X

FlashAttention-2:
Faster Attention with Better Parallelism and Work Partitioning

By: Tri Dao

Presented by: Deema Alnuhait
Oct 4th

Motivation I

= Longer sequence has proven better performance in LM and supports other
modalities, code, audio.. etc.

= The main bottleneck for scaling to a longer sequence is the attention layer

= Scaling the sequence length implies a quadratic increase in runtime and
memory

= GPT4 >>32k
* MosiacML’s MPT >> 65k
*= Anthropic Claude >> 100k

Siebel School of Computing and Data Science 2

Previous Work I

» FlashAttention2 is built upon the previously widely adopted FlashAttention (referred to
FlashAttentionl in this context)

= Mainideais to reorder the attention computation and leverage tiling recomputation which
reduces memory usage from quadratic to linear in sequence length

= Jtyields to 2 to 4x time speedup over the optimized baselines and up to 10 to 20x memory
utilization with no approximation

= Withtheincreased sequence length FlashAttention underperform other primitives such as
GEMM (General Matrix-multiply)

» Forward pass reaches 30-50% of theoretical maximum FLOPs/s
= Backward pass is even more challenging, reaching only 25-35% of the maximum throughput
= Optimized GEMM can reach up to 80-90% of the theoretical maximum device throughput

Siebel School of Computing and Data Science 3

Background - Hardware Characteristics I

= Memory Hierarchy comprises of high bandwidth memory (HBM) [Slow and Large], and on-
chip SRAM (aka shared memory) [Fast and Small]

= Execution Model Kernal is the number of threads

» Threads are organized into blocks scheduled to run on streaming multiprocessors (SMs)

* |neach thread block, threads are grouped into warps (32 threads)

» Threads within a warp threads can communicate faster

= Warps within a thread block can communicate by reading from / writing to shared memory

= Each kernel loads inputs from HBM to registers and SRAM, computes, then writes outputs to
HBM.

Siebel School of Computing and Data Science 4

Background - Standard Attention Implementation I

S=QK" e RV*N P =softmax(S) e RV, 0 =PV e RV*

The Softmax is applied row-wise.

Standard attention implementation

1. Calls GEMM (Matrix-Multiply) to compute S
Writes results to HBM

Load from HBM to compute the Softmax
Rewrite Pto HBM

Calls GEMM to compute O

ok W

This frequent memory access cause s slow execution and requires O(N?) since S and P are materialize
P has to be saved for backward pass to compute the gradients

Siebel School of Computing and Data Science 5

Background - Flash Attention or FA1l I

Forward Pass: Utilize a classical technique of tiling to reduce memory IOs, by:
loading blocks of inputs from HBM to SRAM

computing attention for that block, then

w o=

updating the output without writing the large intermediate matrices S and P to HBM

= Usingonline Softmax to split the attention computation into blocks, rescale the output of each block
to get non-approximate results.

= Reduces the number of memory’s reads/writes

= FlashAttention yields 2-4x wall-clock speedup over-optimized baseline attention implementations.

Siebel School of Computing and Data Science 6

Background - Standard Softmax I

= Considering two blocksin S

m = max(rowmax(S‘?), rowmax(S?)) e RE
{ = rowsum(es(l)_m) + rowsum(es(g)_m) e REr

P=[PD P®]=diagt)™ [esm"" es(2>_m] e RB-*2Be

(1)
0=[P" P®?] [&2)] = diag(£) 1S My (D) 4 8P -my (D) ¢ RBrxd,

-m for stabilization

Siebel School of Computing and Data Science 7

Background - FA1l

Online softmax instead computes “local” softmax with respect to each block and rescale to get the right

output at the end

mY = rowmax(SV) € RE-

(1) (D)
¢ = rowsum(eS ™) e RE

P = diag(f(l))_les(l)_m(l) e RB-*Be
oW =py® = diag(f(l))_lesm_m(l)V(l) € RB>d
m® = max(mY, rowmax(S?)) = m

§(2) _p(2) S

7@ = em<1)—m(2>) = rowsum(es(l)—m) + rowsum(e (2)_'") ={

£ + rowsum (e
P@ = diag(f(m)_les(z)_m(z)
0 = diag(¢™ /@) 10D + POV = diag(¢@) 1> VD 4 diag(£@) e V@ = 0.

Siebel School of Computing and Data Science 8

(1) Reduce Non-Matmul FLOPs Operations in FA2

mY = rowmax(SV) € RB

(1) _4pp (1)
S ni) e RB,

0() = SV-mPVy (1) ¢ gBrxd

¢V = rowsum(e

m? = max(m'V, rowmax(S?)) = m
£@ = mP-mP () 4 rowsum(eS”
P@ = diag(f(z))_les(z)_m(z)
0 = diag(em(l)_m(z))()(l) +e5
0@ =diag(¢?)10® = 0.

Siebel School of Computing and Data Science 9

§(2)

(1) _ _
) = rowsum(e® ' ™) + rowsum(e® ") =¢

(2)—m(2)v(2) — es(l)—mv(l) +es(2)—mv(2)

(2) Parallelizing Attention Computation I

» FA1 parallelizes over batch size (B) and the number
of heads >>running many threads blocks together Forward pass Backward pass

= Eachthread runson asingle streaming

multiprocessor (SM) e.g., A100 has 108 SMs . Worker 1
= Unfortunately, with long sequence s, we cannot Worker 2

afford large batch size s or large number s of heads Worker 3
= This leads to many idle SMs I

Worker 5
%, %%, %, %, %

= FA2 parallelizes additionally over sequence length, N

so supports three parallelization 7R Ty T

Siebel School of Computing and Data Science

(2) Parallelizing Attention Computation I

= FAlworksintwo loops

= First over thej-th(k, v) blocks, and the second runs overthe Fgorward pass Backward pass
i-th Q
= They compute in SRAM (fast and small), and update O/, I, . Worker 1
and m;in HBM (large and slow)
Worker 2
Worker 3
= |n FA2 It swaps the order of the loop oreer
* Placing Q,outside >>the loop goes through different blocks
of the Q matrix Worker 5
= |nneroperateson KandV %, %, %,% A

= Swapping the order offers sequence length parallelization
as the # Q == to the length of the sequence

* |nautoregressive attention >> set the upper triangle to
infinity and leave them uncomputed

Siebel School of Computing and Data Science

(3) Work Partitioning between Warps I

= Typically use 4 or 8 warps per
thread block

= Everywarps contains 32 threads R L . Worp 14)
= |n FAL “Split-K” technique: w1 . s |
= KandV are split across 4 A o
warps, while Q is kept -
accessible by all warps i

u EaCh Wa rp mU ltiplies tO get (a) FLASHATTENTION
a slice of QKT

* Then multiply with a slice of
V

(b) FLASHATTENTION-2

Siebel School of Computing and Data Science

(3) Work Partitioning between Warps

= InFA2:

= we split Q across 4 warps

= While keeping K and V | J
accessible by all warps wart | w2 | w3

= Aftereach warp computes a
slice of QKT, they only need to
multiply with their shared slice
of V, to get their corresponding
slice of the output O

Warp 1-4

= No needto communicate
between warps
= Reduction in shared memory’s (a) FLASHATTENTION

reads/writes >> speedup

= The same applies to backward pass

Siebel School of Computing and Data Science

Warp 4

Warp 1

Warp 2

Warp 4

KT

Warp 1-4

{
: Warp 2 1 Warp 1-4
I

I 1
| Warp4 |

Accessed by all warps

: Split across different warps

(b) FLASHATTENTION-2

ReS u lts Attention forward + backward speed (A100 80GB SXM4) Attention forward + backward speed (A100 80GB SXM4)

s Pytorch B Pytorch
N W FlashAttention N W FlashAttention 196 201 203
- 001 mm xformers 176 - 001 mm xformers
u Bl FlashAttention Triton 171 175 v B FlashAttention Triton
g mmm FlashAttention-2 g = FlashAttention-2
O 150 A Ie) 150 4
| |
o o
£ =
-5 100 A - 100 A
(] (]
= A100 g 2
o o
n 50 n 50 -
. 512 1k 2k 4k 8k 16k 512 1k 2k a4k 8k 16k
u lefe rent H ead Sequence length Sequence length
Dimension [64, (a) Without causal mask, head dimension 64 (b) Without causal mask, head dimension 128
128] Attention forward + backward speed (A100 80GB SXM4) Attention forward + backward speed (A100 80GB SXM4)
B Pytorch B Pytorch
|| —-— FlashAttention L FlashAttention
e 200 mm xformers . 200 B xformers 182 189
) B FlashAttention Triton 165 171 0 B FlashAttention Triton
& mEE FlashAttention-2 & B FlashAttention-2
o) 150 A o 150 1
= W/O Causal mask X X
L =
- 100 - 100
o] <]
(o] Q
) &
501 501

512 1k 2k 4k 8k 16k 512 1k 2k 4k 8k 16k
Sequence length Sequence length
(c) With causal mask, head dimension 64 (d) With causal mask, head dimension 128

Figure 4: Attention forward + backward speed on A100 GPU

Siebel School of Computing and Data Science

Results

= Forward Speed on
A100

= Different Head
Dimension [64,
128]

= W/O Causal mask

Attention forward speed (A100 80GB SXM4)

200 ~

150 A

100 A

Speed (TFLOPs/s)

50 1

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

193 192 192 192

512 1k 2k 4k 8k 16k
Sequence length

(a) Without causal mask, head dimension 64

Attention forward speed (A100 80GB SXM4)

200 ~

150 4

100 A

Speed (TFLOPs/s)

501

Siebel School of Computing and Data Science

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

177 181 183

512 1k 2k 4k 8k 16k
Sequence length

(c) With causal mask, head dimension 64

Attention forward speed (A100 80GB SXM4)

200

150 A

100 4

Speed (TFLOPs/s)

50 1

~a 227 222 224 223

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

14

512 1k 2k 4k 8k 16k
Sequence length

(b) Without causal mask, head dimension 128

Attention forward speed (A100 80GB SXM4)

200 A

150 4

100 A

Speed (TFLOPs/s)

50 4

Pytorch
FlashAttention 198 200 197
xformers
FlashAttention Triton
FlashAttention-2

8k 16k

512 1k 2k 4k
Sequence length

(d) With causal mask, head dimension 128

Figure 5: Attention forward speed on A100 GPU

Results

= Backward Speed on
A100

= Different Head
Dimension [64, 128]

= W/O Causal mask

Speed (TFLOPs/s)

Speed (TFLOPs/s)

Siebel School of Computing and Data Science

Attention backward speed (A100 80GB SXM4)

200 A

150 A

100 A

50 1

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

169 170

163

2k 4k 8k

Sequence length

512 1k

(a) Without causal mask, head dimension 64

Attention backward speed (A100 80GB SXM4)

200 1

150 A

100 A

50 1

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

166

2k 4k 8k

Sequence length

512 1k

(c) With causal mask, head dimension 64

Speed (TFLOPs/s)

Speed (TFLOPs/s)

Attention backward speed (A100 80GB SXM4)

200 A

150 A

100 A

501

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

193 196

187

8k

2k 4k
Sequence length

512 1k

(b) Without causal mask, head dimension 128

Attention backward speed (A100 80GB SXM4)

200 1

150 A

100 A

501

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

186

2k 4k 8k

Sequence length

512 1k

(d) With causal mask, head dimension 128

Figure 6: Attention backward speed on A100 GPU

Results - Training Speed

Table 1: Training speed (TFLOPs/s/GPU) of GPT-style models on 8xA100 GPUs. FLASHATTENTION-2
reaches up to 225 TFLOPs/s (72% model FLOPs utilization). We compare against a baseline running without

FLASHATTENTION.

Model

Without FLASHATTENTION FLASHATTENTION FLASHATTENTION-2

GPT3-1.3B 2k context
GPT3-1.3B 8k context
GPT3-2.7B 2k context
GPT3-2.7B 8k context

Siebel School of Computing and Data Science

142 TFLOPs/s 189 TFLOPs/s
72 TFLOPS/s 170 TFLOPs/s
149 TFLOPs/s 189 TFLOPs/s
80 TFLOPs/s 175 TFLOPs/s

196 TFLOPs/s
220 TFLOPs/s
205 TFLOPs/s
225 TFLOPs/s

Attention forward + backward speed (H100 80GB SXM5)

Attention forward + backward speed (H100 80GB SXM5)

B Pytorch B Pytorch
mm FlashAttention mm FlashAttention 335 338
I FlashAttention-2] FIashAttentmn 2
I Iloo GPU B 300 288 294 296 & 300
-~ 274 <~
nlﬂ_ 254 & 248
9 215 9
F= 200 1 F= 200 1
; 15 15 16 16 18 16 ‘_; 167
@ 9 s > B
o Q 93
. " 100 A 81 86 87 " 1001
72
= Different Head e
Dimension [64, o0 o0
512 1k 2k ak 8k 16k 512 8k 16k
128] Sequence length Sequence Iength
(a) Without causal mask, head dimension 64 (b) Without causal mask, head dimension 128
Attention forward + backward speed (H100 80GB SXM5) Attention forward + backward speed (H100 80GB SXM5)
u Il Pytorch

W/O Causal mask

w

o

o
L

I FlashAttention
B FlashAttention-2

s Pytorch
I FlashAttention
B FlashAttention-2

328

__uml 273 __3 3004
% - 257 %
| |
E 200 1 192 'E 200 -
° 141 13 13 14 ks
g 10 B g
» 1001 o 1001
26 29 31 32 32
512 1k 2k 4k 8k

6k

Sequence length Sequence Iength

(c) With causal mask, head dimension 64 (d) With causal mask, head dimension 128

Figure 7: Attention forward + backward speed on H100 GPU

Siebel School of Computing and Data Science

Thank you

	Slide 1: FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
	Slide 2: Motivation
	Slide 3: Previous Work
	Slide 4: Background – Hardware Characteristics
	Slide 5: Background – Standard Attention Implementation
	Slide 6: Background – Flash Attention or FA1
	Slide 7: Background – Standard Softmax
	Slide 8: Background – FA1
	Slide 9: (1) Reduce Non-Matmul FLOPs Operations in FA2
	Slide 10: (2) Parallelizing Attention Computation
	Slide 11: (2) Parallelizing Attention Computation
	Slide 12: (3) Work Partitioning between Warps
	Slide 13: (3) Work Partitioning between Warps
	Slide 14: Results
	Slide 15: Results
	Slide 16: Results
	Slide 17: Results – Training Speed
	Slide 18: H100 GPU
	Slide 19

