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Deploying LLMs directly on edge devices is useful
e No costs from centralized cloud infrastructure
e No latency of sending data to cloud server
e Improved data security and privacy
e C(Constraints
o Lessresources
o Low power devices
o May not always have access to the internet



Deploying LLMs directly on edge devices is useful
e No costs from centralized cloud infrastructure
e No latency of sending data to cloud server
e Improved data security and privacy
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But it is a hard problem to solve
- Large model sizes
- High LLM serving costs



General Quantization Methods
e Quantization-aware Training (QAT)
o Uses backprop to update quantized weights, does not scale well for LLMs
e Post-Training Quantization (PTQ)
o Training free

Quantizing LLMs
e WB8AS - quantize both activations and weights to INT8
o SmoothQuant
e WA4A16 - only weights are quantized to 4-bits
o RTN - round to nearest
o GPTQ



RTN
o Vanilla baseline
o Directly round each weight to the nearest value in the 4-bit scale
GPTQ
o Greedy, layer-by-layer quantization approach
o For each layer, it minimizes the error in the output of that layer
o Iteratively quantizes weights while trying to preserve the layer's original behavior
o Uses Hessian-based information to determine quantization order



e RTN
o Significant quantization error
e GPTQ
o Quantizes weights in a specific order (greedy approach)
o For some models the standard order does not work well (reordering required)
o Uses a calibration dataset to optimize its quantization
o When minimizing error on this dataset, it may overfit to those specific examples



e Low-bit weight quantization can reduce LLM inference costs
e Map a higher-precision floating point number into a lower-precision float or int
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LLMs on the edge are memory-bound: W8AS8 quantization is not enough



KEY OBSERVATIONS

Context

e The weights of LLMs are not equally important

e Some salient weights contribute more to performance
If we intentionally do not quantize them, we can improve performance
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Context

The weights of LLMs are not equally important
Some salient weights contribute more to performance

o If we intentionally do not quantize them, we can improve performance

But how to know which weights are important?

Common approach - look at L2 norm
Selecting weights based on magnitude of activations

determine the salient
weights by activation. ...~
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KEY OBSERVATIONS

New problem
e Using a mixed-precision weight datatype makes a system implementation on the

edge difficult
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e GPTQ optimizes over a calibration set to change the weights slightly for optimal
performance
o Itis easy for models to overfit to this calibration set
e AWAQ uses the calibration set only to identify which weights are important for
activations
o Doesn't directly optimize weights to match outputs on this data
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# calibration sequences (%2048 tokens)
(a) Our method needs a smaller calibration set

(b) Our method is more robust to calibration set distribution




Define the quantization function as:

w
Ow)=A"- round(X), A=

max(|w|)

IN-1

N = quantization bits, w = weight, A = quantization scalar




Define the quantization function as:

max(|w|)
IN-1

w
Ow)=A"- round(X), A=

N = quantization bits, w = weight, A = quantization scalar
Try scaling the weight by a factor of s. To keep the result the same, we need to scale
down the activations by the same factor. Then wx will look like:

fuse to previous op
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max(|w]|)
IN-1

w
O(w)=A"- round(X), A =

Quantization scaler, Absmax within the group
's
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Now round() has a fixed expected value (0.25) as it is bounded between 0 and 0.5
The A values do not change, since usually scaling a single channel does not change

the global absolute maximum weight
= As a result, effective quantization error is reduced by a factor of s




OPT-6.7B s=1s8=125s8s=15s=2 s=4

max(|w|) proportionof A" # A 0%  2.8%  44% 82% 21.2%
= IN-1 averageA’/A 1 1.005 1.013 1.038 1.213
average & - 1 1 0804 0676 0.519 0.303

Wiki-2 PPL 23.54 12.87 1248 11.92 12.36

e Reduction in quantization error relies on the assumption that A will stay the same
e When does this not happen?
o Higher scale values change A more, because there is a higher chance that the
absolute global maximum weight will change
o Changing the value of A too much increases the error for other (non-salient)
channels
o = So we need to choose the scale carefully to achieve optimal perplexity



e Which scale values to use? Optimize the quantization error as a function of s:

s* = arg min L(s)

L(s) = |Q(W - diag(s))(diag(s) " - X) — WX]|

e Here s represents a list of scaling factors for each channel
e Define a search space to make solving this easier:

s =sx“, a" =argmin/L(sx)

o

s, = avg magnitude of activation (per channel), & = hyperparameter between [0, 1]



AWQ: PRACTICAL IMPLICATIONS

e (a) The generation stage is much slower than the context stage (e.g. generating
tokens vs summarization)
e (b) This generation stage for standard FP16 LLMs is memory-bound
o  Why? Empirically, ratio of FLOPs : memory access is ~ 1 whereas peak GPU
throughput is 165 TFLOPs
e (c) For memory accesses, weight memory >>> activation memory
e AWQ reduces the weight memory by 4x (16 bit -> 4 bit)
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(a) Generation stage is slower  (b) Generation stage is bounded by memory bandwidth ~ (c) Weight loading is more expensive
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Bottleneck analysis for Llama-2-7B on NVIDIA RTX 4090



TINYCHAT FOR ON-DEVICE LLMS

e 4-bit weight quantization can lead to 4x speedup in performance (theoretically)
e But there are practical considerations involved as well
e TinyChat - a system for LLM Inference using AWQ

o Over 3x speedup compared to standard HuggingFace FP16 implementation

Efficiency
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TINYCHAT FOR ON-DEVICE LLMS

e Methods like SmoothQuant (W8A8) have the same data precision for storage and
computation, which lets kernels be simple

e For methods like AWQ (W4A16), dequantization must be added to the GPU kernels for
optimal performance, which poses implementation challenges

e On-the-fly weight dequantization:
o Need to dequantize INT4 to FP16 before performing matrix multiplication.
o Fuse kernels for dequantization and matrix multiplication together.



TINYCHAT FOR ON-DEVICE LLMS

e SIMD-Aware Weight packing:
o Dequantizing a single 4-bit weight still involves 1 shift, 1 bitwise AND, and 1
FMA scaling operation
o Change the bit-packing so that all the weights can be dequantized using only 3
SIMD instructions

e ool Mask = 0xOF ... OF (128-bit mask) Wiow =Py & Mask

Original
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TINYCHAT FOR ON-DEVICE LLMS

e Kernel fusion:
o Reducing the number of kernel calls reduces DRAM accesses, speeding up compute
o Fuse all operators (e.g. multiplication, division, square root) into a single kernel.
o Attention layers:
m Fuse QKV projections into a single kernel
m Perform on-the-fly positional embedding calculation.
m Preallocate KV caches and perform cache updates within the attention kernel.
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EVALUATION

e Benchmarking done on:

o LLaMa and OPT family of LLM models

o Vicuna (instruction-tuned model)

o OpenFlamingo-9B, LLaVA-13B (visual models)
e Dataset/Evaluation

o LM tasks from WikiText2, metric - perplexity

e Baselines
o Round-to-Nearest (RTN)
o GPTQ

o Disregard baselines that use backprop/regression to make quantized weights
more accurate



EVALUATION
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Instruction-tuned models

Wikitext2 PPL| Mixtral-8x7B  Mistral-7B
FP16 5.94 4.14

INT4-g128 6.05 430
INT3-g128 6.52 4.83

Mistral perplexity scores
No comparison provided

MBPP (7B) pass@1 pass@10 GSMSK 7B 13B  70B

FP16 38.53 49.77 FP16 13.87 26.16 56.41

RTN 37.51 48.49 RIN 11.07 21.23 53.98

GPTQ 31.97 4475 GPTQ 12.13 24.26 56.03

AWQ 40.64 49.25 AWQ  13.57 25.25 56.40

Programming and math tasks



EVALUATION

COCO (CIDEr 1) 16-shot 32-shot A(32-shot)
FP16 - 79.74 81.70 -

INT4 RTN 74.09 77.13 -4.57
128 GPTQ 74.98 74.98 -6.72

AWQ 78.23 80.53 -1.17

INT3 RTN 63.21 64.79 -16.91
128 GPTQ 60.54 64.77 -16.93
AWQ 72.86 74.47 -7.23

Perplexity results on visual language models

OPT (Wiki PPL]}) 13B 27B 6.7B 13B 30B
FP16 14.62 1247 10.86 10.13 9.56

RTN 10476 193210 7622 17564 8170
GPTQ 46.67 28.15 16.65 16.74 11.75

AWQ +GPTQ 35.71 2570 15.71 13.25 11.38

Extreme low-bit (INT2) quantization



EVALUATION

e Over 3x faster than HuggingFace FP16 implementation
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EVALUATION

e Faster than other LLM inference systems
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EVALUATION

Sometimes | just look at pictures of
the earth from space and | marvel at
how beautiful it all is.

Question: Can you explain this meme in detail?

INT4-g128 RTN: The meme in the image features a plate of food, likely fried chicken, with a unique twist. There
are small pictures of the Earth and other planets placed on top of the food, creating an interesting and amusing
visual. Alongside the plate, a caption reads, "Sometimes I look at pictures of the Earth from space and I marvel at
how beautiful it all is." This combination of food and planet images adds a touch of humor and curiosity, making
the viewer wonder about the context and intent behind the meme.

INT4-g128 AWQ: The meme in the image is a lighthearted and humorous take on the concept of looking at
pictures of the Earth from space. A plate of fried food, specifically chicken nuggets, is presented with the caption,
"Sometimes I look at pictures of the Earth from space and I marvel at how beautiful it all is." The playful
combination of a food item and an Earth-related context creates a fun and entertaining visual.

W4-RTN: A model | ‘ W4-RTN: A man is : W4-RTN: A man

airplane flying in ! holding a baby elephant and a dog walking
the sky. e in his arms. ’ past some bushes.
W4-AWQ: Two toy R W4-AWQ: A man and & i ——— W4-AWQ: Two
airplanes sit on a his daughter pose with dogs are walking

grass field. y> Il an elephant. : £ ~ on the street.




IMPACT

e AWQ models downloaded over 1 million times on HuggingFace
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IMPACT

e Can be used for LLM deployment on small edge devices (NVIDIA Jetson Orin Nano)
e / GB memory
e /B parameters




STRENGTHS, WEAKNESSES, THOUGHTS

e MLSys 2024 Best Paper Award
e Ideais simple and practical, used extensively by real users
e Comprehensive evaluation



STRENGTHS, WEAKNESSES, THOUGHTS

e MLSys 2024 Best Paper Award
Idea is very simple and practical, used extensively by real users
e Comprehensive evaluation

e Only 2 main baselines (one is vanilla rounding), but the field is newer so it makes sense
e The need to compare across different GPU sizes is unclear since the framework should still
work the same either way



STRENGTHS, WEAKNESSES, THOUGHTS

e Positioning the paper as ‘Quantization for Edge Devices' may be a stretch
o  Original version on arxiv only had the quantization framework
o Other low-bit quantized models already existed, which could technically also be deployed on
edge devices (just with lower performance)
o Kernel-level optimizations are not specific to edge devices, required for practical use

e Future ideas:
o Support both activation and weight quantization in a low-bit setting
o  Further reduce dependency on calibration set
o Adapt quantization methods depending on the model architecture (transformer, CNN, etc)



£

Questions
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e Github: https://github.com/mit-han-lab/lim-awg

e Official Slides:
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e Paper: https://arxiv.org/pdf/2306.00978

e Video: https://www.youtube.com/watch?v=3dYLj9vjfA0
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