
AWQ: Activation-Aware Weight Quantization for
on-device LLM Compression and Acceleration

Presenter: Raunak Shah
CS598 Fall 2024

MLSys 2024

BACKGROUND

Deploying LLMs directly on edge devices is useful
● No costs from centralized cloud infrastructure
● No latency of sending data to cloud server
● Improved data security and privacy
● Constraints

○ Less resources
○ Low power devices
○ May not always have access to the internet

BACKGROUND

Deploying LLMs directly on edge devices is useful
● No costs from centralized cloud infrastructure
● No latency of sending data to cloud server
● Improved data security and privacy

But it is a hard problem to solve
- Large model sizes
- High LLM serving costs

RELATED WORK
General Quantization Methods
● Quantization-aware Training (QAT)

○ Uses backprop to update quantized weights, does not scale well for LLMs
● Post-Training Quantization (PTQ)

○ Training free

Quantizing LLMs
● W8A8 - quantize both activations and weights to INT8

○ SmoothQuant
● W4A16 - only weights are quantized to 4-bits

○ RTN - round to nearest
○ GPTQ

RELATED WORK

● RTN
○ Vanilla baseline
○ Directly round each weight to the nearest value in the 4-bit scale

● GPTQ
○ Greedy, layer-by-layer quantization approach
○ For each layer, it minimizes the error in the output of that layer
○ Iteratively quantizes weights while trying to preserve the layer's original behavior
○ Uses Hessian-based information to determine quantization order

RELATED WORK

● RTN
○ Significant quantization error

● GPTQ
○ Quantizes weights in a specific order (greedy approach)
○ For some models the standard order does not work well (reordering required)
○ Uses a calibration dataset to optimize its quantization
○ When minimizing error on this dataset, it may overfit to those specific examples

QUANTIZATION

● Low-bit weight quantization can reduce LLM inference costs
● Map a higher-precision floating point number into a lower-precision float or int

LLMs on the edge are memory-bound: W8A8 quantization is not enough

KEY OBSERVATIONS

Context
● The weights of LLMs are not equally important
● Some salient weights contribute more to performance

○ If we intentionally do not quantize them, we can improve performance

KEY OBSERVATIONS

Context
● The weights of LLMs are not equally important
● Some salient weights contribute more to performance

○ If we intentionally do not quantize them, we can improve performance

But how to know which weights are important?
● Common approach - look at L2 norm
● Selecting weights based on magnitude of activations

KEY OBSERVATIONS

New problem
● Using a mixed-precision weight datatype makes a system implementation on the

edge difficult

AWQ: CALIBRATION SET

● GPTQ optimizes over a calibration set to change the weights slightly for optimal
performance
○ It is easy for models to overfit to this calibration set

● AWQ uses the calibration set only to identify which weights are important for
activations
○ Doesn't directly optimize weights to match outputs on this data

AWQ: HOW TO AVOID MIXED PRECISION?

● Define the quantization function as:

● N = quantization bits, w = weight, Δ = quantization scalar

AWQ: PER-CHANNEL SCALING

● Define the quantization function as:

● N = quantization bits, w = weight, Δ = quantization scalar
● Try scaling the weight by a factor of s. To keep the result the same, we need to scale

down the activations by the same factor. Then wx will look like:

● Or equivalently:

AWQ: PER-CHANNEL SCALING

● Now round() has a fixed expected value (0.25) as it is bounded between 0 and 0.5
● The Δ values do not change, since usually scaling a single channel does not change

the global absolute maximum weight
● ⇒ As a result, effective quantization error is reduced by a factor of s

AWQ: PER-CHANNEL SCALING

● Reduction in quantization error relies on the assumption that Δ will stay the same
● When does this not happen?

○ Higher scale values change Δ more, because there is a higher chance that the
absolute global maximum weight will change

○ Changing the value of Δ too much increases the error for other (non-salient)
channels

○ ⇒ So we need to choose the scale carefully to achieve optimal perplexity

AWQ: PER-CHANNEL SCALING

● Which scale values to use? Optimize the quantization error as a function of s:

● Here s represents a list of scaling factors for each channel
● Define a search space to make solving this easier:

sX = avg magnitude of activation (per channel), 𝛂 = hyperparameter between [0, 1]

AWQ: PRACTICAL IMPLICATIONS

● (a) The generation stage is much slower than the context stage (e.g. generating
tokens vs summarization)

● (b) This generation stage for standard FP16 LLMs is memory-bound
○ Why? Empirically, ratio of FLOPs : memory access is ~ 1 whereas peak GPU

throughput is 165 TFLOPs
● (c) For memory accesses, weight memory >>> activation memory
● AWQ reduces the weight memory by 4x (16 bit -> 4 bit)

Bottleneck analysis for Llama-2-7B on NVIDIA RTX 4090

TINYCHAT FOR ON-DEVICE LLMS

● 4-bit weight quantization can lead to 4x speedup in performance (theoretically)
● But there are practical considerations involved as well
● TinyChat - a system for LLM Inference using AWQ

○ Over 3x speedup compared to standard HuggingFace FP16 implementation

TINYCHAT FOR ON-DEVICE LLMS

● Methods like SmoothQuant (W8A8) have the same data precision for storage and
computation, which lets kernels be simple

● For methods like AWQ (W4A16), dequantization must be added to the GPU kernels for
optimal performance, which poses implementation challenges

● On-the-fly weight dequantization:
○ Need to dequantize INT4 to FP16 before performing matrix multiplication.
○ Fuse kernels for dequantization and matrix multiplication together.

TINYCHAT FOR ON-DEVICE LLMS

● SIMD-Aware Weight packing:
○ Dequantizing a single 4-bit weight still involves 1 shift, 1 bitwise AND, and 1

FMA scaling operation
○ Change the bit-packing so that all the weights can be dequantized using only 3

SIMD instructions

TINYCHAT FOR ON-DEVICE LLMS
● Kernel fusion:

○ Reducing the number of kernel calls reduces DRAM accesses, speeding up compute
○ Fuse all operators (e.g. multiplication, division, square root) into a single kernel.
○ Attention layers:

■ Fuse QKV projections into a single kernel
■ Perform on-the-fly positional embedding calculation.
■ Preallocate KV caches and perform cache updates within the attention kernel.

EVALUATION

● Benchmarking done on:
○ LLaMa and OPT family of LLM models
○ Vicuna (instruction-tuned model)
○ OpenFlamingo-9B, LLaVA-13B (visual models)

● Dataset/Evaluation
○ LM tasks from WikiText2, metric - perplexity

● Baselines
○ Round-to-Nearest (RTN)
○ GPTQ
○ Disregard baselines that use backprop/regression to make quantized weights

more accurate

EVALUATION

Comparison with other models on LLaMa

Mistral perplexity scores
No comparison provided

Instruction-tuned models Programming and math tasks

EVALUATION

Perplexity results on visual language models

Extreme low-bit (INT2) quantization

EVALUATION

● Over 3x faster than HuggingFace FP16 implementation

EVALUATION

● Faster than other LLM inference systems

EVALUATION

IMPACT

● AWQ models downloaded over 1 million times on HuggingFace

IMPACT

● Can be used for LLM deployment on small edge devices (NVIDIA Jetson Orin Nano)
● 7 GB memory
● 7B parameters

STRENGTHS, WEAKNESSES, THOUGHTS

● MLSys 2024 Best Paper Award
● Idea is simple and practical, used extensively by real users
● Comprehensive evaluation

STRENGTHS, WEAKNESSES, THOUGHTS

● MLSys 2024 Best Paper Award
● Idea is very simple and practical, used extensively by real users
● Comprehensive evaluation

● Only 2 main baselines (one is vanilla rounding), but the field is newer so it makes sense
● The need to compare across different GPU sizes is unclear since the framework should still

work the same either way

STRENGTHS, WEAKNESSES, THOUGHTS

● Positioning the paper as ‘Quantization for Edge Devices’ may be a stretch
○ Original version on arxiv only had the quantization framework
○ Other low-bit quantized models already existed, which could technically also be deployed on

edge devices (just with lower performance)
○ Kernel-level optimizations are not specific to edge devices, required for practical use

● Future ideas:
○ Support both activation and weight quantization in a low-bit setting
○ Further reduce dependency on calibration set
○ Adapt quantization methods depending on the model architecture (transformer, CNN, etc)

 Questions?

REFERENCES
● Github: https://github.com/mit-han-lab/llm-awq
● Official Slides:

https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rlkey=ffg
h50hxhx8dmsnjiu8kef0ou&dl=0

● Paper: https://arxiv.org/pdf/2306.00978
● Video: https://www.youtube.com/watch?v=3dYLj9vjfA0

https://github.com/mit-han-lab/llm-awq
https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rlkey=ffgh50hxhx8dmsnjiu8kef0ou&dl=0
https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rlkey=ffgh50hxhx8dmsnjiu8kef0ou&dl=0
https://arxiv.org/pdf/2306.00978
https://www.youtube.com/watch?v=3dYLj9vjfA0

