

• PagedAttention
• Compute attention over non-contiguous blocks of K and V

17

vLLM and Paged Attention

Block 0

Block 1

Block 2

Block 3

Block 2

Block 0

Block 3

Block 1

Block
table

Memory

KV blocks

Attention kernel needs to fetch K and V
from non-contiguous memory blocks

Serving stack needs to
implement a memory manager

18

Programming Overhead

Writing performant GPU
code is non-trivial

Programming

19

Issues with PagedAttention

Redundant address
translation has a cost

Performance
Writing performant GPU

code is non-trivial

Programming

20

Issues with PagedAttention

6% 5%

18%
22%

27%

0%

5%

10%

15%

20%

25%

30%

1K 2K 4K 8K 16K

%
 O

ve
rh

ea
d

Context Length

FlashAttention-2*

12%

24%

12% 12% 12%

0%

5%

10%

15%

20%

25%

30%

1K 2K 4K 8K 16K

%
 O

ve
rh

ea
d

Context Length

FlashInfer**

21
* Dao-AILab/flash-attention: Fast and memory-efficient exact attention (github.com)
** flashinfer-ai/flashinfer: FlashInfer: Kernel Library for LLM Serving (github.com)

Performance Overhead

https://github.com/Dao-AILab/flash-attention
https://github.com/flashinfer-ai/flashinfer

Redundant address
translation has a cost

Performance
Writing performant GPU

code is non-trivial

Programming

Kernels are not compatible!

Portability

22

Issues with PagedAttention

FlashAttention vLLM

FlashAttention2

FlashInfer

2023 2024

FlashDecoding

FlashDecoding++

LeanAttention

ThunderKittens

Mirage

23

FlashAttention-3

Supports PagedAttention Doesn’t support PagedAttention

cuDNN-9

Why care about portability?

Redundant address
translation has a cost

Performance
Writing performant GPU

code is non-trivial

Programming
Kernels are not compatible

(different formats)

Portability

24

Issues with PagedAttention

• Non-contiguous layout is not ideal.

• Ideal solution:

• Dynamic memory allocation

• Contiguous memory layout

25

Can we resolve the conflict?

These goals are usually conflicting

Can we do better?

26

Contiguous layout Dynamic allocation

Key idea: Let’s allocate them separately

Physical memory

Virtual memory

Page Table

allocate large chunks, ahead-of-time

allocate small chunks, on demand

Physical memory is limited
(80GB per GPU)

Virtual memory is abundant
(128TB per process)

Enabling contiguous dynamic allocation

Decoupling virtual and physical memory allocation

27

Leveraging system support for demand paging

Optimizations (co-design with LLM inference)

vAttention

Each worker allocates 2*N virtual buffers in advance

• N = number of layers hosted on the worker

• Separate tensors for K and V at each layer

• Buffer size based on max context length and batch size

One virtual buffer (batch size=4, each block is a token)

28

LLM

Attn

Attn

Attn

Attn

K V

K V

K V

K V

Memory Allocation in vAttention

Each worker allocates 2*N virtual buffers in advance

• N = number of layers hosted on the worker

• Separate tensors for K and V at each layer

• Buffer size based on max context length and batch size

One virtual buffer (batch size=4, each block is a token)

29

LLM

Attn

Attn

Attn

Attn

K V

K V

K V

K V

Memory Allocation in vAttention

Physical Memory (each block is a page)

Page Table Comment: How is the right
batch size computed?

30

How is this feasible?

CUDA APIs allow implementing vAttention

Comment: How are page
faults handled?

Create contiguous virtual memory!

Create dynamic physical memory!

Allocating a physical memory
page requires a syscall

CUDA drivers allocate only large
pages (>=2MB)

High Latency

High Fragmentation

31

Challenges for vAttention

• CUDA API calls are expensive - Allocating one
page takes ~40 𝝁𝒔

• Need to allocate multiple pages at once
• Latency overhead grows proportionally

• Example: Yi-34B
• 60 layers == 120 virtual tensors
• 5ms (=120*40 𝜇𝑠) latency overhead per request
• 50ms overhead if 10 requests need new pages at once

LLM

Attn

Attn

Attn

Attn

K V

K V

K V

K V

All Ks and
Vs need a
new page

32

Challenges 1 – Memory Allocation Latency

• Each decode iteration generates one token
(per request)

• Memory requirement is known ahead-of-time
(dream property!)

 Track progress of each request to determine
when a new page is required

Asynchronously allocate pages for iteration
i+1 when iteration i is executing

33

Optimization: Overlap allocation with compute

• Min page size in CUDA is 2MB

• vAttention allocates 2*N pages at once

• Fragmentation proportional to:
• Number of layers

• Degree of tensor-parallelism

LLM

Attn

Attn

Attn

Attn

K V

K V

K V

K V

All Ks and
Vs need a
new page

34

Challenge 2: Fragmentation (Physical memory)

Maximum memory wasted (per request) for Yi-34B

TP Dimension Max Memory wasted

1 240MB

2 480MB

4 960MB

8 1920MB

• Example: Yi-34B
• 60 layers == 120 virtual tensors (per TP-worker)

35

Challenge 2: Fragmentation (Physical memory)

TP dimension 64KB 2MB

1 7.5MB 240MB

2 15MB 480MB

4 30MB 960MB

8 60MB 1920MB

Maximum memory wasted (per request) for Yi-34B

GPUs natively support 4KB, 64KB and 2MB pages.

Solution: Update CUDA drivers to allocate small (64KB) pages

Challenge: CUDA drivers are closed source, so all CUDA APIs had to be rewritten

Up to 96% reduction in memory wastage 36

Optimization: Allocate smaller physical pages

Comment: This can further
increase the overhead of

memory allocation

Allocating a physical memory
pages requires a syscall

CUDA drivers allocate only large
pages (>=2MB)

High Latency

High Fragmentation

Async allocation

Small pages

37

vAttention Challenges

If a new request joins right after an old
request has completed, transfer the

physical and virtual memory.

Pre-allocate some virtual tensors even
before a request arrives

Deferred reclamation

Eager Allocation

38

vAttention Optimization

Evaluation

40

• Prefill and decode phases

• LLM serving throughput

• Effect of each of our optimizations

Prefill Evaluation

41

Small contexts

Long contexts

Decode Evaluation

42

End-to-end Throughput Evaluation

43

•P:D-ratio of prefill to
decode tokens

Hiding allocation latency

This experiment used a
batch of 32 requests and
initialized the prefill context
length of each request to
be in between 4K–8K
(chosen randomly).

Deferred reclamation

• Synchronous memory
allocation using CUDA
APIs for prefills incurs
overhead of up to 1.15×
with 64KB pages and up
to 1.03× with 2MB pages.

• Memory allocation bandwidth

• Effect of page size

• Programming Effort

47

Portability

Adopting new kernels is
very easy

Programming

Supports unmodified GPU
implementations

Performance

Not impacted by dynamic
memory allocation

• vAttention: An alternative to PagedAttention
• Leveraging system support for demand paging

vAttention

Strengths

48

• vAttention: An alternative to PagedAttention
• Leveraging system support for demand paging

vAttention

Room for Improvement

Adding support for non-NVIDIA architectures

Bringing up to parity with GMLake (Same approach as vAttention, but for training)

	Slide 1: vAttention: Dynamic Memory Management for Serving LLMs
	Slide 2: Contents
	Slide 3: LLM Inference Primer
	Slide 4: LLM Inference memory footprint
	Slide 5: KV Cache Memory Management
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40: Evaluation
	Slide 41: Prefill Evaluation
	Slide 42: Decode Evaluation
	Slide 43: End-to-end Throughput Evaluation
	Slide 44: Hiding allocation latency
	Slide 45: Deferred reclamation
	Slide 46
	Slide 47
	Slide 48

