
FlashAttention-2:
Faster Attention with Better Parallelism and Work Partitioning

By: Tri Dao

Presented by: Deema Alnuhait
Oct 4th

Motivation

▪ Longer sequence has proven better performance in LM and supports other
modalities, code, audio.. etc.

▪ The main bottleneck for scaling to a longer sequence is the attention layer

▪ Scaling the sequence length implies a quadratic increase in runtime and
memory

▪ GPT4 >> 32k

▪ MosiacML’s MPT >> 65k

▪ Anthropic Claude >> 100k

Siebel School of Computing and Data Science 2

Previous Work

▪ FlashAttention2 is built upon the previously widely adopted FlashAttention (referred to
FlashAttention1 in this context)

▪ Main idea is to reorder the attention computation and leverage tiling recomputation which
reduces memory usage from quadratic to linear in sequence length

▪ It yields to 2 to 4x time speedup over the optimized baselines and up to 10 to 20x memory
utilization with no approximation

▪ With the increased sequence length FlashAttention underperform other primitives such as
GEMM (General Matrix-multiply)

▪ Forward pass reaches 30-50% of theoretical maximum FLOPs/s

▪ Backward pass is even more challenging, reaching only 25-35% of the maximum throughput

▪ Optimized GEMM can reach up to 80-90% of the theoretical maximum device throughput

Siebel School of Computing and Data Science 3

Background – Hardware Characteristics

▪ Memory Hierarchy comprises of high bandwidth memory (HBM) [Slow and Large], and on-
chip SRAM (aka shared memory) [Fast and Small]

▪ Execution Model Kernal is the number of threads

▪ Threads are organized into blocks scheduled to run on streaming multiprocessors (SMs)

▪ In each thread block, threads are grouped into warps (32 threads)

▪ Threads within a warp threads can communicate faster

▪ Warps within a thread block can communicate by reading from / writing to shared memory

▪ Each kernel loads inputs from HBM to registers and SRAM, computes, then writes outputs to
HBM.

Siebel School of Computing and Data Science 4

Background – Standard Attention Implementation

The Softmax is applied row-wise.

Standard attention implementation

1. Calls GEMM (Matrix-Multiply) to compute S

2. Writes results to HBM

3. Load from HBM to compute the Softmax

4. Rewrite P to HBM

5. Calls GEMM to compute O

This frequent memory access cause s slow execution and requires O(N2) since S and P are materialize

P has to be saved for backward pass to compute the gradients

Siebel School of Computing and Data Science 5

Background – Flash Attention or FA1

▪ Forward Pass: Utilize a classical technique of tiling to reduce memory IOs, by:

1. loading blocks of inputs from HBM to SRAM

2. computing attention for that block, then

3. updating the output without writing the large intermediate matrices S and P to HBM

▪ Using online Softmax to split the attention computation into blocks, rescale the output of each block
to get non-approximate results.

▪ Reduces the number of memory’s reads/writes

▪ FlashAttention yields 2-4× wall-clock speedup over-optimized baseline attention implementations.

Siebel School of Computing and Data Science 6

Background – Standard Softmax

▪ Considering two blocks in S

Siebel School of Computing and Data Science 7

-m for stabilization

Background – FA1

Online softmax instead computes “local” softmax with respect to each block and rescale to get the right

output at the end

Siebel School of Computing and Data Science 8

(1) Reduce Non-Matmul FLOPs Operations in FA2

Siebel School of Computing and Data Science 9

(2) Parallelizing Attention Computation

▪ FA1 parallelizes over batch size (B) and the number
of heads >> running many threads blocks together

▪ Each thread runs on a single streaming
multiprocessor (SM) e.g., A100 has 108 SMs

▪ Unfortunately, with long sequence s, we cannot
afford large batch size s or large number s of heads

▪ This leads to many idle SMs

▪ FA2 parallelizes additionally over sequence length,
so supports three parallelization

Siebel School of Computing and Data Science 10

(2) Parallelizing Attention Computation

▪ FA1 works in two loops

▪ First over the j-th(k, v) blocks, and the second runs over the
i-th Q

▪ They compute in SRAM (fast and small), and update Oi, Ii
and mi in HBM (large and slow)

▪ In FA2 It swaps the order of the loop

▪ Placing Qi outside >> the loop goes through different blocks
of the Q matrix

▪ Inner operates on K and V

▪ Swapping the order offers sequence length parallelization
as the # Q == to the length of the sequence

▪ In autoregressive attention >> set the upper triangle to
infinity and leave them uncomputed

Siebel School of Computing and Data Science 11

(3) Work Partitioning between Warps

▪ Typically use 4 or 8 warps per
thread block

▪ Every warps contains 32 threads

▪ In FA1 “Split-K” technique:

▪ K and V are split across 4
warps, while Q is kept
accessible by all warps

▪ Each warp multiplies to get
a slice of QKT

▪ Then multiply with a slice of
V

Siebel School of Computing and Data Science 12

(3) Work Partitioning between Warps

▪ In FA2:
▪ we split Q across 4 warps
▪ While keeping K and V

accessible by all warps
▪ After each warp computes a

slice of QKT, they only need to
multiply with their shared slice
of V, to get their corresponding
slice of the output O

▪ No need to communicate
between warps

▪ Reduction in shared memory’s
reads/writes >> speedup

▪ The same applies to backward pass

Siebel School of Computing and Data Science 13

Results

▪ A100

▪ Different Head
Dimension [64,
128]

▪ W/O Causal mask

Siebel School of Computing and Data Science 14

Results

▪ Forward Speed on
A100

▪ Different Head
Dimension [64,
128]

▪ W/O Causal mask

Siebel School of Computing and Data Science 15

Results

▪ Backward Speed on
A100

▪ Different Head
Dimension [64, 128]

▪ W/O Causal mask

Siebel School of Computing and Data Science 16

Results – Training Speed

Siebel School of Computing and Data Science 17

H100 GPU

▪ Different Head
Dimension [64,
128]

▪ W/O Causal mask

Siebel School of Computing and Data Science 18

19

Thank you

	Slide 1: FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
	Slide 2: Motivation
	Slide 3: Previous Work
	Slide 4: Background – Hardware Characteristics
	Slide 5: Background – Standard Attention Implementation
	Slide 6: Background – Flash Attention or FA1
	Slide 7: Background – Standard Softmax
	Slide 8: Background – FA1
	Slide 9: (1) Reduce Non-Matmul FLOPs Operations in FA2
	Slide 10: (2) Parallelizing Attention Computation
	Slide 11: (2) Parallelizing Attention Computation
	Slide 12: (3) Work Partitioning between Warps
	Slide 13: (3) Work Partitioning between Warps
	Slide 14: Results
	Slide 15: Results
	Slide 16: Results
	Slide 17: Results – Training Speed
	Slide 18: H100 GPU
	Slide 19

