X

FlashAttention-2:
Faster Attention with Better Parallelism and Work Partitioning

By: Tri Dao

Presented by: Deema Alnuhait
Oct 4th



Motivation I

= Longer sequence has proven better performance in LM and supports other
modalities, code, audio.. etc.

= The main bottleneck for scaling to a longer sequence is the attention layer

= Scaling the sequence length implies a quadratic increase in runtime and
memory

= GPT4 >>32k
* MosiacML’s MPT >> 65k
*= Anthropic Claude >> 100k
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Previous Work I

» FlashAttention2 is built upon the previously widely adopted FlashAttention (referred to
FlashAttentionl in this context)

= Mainideais to reorder the attention computation and leverage tiling recomputation which
reduces memory usage from quadratic to linear in sequence length

= Jtyields to 2 to 4x time speedup over the optimized baselines and up to 10 to 20x memory
utilization with no approximation

=  Withtheincreased sequence length FlashAttention underperform other primitives such as
GEMM (General Matrix-multiply)

» Forward pass reaches 30-50% of theoretical maximum FLOPs/s
= Backward pass is even more challenging, reaching only 25-35% of the maximum throughput
= Optimized GEMM can reach up to 80-90% of the theoretical maximum device throughput
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Background - Hardware Characteristics I

= Memory Hierarchy comprises of high bandwidth memory (HBM) [Slow and Large], and on-
chip SRAM (aka shared memory) [Fast and Small]

= Execution Model Kernal is the number of threads

» Threads are organized into blocks scheduled to run on streaming multiprocessors (SMs)

* |neach thread block, threads are grouped into warps (32 threads)

» Threads within a warp threads can communicate faster

=  Warps within a thread block can communicate by reading from / writing to shared memory

= Each kernel loads inputs from HBM to registers and SRAM, computes, then writes outputs to
HBM.
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Background - Standard Attention Implementation I

S=QK" e RV*N P =softmax(S) e RV, 0 =PV e RV*

The Softmax is applied row-wise.

Standard attention implementation

1. Calls GEMM (Matrix-Multiply) to compute S
Writes results to HBM

Load from HBM to compute the Softmax
Rewrite Pto HBM

Calls GEMM to compute O

ok W

This frequent memory access cause s slow execution and requires O(N?) since S and P are materialize
P has to be saved for backward pass to compute the gradients
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Background - Flash Attention or FA1l I

Forward Pass: Utilize a classical technique of tiling to reduce memory IOs, by:
loading blocks of inputs from HBM to SRAM

computing attention for that block, then

w o=

updating the output without writing the large intermediate matrices S and P to HBM

= Usingonline Softmax to split the attention computation into blocks, rescale the output of each block
to get non-approximate results.

= Reduces the number of memory’s reads/writes

= FlashAttention yields 2-4x wall-clock speedup over-optimized baseline attention implementations.
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Background - Standard Softmax I

= Considering two blocksin S

m = max(rowmax(S‘?), rowmax(S?)) e RE
{ = rowsum(es(l)_m) + rowsum(es(g)_m) e REr

P=[PD P®]=diagt)™ [esm"" es(2>_m] e RB-*2Be

(1)
0=[P" P®?] [&2)] = diag(£) 1S My (D) 4 8P -my (D) ¢ RBrxd,

-m for stabilization
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Background - FA1l

Online softmax instead computes “local” softmax with respect to each block and rescale to get the right

output at the end

mY = rowmax(SV) € RE-

(1) (D)
¢ = rowsum(eS ™) e RE

P = diag(f(l))_les(l)_m(l) e RB-*Be
oW =py® = diag(f(l))_lesm_m(l)V(l) € RB>d
m® = max(mY, rowmax(S?)) = m

§(2) _p(2) S

7@ = em<1)—m(2> ) = rowsum(es(l)—m) + rowsum(e (2)_'") ={

£ + rowsum (e
P@ = diag(f(m)_les(z)_m(z)
0 = diag(¢™ /@) 10D + POV = diag(¢@) 1> VD 4 diag(£@) e V@ = 0.
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(1) Reduce Non-Matmul FLOPs Operations in FA2

mY = rowmax(SV) € RB

(1) _4pp (1)
S ni ) e RB,

0() = SV-mPVy (1) ¢ gBrxd

¢V = rowsum(e

m? = max(m'V, rowmax(S?)) = m
£@ = mP-mP () 4 rowsum(eS”
P@ = diag(f(z))_les(z)_m(z)
0 = diag(em(l)_m(z))()(l) +e5
0@ =diag(¢?)10® = 0.
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(1) _ _
) = rowsum(e® ' ™) + rowsum(e® ") =¢

(2)—m(2)v(2) — es(l)—mv(l) +es(2)—mv(2)



(2) Parallelizing Attention Computation I

» FA1 parallelizes over batch size (B) and the number
of heads >>running many threads blocks together  Forward pass Backward pass

= Eachthread runson asingle streaming

multiprocessor (SM) e.g., A100 has 108 SMs . Worker 1
= Unfortunately, with long sequence s, we cannot Worker 2

afford large batch size s or large number s of heads Worker 3
= This leads to many idle SMs I

Worker 5
%, %%, %, %, %

= FA2 parallelizes additionally over sequence length, N

so supports three parallelization 7R Ty T
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(2) Parallelizing Attention Computation I

= FAlworksintwo loops

= First over thej-th(k, v) blocks, and the second runs overthe  Fgorward pass Backward pass
i-th Q
= They compute in SRAM (fast and small), and update O/, I, . Worker 1
and m;in HBM (large and slow)
Worker 2
Worker 3
= |n FA2 It swaps the order of the loop oreer
* Placing Q,outside >>the loop goes through different blocks
of the Q matrix Worker 5
= |nneroperateson KandV %, %, %,% A

= Swapping the order offers sequence length parallelization
as the # Q == to the length of the sequence

* |nautoregressive attention >> set the upper triangle to
infinity and leave them uncomputed
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(3) Work Partitioning between Warps I

= Typically use 4 or 8 warps per
thread block

= Everywarps contains 32 threads R L . Worp 14 )
= |n FAL “Split-K” technique: w1 . s |
= KandV are split across 4 A o
warps, while Q is kept -
accessible by all warps i

u EaCh Wa rp mU ltiplies tO get (a) FLASHATTENTION
a slice of QKT

* Then multiply with a slice of
V

(b) FLASHATTENTION-2
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(3) Work Partitioning between Warps

= InFA2:

= we split Q across 4 warps

= While keeping K and V | J
accessible by all warps wart | w2 | w3

= Aftereach warp computes a
slice of QKT, they only need to
multiply with their shared slice
of V, to get their corresponding
slice of the output O

Warp 1-4

= No needto communicate
between warps
= Reduction in shared memory’s (a) FLASHATTENTION

reads/writes >> speedup

= The same applies to backward pass
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Warp 4

Warp 1

Warp 2

Warp 4

KT

Warp 1-4

{
: Warp 2 1 Warp 1-4
I

I 1
| Warp4 |

Accessed by all warps

: Split across different warps

(b) FLASHATTENTION-2
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Figure 4: Attention forward + backward speed on A100 GPU
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Results

= Forward Speed on
A100

= Different Head
Dimension [64,
128]

=  W/O Causal mask
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Figure 5: Attention forward speed on A100 GPU




Results

= Backward Speed on
A100

= Different Head
Dimension [64, 128]

=  W/O Causal mask
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Figure 6: Attention backward speed on A100 GPU



Results - Training Speed

Table 1: Training speed (TFLOPs/s/GPU) of GPT-style models on 8xA100 GPUs. FLASHATTENTION-2
reaches up to 225 TFLOPs/s (72% model FLOPs utilization). We compare against a baseline running without

FLASHATTENTION.

Model

Without FLASHATTENTION FLASHATTENTION FLASHATTENTION-2

GPT3-1.3B 2k context
GPT3-1.3B 8k context
GPT3-2.7B 2k context
GPT3-2.7B 8k context
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142 TFLOPs/s 189 TFLOPs/s
72 TFLOPS/s 170 TFLOPs/s
149 TFLOPs/s 189 TFLOPs/s
80 TFLOPs/s 175 TFLOPs/s

196 TFLOPs/s
220 TFLOPs/s
205 TFLOPs/s
225 TFLOPs/s




Attention forward + backward speed (H100 80GB SXM5)

Attention forward + backward speed (H100 80GB SXM5)
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Figure 7: Attention forward + backward speed on H100 GPU
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Thank you
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