AWQ: Activation-Aware Weight Quantization for
on-device LLM Compression and Acceleration

MLSys 2024

Presenter: Raunak Shah
CS598 Fall 2024

Deploying LLMs directly on edge devices is useful
e No costs from centralized cloud infrastructure
e No latency of sending data to cloud server
e Improved data security and privacy
e C(Constraints
o Lessresources
o Low power devices
o May not always have access to the internet

Deploying LLMs directly on edge devices is useful
e No costs from centralized cloud infrastructure
e No latency of sending data to cloud server
e Improved data security and privacy

Log scale

Model Size (#Params in Billion)

10000

1000

-
o
o

-
o

-

o
o

0.01

Transformer
0.05B

GPT-MoE-1.8T*
MT-NLG 1800B

0.34B O Model Size
GPU Memory

2017

2019 2021 2022 2024

*: Jensen Huang, NVIDIA GTC 2024

But it is a hard problem to solve
- Large model sizes
- High LLM serving costs

General Quantization Methods
e Quantization-aware Training (QAT)
o Uses backprop to update quantized weights, does not scale well for LLMs
e Post-Training Quantization (PTQ)
o Training free

Quantizing LLMs
e WB8AS - quantize both activations and weights to INT8
o SmoothQuant
e WA4A16 - only weights are quantized to 4-bits
o RTN - round to nearest
o GPTQ

RTN
o Vanilla baseline
o Directly round each weight to the nearest value in the 4-bit scale
GPTQ
o Greedy, layer-by-layer quantization approach
o For each layer, it minimizes the error in the output of that layer
o Iteratively quantizes weights while trying to preserve the layer's original behavior
o Uses Hessian-based information to determine quantization order

e RTN
o Significant quantization error
e GPTQ
o Quantizes weights in a specific order (greedy approach)
o For some models the standard order does not work well (reordering required)
o Uses a calibration dataset to optimize its quantization
o When minimizing error on this dataset, it may overfit to those specific examples

e Low-bit weight quantization can reduce LLM inference costs
e Map a higher-precision floating point number into a lower-precision float or int

400
%) WgtsxActs glv?ggt
o) — FP16xFP16 Region
= 300 INT8xINT8
2 — INT4xFP16
g
£
£ 200 | waa16
2 Sweet
o Region
3
F 100
x
o t
0
0 32 64 96 128 160 192
Computation Intensity (MACs/Element)

LLMs on the edge are memory-bound: W8AS8 quantization is not enough

KEY OBSERVATIONS

Context

e The weights of LLMs are not equally important

e Some salient weights contribute more to performance
If we intentionally do not quantize them, we can improve performance

O

Wepi6 Q(W)mixprec
+12[-02(-24|-34 +1[+0|-2]-3
~25|-35(+1.9|+1.4 -25|-35(+1.9+1.4
—09)+1.6|-2.5-1.9 —tl a2 =3 =2
-35+1.5(+05/-01] RIN | 4| 42| +1+0
+1.8]-1.6-32|-3.4 goli=a sl g
+2.4|-3.5|-2.8-39 +2|-4|-3|-4
+0.1|-3.8(+2.4|+3.4 +0 | -4 | +2 | +3
+09[+3.3|-1.9|-2.3 +i|43|-2|=2

50

40

30

20

10

OPT-6.7B Wiki-2 PPL |

degrade 1%\unquantized
help

FP16 RTN 1% unquantized

Context

The weights of LLMs are not equally important
Some salient weights contribute more to performance

o If we intentionally do not quantize them, we can improve performance

But how to know which weights are important?

Common approach - look at L2 norm
Selecting weights based on magnitude of activations

determine the salient
weights by activation. ...~

Q(W)MixPrcc

+1

+0

-2

-3

=25

=3.5

+1.9

+1.4

=il

+2

=3

-2

-4

+2

+1

+0

+2

-2

-3

+2

=1

=7

+0

-4

+3

+1

+3

-2

KEY OBSERVATIONS

New problem
e Using a mixed-precision weight datatype makes a system implementation on the

edge difficult

Q(W)Mixprec

2l e || =22 || =2

determine the salient
weights by activation.....---- >

-2.5|-3.5|+19(+14

-1]42|-3|-2

—4| 42| +1|+0

o || =) || =3 [=2

5 || = || =y | =

K +0 | -4 | +2 | +3

S THIEESH =2 =0

e GPTQ optimizes over a calibration set to change the weights slightly for optimal
performance
o Itis easy for models to overfit to this calibration set
e AWAQ uses the calibration set only to identify which weights are important for
activations
o Doesn't directly optimize weights to match outputs on this data
2 T pd il Eval GPTQ Ours
% ... Ours
B 13.5 T .o M PubMed Enron PubMed Enron
= i | e P i - Sl PubMed 3248 5041 4489 . 32.56 45.07 +0.50
& 16 32 64 128 192 256 pnon 5330 3481 45527 g8 33.16 44.575

calibration sequences (%2048 tokens)
(a) Our method needs a smaller calibration set

(b) Our method is more robust to calibration set distribution

Define the quantization function as:

w
Ow)=A"- round(X), A=

max(|w|)

IN-1

N = quantization bits, w = weight, A = quantization scalar

Define the quantization function as:

max(|w|)
IN-1

w
Ow)=A"- round(X), A=

N = quantization bits, w = weight, A = quantization scalar
Try scaling the weight by a factor of s. To keep the result the same, we need to scale
down the activations by the same factor. Then wx will look like:

fuse to previous op
Quantize &

WX — O(W-s)(s™" - X)

= A’ - Round(

Or equivalently: Q(w - s) -

xr
R 9
S

wSs]|
S

A’)'x'

max(|w]|)
IN-1

w
O(w)=A"- round(X), A =

Quantization scaler, Absmax within the group
's
w w
Ow)-x=A-Round(—) - x Err(Q(w) - x) = A - Err(Round(—)) - x

A — N A
. 1 . 1
Ow-s)-==A-Round(—) - x-— Em(Qw-s)- =) = A’ Er(Round(——)) - x - —
S A’ s s A’ S

A scalar with an expectation of 0.25 </

Now round() has a fixed expected value (0.25) as it is bounded between 0 and 0.5
The A values do not change, since usually scaling a single channel does not change

the global absolute maximum weight
= As a result, effective quantization error is reduced by a factor of s

OPT-6.7B s=1s8=125s8s=15s=2 s=4

max(|w|) proportionof A" # A 0% 2.8% 44% 82% 21.2%
= IN-1 averageA’/A 1 1.005 1.013 1.038 1.213
average & - 1 1 0804 0676 0.519 0.303

Wiki-2 PPL 23.54 12.87 1248 11.92 12.36

e Reduction in quantization error relies on the assumption that A will stay the same
e When does this not happen?
o Higher scale values change A more, because there is a higher chance that the
absolute global maximum weight will change
o Changing the value of A too much increases the error for other (non-salient)
channels
o = So we need to choose the scale carefully to achieve optimal perplexity

e Which scale values to use? Optimize the quantization error as a function of s:

s* = arg min L(s)

L(s) = |Q(W - diag(s))(diag(s) " - X) — WX]|

e Here s represents a list of scaling factors for each channel
e Define a search space to make solving this easier:

s =sx“, a" =argmin/L(sx)

o

s, = avg magnitude of activation (per channel), & = hyperparameter between [0, 1]

AWQ: PRACTICAL IMPLICATIONS

e (a) The generation stage is much slower than the context stage (e.g. generating
tokens vs summarization)
e (b) This generation stage for standard FP16 LLMs is memory-bound
o Why? Empirically, ratio of FLOPs : memory access is ~ 1 whereas peak GPU
throughput is 165 TFLOPs
e (c) For memory accesses, weight memory >>> activation memory
e AWQ reduces the weight memory by 4x (16 bit -> 4 bit)

180 Generation Stage:

144 Arith. Inten. =4,

4TFLOPS (W4A16 Context stage:
108 AkArith. Inten. >= 165
@® Context (200 tokens) 72

@ Generation (20 tokens 36 Generation Stage:
0 Arith. Inten. = 1, 1ITFLOPS (W16A16)
75 150 225 300
Arithmetic Intensity (FLOPs/Byte)

(a) Generation stage is slower (b) Generation stage is bounded by memory bandwidth ~ (c) Weight loading is more expensive

10 ms B Weight B Activation

10
1

101

2
A
Q
—
o
=
g

o
A

Memory footprint (MB)

10-2
Attention FFN

Bottleneck analysis for Llama-2-7B on NVIDIA RTX 4090

TINYCHAT FOR ON-DEVICE LLMS

e 4-bit weight quantization can lead to 4x speedup in performance (theoretically)
e But there are practical considerations involved as well
e TinyChat - a system for LLM Inference using AWQ

o Over 3x speedup compared to standard HuggingFace FP16 implementation

Efficiency

<X TensorRT-LLM . Wy TinyChat

Ease of use

HuggingFace |~

TINYCHAT FOR ON-DEVICE LLMS

e Methods like SmoothQuant (W8A8) have the same data precision for storage and
computation, which lets kernels be simple

e For methods like AWQ (W4A16), dequantization must be added to the GPU kernels for
optimal performance, which poses implementation challenges

e On-the-fly weight dequantization:
o Need to dequantize INT4 to FP16 before performing matrix multiplication.
o Fuse kernels for dequantization and matrix multiplication together.

TINYCHAT FOR ON-DEVICE LLMS

e SIMD-Aware Weight packing:
o Dequantizing a single 4-bit weight still involves 1 shift, 1 bitwise AND, and 1
FMA scaling operation
o Change the bit-packing so that all the weights can be dequantized using only 3
SIMD instructions

e ool Mask = 0xOF ... OF (128-bit mask) Wiow =Py & Mask

Original
: WAl v owao s wis o wis ... wi Wlow Wis - w2 “ wi n Wwo
weights:

127 0 127 0

Runtime unpacking Whigh = (Pw>>4) & Mask

Packed
weights: Py a Whigh “ Wat - ey “ A n pe

Reordering offline

127 0

I Original weights
[l Packed weights

472399 489400
24815

Latency (us)

0 (4k,4k) (11k4k) (4k,11k) (4k,32K)

TINYCHAT FOR ON-DEVICE LLMS

e Kernel fusion:
o Reducing the number of kernel calls reduces DRAM accesses, speeding up compute
o Fuse all operators (e.g. multiplication, division, square root) into a single kernel.
o Attention layers:
m Fuse QKV projections into a single kernel
m Perform on-the-fly positional embedding calculation.
m Preallocate KV caches and perform cache updates within the attention kernel.

Q K

' '
BMM/BMV

= s

v
BMM/BMV

AN
Single Kernel Single Kernel (context stage)

Fused kernel for attention Fused kernel for GEMM

EVALUATION

e Benchmarking done on:

o LLaMa and OPT family of LLM models

o Vicuna (instruction-tuned model)

o OpenFlamingo-9B, LLaVA-13B (visual models)
e Dataset/Evaluation

o LM tasks from WikiText2, metric - perplexity

e Baselines
o Round-to-Nearest (RTN)
o GPTQ

o Disregard baselines that use backprop/regression to make quantized weights
more accurate

EVALUATION

Llama-2

13B
4.88

5.52
5.48
5.41
5.32

4.98
4.98
4.99
4.97

Comparison with other models on LLaMa

INT3/g128 M Quantized Win
RTN
GPTQ

AWQ

20 40 60 20 40 60
(a) Vicuna-7B (b) Vicuna-13B

Instruction-tuned models

Wikitext2 PPL| Mixtral-8x7B Mistral-7B
FP16 5.94 4.14

INT4-g128 6.05 430
INT3-g128 6.52 4.83

Mistral perplexity scores
No comparison provided

MBPP (7B) pass@1 pass@10 GSMSK 7B 13B 70B

FP16 38.53 49.77 FP16 13.87 26.16 56.41

RTN 37.51 48.49 RIN 11.07 21.23 53.98

GPTQ 31.97 4475 GPTQ 12.13 24.26 56.03

AWQ 40.64 49.25 AWQ 13.57 25.25 56.40

Programming and math tasks

EVALUATION

COCO (CIDEr 1) 16-shot 32-shot A(32-shot)
FP16 - 79.74 81.70 -

INT4 RTN 74.09 77.13 -4.57
128 GPTQ 74.98 74.98 -6.72

AWQ 78.23 80.53 -1.17

INT3 RTN 63.21 64.79 -16.91
128 GPTQ 60.54 64.77 -16.93
AWQ 72.86 74.47 -7.23

Perplexity results on visual language models

OPT (Wiki PPL]}) 13B 27B 6.7B 13B 30B
FP16 14.62 1247 10.86 10.13 9.56

RTN 10476 193210 7622 17564 8170
GPTQ 46.67 28.15 16.65 16.74 11.75

AWQ +GPTQ 35.71 2570 15.71 13.25 11.38

Extreme low-bit (INT2) quantization

EVALUATION

e Over 3x faster than HuggingFace FP16 implementation

Huggingface (FP16) [Ours (FP16) [l Ours (AWQ, W4A16)

Tokens / sec
Tokens / sec
wW &5
S W O
FP16 OOM
FP16 OOM
FP16 OOM

(=
(=T

FPl6 FP16
0 OOM OOM

Llama-2 Llama-2 MPT MPT Falcon Llama-2 Llama-2 MPT Falcon
(7B) (13B) (7B) (30B) (7B) (7B) (13B) (7B) (7B)

RTX 4090 desktop GPU RTX 4070 laptop GPU

.' «
FP16 :
0OM

Llama-2 Llama-2 MPT MPT Falcon
(7B) (13B) (7B) (30B) (7B)

S IR T N
(=

S © © ©
1

Tokens / sec

Jetson Orin mobile GPU

EVALUATION

e Faster than other LLM inference systems

AutoGPTQ B llama.cpp B cxllama B TinyChat

21.2

17 32

30
24
18
12

6

8
6
4

S W AN O N W

]
D
v

S~
v
=
o

S

[

0 0
Llama-2 Llama-2 LLaMA Llama-2 StarCoder StableCode Mistral Falcon
(7B) (13B) (30B) (70B) (15.5B) (3B) (7B) (7B)

Latency comparison on Jetson Orin (64G) mobile GPU

EVALUATION

Sometimes | just look at pictures of
the earth from space and | marvel at
how beautiful it all is.

Question: Can you explain this meme in detail?

INT4-g128 RTN: The meme in the image features a plate of food, likely fried chicken, with a unique twist. There
are small pictures of the Earth and other planets placed on top of the food, creating an interesting and amusing
visual. Alongside the plate, a caption reads, "Sometimes I look at pictures of the Earth from space and I marvel at
how beautiful it all is." This combination of food and planet images adds a touch of humor and curiosity, making
the viewer wonder about the context and intent behind the meme.

INT4-g128 AWQ: The meme in the image is a lighthearted and humorous take on the concept of looking at
pictures of the Earth from space. A plate of fried food, specifically chicken nuggets, is presented with the caption,
"Sometimes I look at pictures of the Earth from space and I marvel at how beautiful it all is." The playful
combination of a food item and an Earth-related context creates a fun and entertaining visual.

W4-RTN: A model | ‘ W4-RTN: A man is : W4-RTN: A man

airplane flying in ! holding a baby elephant and a dog walking
the sky. e in his arms. ’ past some bushes.
W4-AWQ: Two toy R W4-AWQ: A man and & i ——— W4-AWQ: Two
airplanes sit on a his daughter pose with dogs are walking

grass field. y> Il an elephant. : £ ~ on the street.

IMPACT

e AWQ models downloaded over 1 million times on HuggingFace

Transformer
Quantization

TensorRT-LLM AP

3 Vertex Al

Google Cloud

- Im-sys/FastChat
B - intel

IMPACT

e Can be used for LLM deployment on small edge devices (NVIDIA Jetson Orin Nano)
e / GB memory
e /B parameters

STRENGTHS, WEAKNESSES, THOUGHTS

e MLSys 2024 Best Paper Award
e Ideais simple and practical, used extensively by real users
e Comprehensive evaluation

STRENGTHS, WEAKNESSES, THOUGHTS

e MLSys 2024 Best Paper Award
Idea is very simple and practical, used extensively by real users
e Comprehensive evaluation

e Only 2 main baselines (one is vanilla rounding), but the field is newer so it makes sense
e The need to compare across different GPU sizes is unclear since the framework should still
work the same either way

STRENGTHS, WEAKNESSES, THOUGHTS

e Positioning the paper as ‘Quantization for Edge Devices' may be a stretch
o Original version on arxiv only had the quantization framework
o Other low-bit quantized models already existed, which could technically also be deployed on
edge devices (just with lower performance)
o Kernel-level optimizations are not specific to edge devices, required for practical use

e Future ideas:
o Support both activation and weight quantization in a low-bit setting
o Further reduce dependency on calibration set
o Adapt quantization methods depending on the model architecture (transformer, CNN, etc)

£

Questions

REFERENCES

e Github: https://github.com/mit-han-lab/lim-awg

e Official Slides:
https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rikey=ffg
h50hxhx8dmsnjiu8kefOou&di=0

e Paper: https://arxiv.org/pdf/2306.00978

e Video: https://www.youtube.com/watch?v=3dYLj9vjfA0

https://github.com/mit-han-lab/llm-awq
https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rlkey=ffgh50hxhx8dmsnjiu8kef0ou&dl=0
https://www.dropbox.com/scl/fi/dtnp6h6y1mnp7g036axu6/AWQ-slide.pdf?rlkey=ffgh50hxhx8dmsnjiu8kef0ou&dl=0
https://arxiv.org/pdf/2306.00978
https://www.youtube.com/watch?v=3dYLj9vjfA0

