# AWQ: Activation-Aware Weight Quantization for on-device LLM Compression and Acceleration

**MLSys 2024** 

Presenter: Raunak Shah CS598 Fall 2024

## BACKGROUND

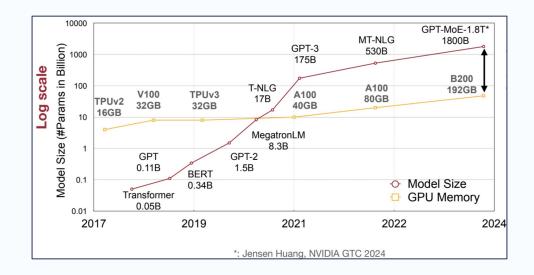
#### Deploying LLMs directly on edge devices is useful

- No costs from centralized cloud infrastructure
- No latency of sending data to cloud server
- Improved data security and privacy
- Constraints
  - Less resources
  - $\circ$  Low power devices
  - May not always have access to the internet

## BACKGROUND

#### Deploying LLMs directly on edge devices is useful

- No costs from centralized cloud infrastructure
- No latency of sending data to cloud server
- Improved data security and privacy



#### But it is a hard problem to solve

- Large model sizes
- High LLM serving costs

## **RELATED WORK**

#### **General Quantization Methods**

- Quantization-aware Training (QAT)
  - Uses backprop to update quantized weights, does not scale well for LLMs
- Post-Training Quantization (PTQ)
  - $\circ \quad \text{Training free} \\$

#### Quantizing LLMs

- W8A8 quantize both activations and weights to INT8
  - SmoothQuant
- W4A16 only weights are quantized to 4-bits
  - $\circ$   $\,$  RTN round to nearest
  - GPTQ

## RELATED WORK

#### • RTN

- Vanilla baseline
- Directly round each weight to the nearest value in the 4-bit scale

#### • GPTQ

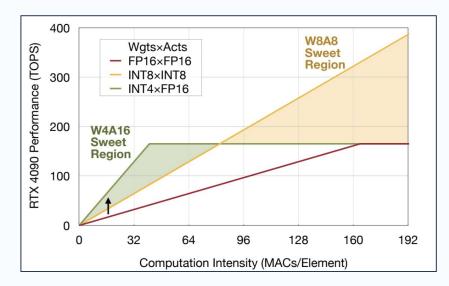
- Greedy, layer-by-layer quantization approach
- $\circ$   $\ \ \,$  For each layer, it minimizes the error in the output of that layer
- Iteratively quantizes weights while trying to preserve the layer's original behavior
- Uses Hessian-based information to determine quantization order

## **RELATED WORK**

- RTN
  - Significant quantization error
- GPTQ
  - Quantizes weights in a specific order (greedy approach)
  - For some models the standard order does not work well (reordering required)
  - Uses a calibration dataset to optimize its quantization
  - When minimizing error on this dataset, it may overfit to those specific examples

## QUANTIZATION

- Low-bit weight quantization can reduce LLM inference costs
- Map a higher-precision floating point number into a lower-precision float or int

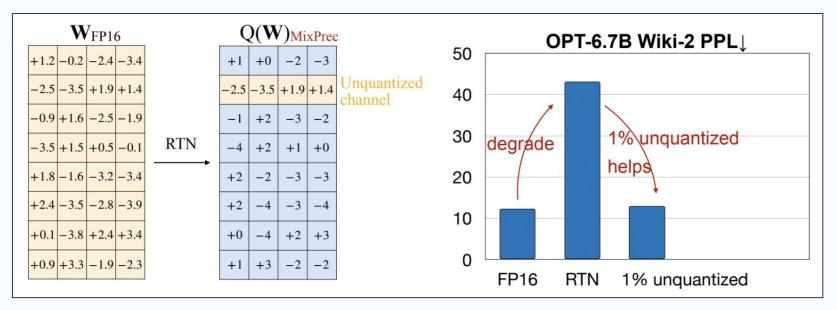


LLMs on the edge are memory-bound: W8A8 quantization is not enough

## **KEY OBSERVATIONS**

#### Context

- The weights of LLMs are not equally important
- Some salient weights contribute more to performance
  - $\circ$  If we intentionally do not quantize them, we can improve performance



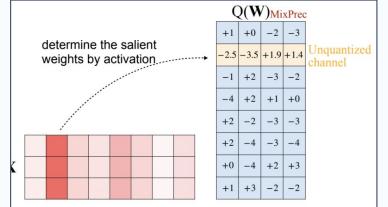
## **KEY OBSERVATIONS**

#### Context

- The weights of LLMs are not equally important
- Some salient weights contribute more to performance
  - If we intentionally do not quantize them, we can improve performance

#### But how to know which weights are important?

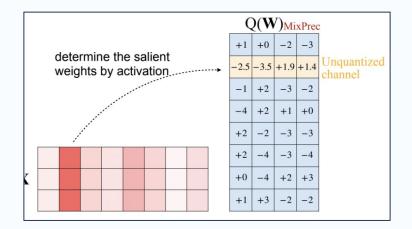
- Common approach look at L2 norm
- Selecting weights based on magnitude of activations



## **KEY OBSERVATIONS**

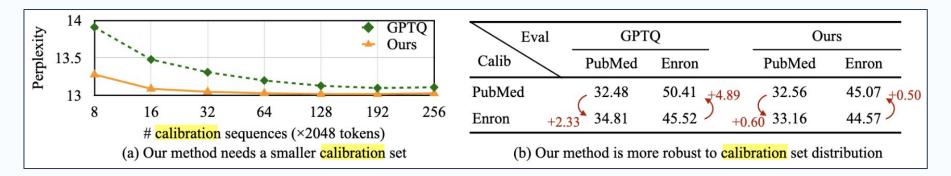
#### New problem

• Using a mixed-precision weight datatype makes a system implementation on the edge difficult



## AWQ: CALIBRATION SET

- GPTQ optimizes over a calibration set to change the weights slightly for optimal performance
  - It is easy for models to overfit to this calibration set
- AWQ uses the calibration set only to identify which weights are important for activations
  - Doesn't directly optimize weights to match outputs on this data



#### AWQ: HOW TO AVOID MIXED PRECISION?

• Define the quantization function as:

$$Q(\mathbf{w}) = \Delta \cdot \operatorname{round}(\frac{\mathbf{w}}{\Delta}), \Delta = \frac{\max(|\mathbf{w}|)}{2^{N-1}}.$$

• N = quantization bits, w = weight,  $\Delta$  = quantization scalar

• Define the quantization function as:

$$Q(\mathbf{w}) = \Delta \cdot \operatorname{round}(\frac{\mathbf{w}}{\Delta}), \Delta = \frac{\max(|\mathbf{w}|)}{2^{N-1}}.$$

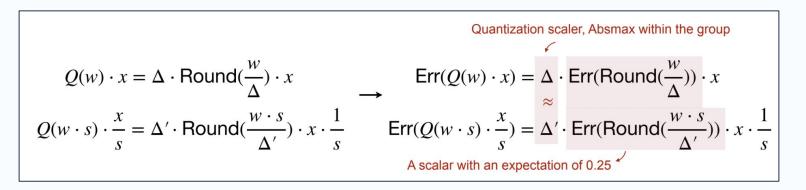
- N = quantization bits, w = weight,  $\Delta$  = quantization scalar
- Try scaling the weight by a factor of s. To keep the result the same, we need to scale down the activations by the same factor. Then wx will look like:

Quantize 
$$fuse to previous op$$
  
 $\mathbf{W} \mathbf{X} \longrightarrow Q(\mathbf{W} \cdot \mathbf{s})(\mathbf{s}^{-1} \cdot \mathbf{X})$ 

• Or equivalently:

$$Q(w \cdot s) \cdot rac{x}{s} = \Delta^{'} \cdot \operatorname{Round}(rac{ws}{\Delta^{'}}) \cdot x \cdot rac{1}{s},$$

$$Q(\mathbf{w}) = \Delta \cdot \operatorname{round}(\frac{\mathbf{w}}{\Delta}), \Delta = \frac{\max(|\mathbf{w}|)}{2^{N-1}}.$$



- Now round() has a fixed expected value (0.25) as it is bounded between 0 and 0.5
- The ∆ values do not change, since **usually** scaling a single channel does not change the global absolute maximum weight
- $\Rightarrow$  As a result, effective quantization error is **reduced by a factor of s**

| ٨ |   | $max( \mathbf{w} )$ |
|---|---|---------------------|
| Δ | - | $2^{N-1}$           |

| <b>OPT-6.7B</b>                                    | s = 1 | s = 1.25 | s = 1.5 | s=2   | s=4   |
|----------------------------------------------------|-------|----------|---------|-------|-------|
| proportion of $\Delta^{'} \neq \Delta$             | 0%    | 2.8%     | 4.4%    | 8.2%  | 21.2% |
| average $\Delta^{'}/\Delta$                        | 1     | 1.005    | 1.013   | 1.038 | 1.213 |
| average $\frac{\Delta'}{\Delta} \cdot \frac{1}{s}$ | 1     | 0.804    | 0.676   | 0.519 | 0.303 |
| Wiki-2 PPL                                         | 23.54 | 12.87    | 12.48   | 11.92 | 12.36 |

- Reduction in quantization error relies on the assumption that  $\Delta$  will stay the same
- When does this not happen?
  - $\circ$  Higher scale values change  $\Delta$  more, because there is a higher chance that the absolute global maximum weight will change
  - $\circ$  Changing the value of  $\Delta$  too much increases the error for other (non-salient) channels
  - $\circ \Rightarrow$  So we need to choose the scale carefully to achieve optimal perplexity

• Which scale values to use? Optimize the quantization error as a function of s:

$$\mathbf{s}^* = \operatorname*{arg\,min}_{\mathbf{s}} \mathcal{L}(\mathbf{s})$$
  
 $\mathcal{L}(\mathbf{s}) = \|Q(\mathbf{W} \cdot \operatorname{diag}(\mathbf{s}))(\operatorname{diag}(\mathbf{s})^{-1} \cdot \mathbf{X}) - \mathbf{W}\mathbf{X}\|$ 

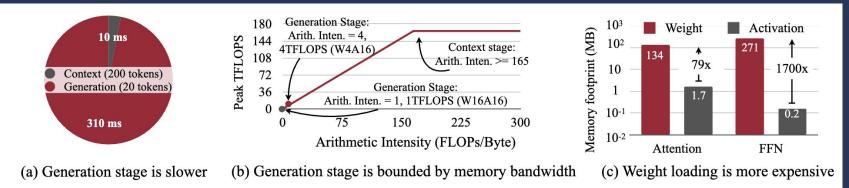
- Here **s** represents a list of scaling factors for each channel
- Define a search space to make solving this easier:

$$\mathbf{s} = \mathbf{s}_{\mathbf{X}}^{\alpha}, \quad \alpha^* = \operatorname*{arg\,min}_{\alpha} \mathcal{L}(\mathbf{s}_{\mathbf{X}}^{\alpha})$$

 $s_x$  = avg magnitude of activation (per channel),  $\alpha$  = hyperparameter between [0, 1]

## AWQ: PRACTICAL IMPLICATIONS

- (a) The **generation stage** is much slower than the context stage (e.g. generating tokens vs summarization)
- (b) This generation stage for standard FP16 LLMs is memory-bound
  - Why? Empirically, ratio of FLOPs : memory access is ~ 1 whereas peak GPU throughput is 165 TFLOPs
- (c) For memory accesses, weight memory >>> activation memory
- AWQ reduces the weight memory by 4x (16 bit -> 4 bit)



Bottleneck analysis for Llama-2-7B on NVIDIA RTX 4090

- 4-bit weight quantization can lead to 4x speedup in performance (theoretically)
- But there are practical considerations involved as well
- TinyChat a system for LLM Inference using AWQ
  - Over 3x speedup compared to standard HuggingFace FP16 implementation



- Methods like SmoothQuant (W8A8) have the same data precision for storage and computation, which lets kernels be simple
- For methods like AWQ (W4A16), dequantization must be added to the GPU kernels for optimal performance, which poses implementation challenges
- On-the-fly weight dequantization:
  - Need to dequantize INT4 to FP16 before performing matrix multiplication.
  - Fuse kernels for dequantization and matrix multiplication together.

#### SIMD-Aware Weight packing: $\bullet$

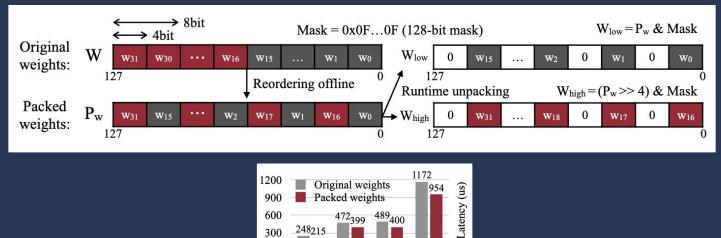
Dequantizing a single 4-bit weight still involves 1 shift, 1 bitwise AND, and 1 0 FMA scaling operation

600

300

248215

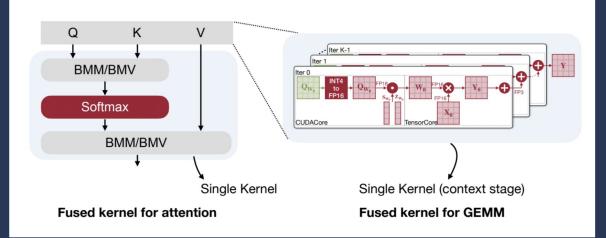
Change the bit-packing so that **all** the weights can be dequantized using only 3 Ο SIMD instructions



472399 489400

(4k,4k) (11k,4k) (4k,11k) (4k,32k)

- Kernel fusion:
  - Reducing the number of kernel calls reduces DRAM accesses, speeding up compute
  - Fuse all operators (e.g. multiplication, division, square root) into a single kernel.
  - Attention layers:
    - Fuse QKV projections into a single kernel
    - Perform on-the-fly positional embedding calculation.
    - Preallocate KV caches and perform cache updates within the attention kernel.



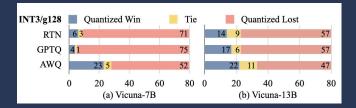
- Benchmarking done on:
  - LLaMa and OPT family of LLM models
  - Vicuna (instruction-tuned model)
  - OpenFlamingo-9B, LLaVA-13B (visual models)
- Dataset/Evaluation
  - LM tasks from WikiText2, metric perplexity
- Baselines
  - Round-to-Nearest (RTN)
  - $\circ$  GPTQ
  - Disregard baselines that use backprop/regression to make quantized weights more accurate

| PPL↓         |                              |                                     | Llama-2                             |                                     |                                     | LLaMA                               |                                     |                                     |  |
|--------------|------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|
|              |                              | 7B                                  | 13 <b>B</b>                         | 70B                                 | 7B                                  | 13 <b>B</b>                         | 30B                                 | 65B                                 |  |
| FP16         | -                            | 5.47                                | 4.88                                | 3.32                                | 5.68                                | 5.09                                | 4.10                                | 3.53                                |  |
| INT3<br>g128 | RTN<br>GPTQ<br>GPTQ-R<br>AWQ | 6.66<br>6.43<br>6.42<br><b>6.24</b> | 5.52<br>5.48<br>5.41<br><b>5.32</b> | 3.98<br>3.88<br>3.86<br><b>3.74</b> | 7.01<br>8.81<br>6.53<br><b>6.35</b> | 5.88<br>5.66<br>5.64<br><b>5.52</b> | 4.88<br>4.88<br>4.74<br><b>4.61</b> | 4.24<br>4.17<br>4.21<br><b>3.95</b> |  |
| INT4<br>g128 | RTN<br>GPTQ<br>GPTQ-R<br>AWQ | 5.73<br>5.69<br>5.63<br><b>5.60</b> | 4.98<br>4.98<br>4.99<br><b>4.97</b> | 3.46<br>3.42<br>3.43<br><b>3.41</b> | 5.96<br>6.22<br>5.83<br><b>5.78</b> | 5.25<br>5.23<br>5.20<br><b>5.19</b> | 4.23<br>4.24<br>4.22<br><b>4.21</b> | 3.67<br>3.66<br>3.66<br><b>3.62</b> |  |

| Wikitext2 PPL $\downarrow$ | Mixtral-8x7B | Mistral-7B |
|----------------------------|--------------|------------|
| FP16                       | 5.94         | 4.14       |
| INT4-g128                  | 6.05         | 4.30       |
| INT3-g128                  | 6.52         | 4.83       |

Mistral perplexity scores No comparison provided

#### Comparison with other models on LLaMa



Instruction-tuned models

| MBPP (7B) | pass@1 | pass@10 | GSM8K | 7B    | 13 <b>B</b> | 70B   |
|-----------|--------|---------|-------|-------|-------------|-------|
| FP16      | 38.53  | 49.77   | FP16  | 13.87 | 26.16       | 56.41 |
| RTN       | 37.51  | 48.49   | RTN   | 11.07 | 21.23       | 53.98 |
| GPTQ      | 31.97  | 44.75   | GPTQ  | 12.13 | 24.26       | 56.03 |
| AWQ       | 40.64  | 49.25   | AWQ   | 13.57 | 25.25       | 56.40 |

#### Programming and math tasks

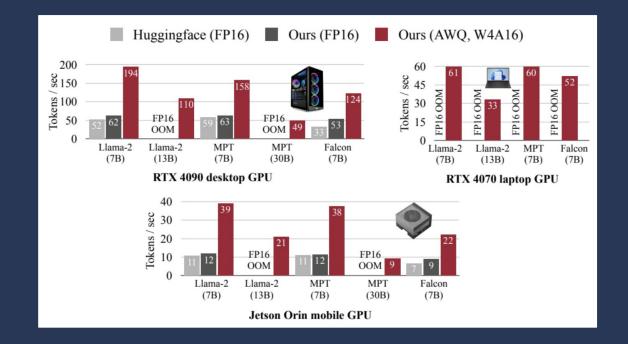
| COCO         | (CIDEr ↑)          | 0-shot                         | 4-shot                         | 8-shot                         | 16-shot                        | 32-shot                        | $\Delta$ (32-shot)               |
|--------------|--------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|
| FP16         | -                  | 63.73                          | 72.18                          | 76.95                          | 79.74                          | 81.70                          | -                                |
| INT4<br>g128 | RTN<br>GPTQ<br>AWQ | 60.24<br>59.72<br><b>62.57</b> | 68.07<br>67.68<br><b>71.02</b> | 72.46<br>72.53<br><b>74.75</b> | 74.09<br>74.98<br><b>78.23</b> | 77.13<br>74.98<br><b>80.53</b> | -4.57<br>-6.72<br><b>-1.17</b>   |
| INT3<br>g128 | RTN<br>GPTQ<br>AWQ | 46.07<br>29.84<br><b>56.33</b> | 55.13<br>50.77<br><b>64.73</b> | 60.46<br>56.55<br><b>68.79</b> | 63.21<br>60.54<br><b>72.86</b> | 64.79<br>64.77<br><b>74.47</b> | -16.91<br>-16.93<br><b>-7.23</b> |

#### Perplexity results on visual language models

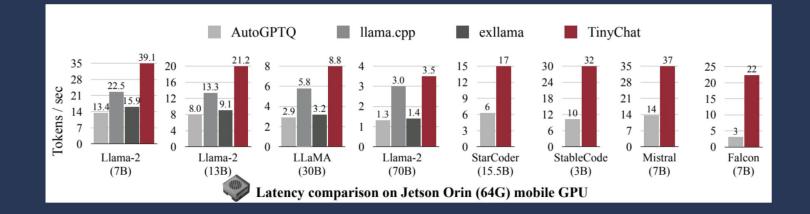
| OPT (Wiki PPL↓) | 1.3B  | 2.7B   | 6.7B  | 13B   | 30B   |
|-----------------|-------|--------|-------|-------|-------|
| FP16            | 14.62 | 12.47  | 10.86 | 10.13 | 9.56  |
| RTN             | 10476 | 193210 | 7622  | 17564 | 8170  |
| GPTQ            | 46.67 | 28.15  | 16.65 | 16.74 | 11.75 |
| AWQ +GPTQ       | 35.71 | 25.70  | 15.71 | 13.25 | 11.38 |

Extreme low-bit (INT2) quantization

• Over 3x faster than HuggingFace FP16 implementation



• Faster than other LLM inference systems



Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.



Question: Can you explain this meme in detail?

**INT4-g128 RTN**: The meme in the image features a plate of food, likely fried chicken, with a unique twist. There are small pictures of the Earth and other planets placed on top of the food, creating an interesting and amusing visual. Alongside the plate, a caption reads, "Sometimes I look at pictures of the Earth from space and I marvel at how beautiful it all is." This combination of food and planet images adds a touch of humor and curiosity, making the viewer wonder about the context and intent behind the meme.

**INT4-g128 AWO**: The meme in the image is a lighthearted and humorous take on the concept of looking at pictures of the Earth from space. A plate of fried food, specifically chicken nuggets, is presented with the caption, "Sometimes I look at pictures of the Earth from space and I marvel at how beautiful it all is." The playful combination of a food item and an Earth-related context creates a fun and entertaining visual.



**W4-RTN**: A model airplane flying in the sky.

W4-AWQ: Two toy airplanes sit on a grass field.



**W4-RTN**: A man is holding a baby elephant in his arms.

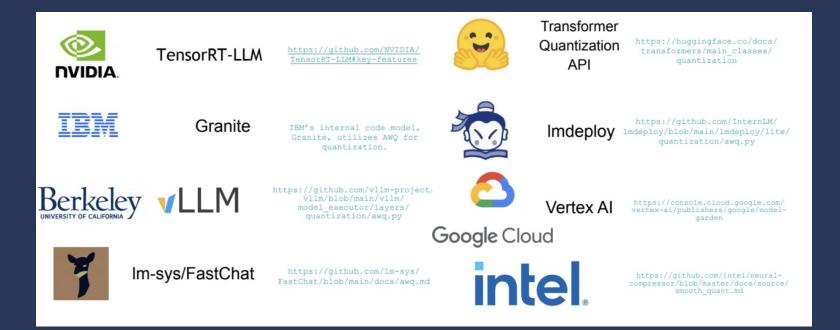
**W4-AWQ**: A man and his daughter pose with an elephant.



W4-RTN: A man and a dog walking past some bushes. W4-AWQ: Two dogs are walking on the street.



#### • AWQ models downloaded over 1 million times on HuggingFace



#### IMPACT

- Can be used for LLM deployment on small edge devices (NVIDIA Jetson Orin Nano)
- 7 GB memory
- 7B parameters





## STRENGTHS, WEAKNESSES, THOUGHTS

- MLSys 2024 Best Paper Award
- Idea is simple and practical, used extensively by real users
- Comprehensive evaluation

## STRENGTHS, WEAKNESSES, THOUGHTS

- MLSys 2024 Best Paper Award
- Idea is very simple and practical, used extensively by real users
- Comprehensive evaluation
- Only 2 main baselines (one is vanilla rounding), but the field is newer so it makes sense
- The need to compare across different GPU sizes is unclear since the framework should still work the same either way

## STRENGTHS, WEAKNESSES, THOUGHTS

- Positioning the paper as 'Quantization for Edge Devices' may be a stretch
  - Original version on arxiv only had the quantization framework
  - Other low-bit quantized models already existed, which could technically also be deployed on edge devices (just with lower performance)
  - Kernel-level optimizations are not specific to edge devices, required for practical use
- Future ideas:
  - Support both activation and weight quantization in a low-bit setting
  - Further reduce dependency on calibration set
  - Adapt quantization methods depending on the model architecture (transformer, CNN, etc)

#### Questions?

#### REFERENCES

- Github: <u>https://github.com/mit-han-lab/llm-awq</u>
- Official Slides: <u>https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rlkey=ffg</u> <u>h50hxhx8dmsnjiu8kef0ou&dl=0</u>
- Paper: <a href="https://arxiv.org/pdf/2306.00978">https://arxiv.org/pdf/2306.00978</a>
- Video: <u>https://www.youtube.com/watch?v=3dYLj9vjfA0</u>