Alpa : Automating Inter- and
Intra-Operator Parallelism for
Distributed Deep Learning

Lianmin Zheng*, Zhuohan Li*, and Hao Zhang*, UC Berkeley; Yonghao Zhuang, Shanghai Jiao Tong University;
Zhifeng Chen and Yanping Huang, Google; Yida Wang, Amazon Web Services; Yuanzhong Xu, Google;
Danyang Zhuo, Duke University; Eric P. Xing, MBZUAI and Carnegie Mellon University; Joseph E. Gonzalez
and lon Stoica, UC Berkeley

Presented by Khoa Pham and Julian Yu



Background - Parallel Training

Parallel Training can boost the training of large-scale model
Many parallelism strategy have been proposed: DP, PP, TP, ZeRO, etc.
Some works try to combine different parallelism: Megatron-LM, etc.

- Most of them heavily rely on manual tuning and requires system expert
experiences



Background - Google Training Stack

o XLA
o ML Compiler that can take models written in TF, PyTorch, Jax and optimizes them
for high-performance execution across GPUs, TPUs, Trainium, ...
e GSPMD

o Implements at XLA-level, can infer tensor sharding configuration based on users’

annotations.
m mesh_split(tensor, device_mesh, dims_mapping)

o GSPDM automatically generate parallel instructions and insert communication
collective.
Natively support intra-op parallelism.

o Alpa intra-op sharding spec take inspiration from and build heavily on it. See more
later!



Target & Challenges

Target: Auto-parallelization

It can significantly accelerate ML research by freeing developers from struggling with
underlying system challenges

Main challenge: It requires navigating a complex space of plans that grows
exponentially with the dimensions of parallelism and the size of the model and

cluster:

1.  how many data-parallel replicas

2. which axis to be partitioned

3. how to split the model into pipeline stages

4. how to map devices to the resulting parallel executables



Target & Challenges (Cont.)

Existing Works For Auto-Parallelization:

Dapple: only for DP + PP

PipeDream: only for PP

Autosync: only for DP

Tofu: only support single node, no PP

FlexFlow: randomized search, can’t find optimal/near-optimal plan

ok oObdb-=



Design Overview - Recategorizing Parallelism

Re-categorizing parallelism as intra-operator and inter-operator:

1. Intra-op: data/operator parallelism

a. Higher utilization
b. Higher communication volume

..............................

( ‘.
c. Fit devices with faster network connectivity =LA B ) E :
2. Inter-op: pipeline parallelism o
a. Lower communication volume _,._,._* cl={p
b. Idle time e O o teTE]
c. Fit devices with slower network connectivity _.._; B ~{c }+{D )




Design Overview - Problem Formulation

Hierarchically optimizing the parallel plan at two levels: intra-op and inter-op.

total cost = inter-op cost + intra-op cost

Hierarchically
search plans &
optimize the cost




Design Overview - Compilation Passes

- Partition graph and cluster into
disjoint stages

- Optimize total cost

- Invoke intra-op pass to query
the exec cost of this stage

- Optimize intra-op parallel exec
plan on assigned mesh

- Report the cost back to inter-op
pass

Fulfill the communication
requirement between two
adjacent stages

o

@
S
o

(@]

Runtime

Inter-op Pass

Intra-op Pass

Runtime
Orchestration

Mesh Executable 1

Computational g g
Graph

Device EH=H
ERE

Cluster T3-1
Stage 1 O Stage 2 ‘% Stage N %
Sharded Sharded Sharded
Stage 1 Stage 2 Stage N

Mesh Executable 2

Mesh Executable N

Device Mesh 1

Device Mesh 2

Device Mesh N

Worker ﬁ”Dﬂ D2||D3| Worker IDO D1| D2| D3 Worker | Devices ... |
Worker [D0][D1][D2][D3]|| || worker [Do][D1][D2][D3]|| |[worker [Devices ... |

¥
Inter-op Parallelism



Design Overview - API

Annotate train_step() by
# Put @parallelize decorator on top of the Jax functions

@parallelize — @parallelize
def train_step(state, batch):
def loss_func(params):
out = state.forward(params, batch["x"])
return jax.numpy.mean((out - batch["y"]) ** 2)

Upon the first call to train_step():

grads = grad(loss_func)(state.params)

. new state = state.appl radient(grads
1. Traces the whole function to get Galthe o e T ETRES)

the model IR # A typical training loop
2. Invokes the compilation passes  state = create_train_state()
for batch in data_loader:

to converts the function to a state = train_step(state, batch)
optimized parallel version



Intra-Op Parallelism - Goal

Goal: find a intra-op parallel plan to minimize the intra-op cost
How:

- Building the searching space: device mesh, sharding spec, resharding
- Formulating the cost
- Optimizing the cost



Intra-Op Parallelism - Device Mesh

Device mesh is the logical 2D mesh view of a set of GPUs

1x16 or 16x1
1T T
==== EEEEEEEE
EEEE

HEEREEREER
1 L] s o
111 EEEE X8 or 8x

Logical View

Physical View: 4x4
2 node, 8 GPUs per node

Which mapping? optimized by inter-op pass!



Intra-Op Parallelism - Sharding Spec

Sharding spec is to define the layout of a tensor

N-dimensional matrix: XoX1...Xn-1, where Xi€{S, R}, means sliced/replicated on

i-th dimension
. row- partltloned '
2D matrix
no partltlonmg

RS:
column-partitioned

SS:
row- and column-
partitioned




Intra-Op Parallelism - Sharding Spec (Cont.)

Mapping tensor axes to device mesh axes: add superscript to S

N |

“am "

—HR- | =
2D matrix RR SA0 SM
HE . N | . I\--/ '

1 I um B B E

2x2 mesh RSM RSA{O1}



Intra-Op Parallelism - Resharding

Means layout conversion, when an input tensor does not satisfy the sharding
spec of the chosen parallel plan for the operator. It will introduce communication

cost
# SrcSpec  DstSpec  Communication Cost
I 1 RR 5951 0

\ 2 S°R RR all- gather(M 0)

- 3 Sost SR all-gather(2E . 1)

.\. all- gather \,-./ I 4 5%R RS® all-to- alI( .0)
5 SOt SR all—to-all(n0 ot ;1)

SA0 SM: RSM
output sharding spec sharding spec of several cases of

of previous op this op communication cost



Intra-Op Parallelism - Parallel Algorithms of An Operator

Means map the loop axes to mesh axes, introducing communication cost

== mesh shape: (no, n1)

\ / mesh axes: 0, 1

C=AB —= Cpij = Y1 ApikBpk,j

loop axes: b, i, j, k

If using i—0, k—1 mapping

Parallel Output Input Communication
Mapping Spec Specs Cost
Input SpecC. RS20 S, RSMR 1 i—0,j—»1 RS’S'! RS°R,RRS' 0
. A 2 i30,k—>1 RSR RS'S..RS'R all-reduce( 3k, 1)
OUtPUt Spec. RS"0R 3 j-30,k—51 RRS® . RRS'.RS'S? al/-reduce(%,l)
4 b—0,i—>1 S°S'R S°S'R,S°RR 0
. . 5 b—>0k—1 SRR S°RS'.SOS'R  all-reduce(X 1)
Communication cost: all-reduce( %, 1) b ba0d el e % g
7  k-5{0,1} RRR  RRS"'.RS°'R  all-reduce(M,{0,1})




Intra-Op Parallelism - ILP Formulation

Formulating the total intra-op cost and optimizing it by an Integer Linear
Programming (ILP) solver: on graph G=(V, E), e€E, u,v €V

O
u
Comp. and comm. cost of node v:
number of parallel plan: k,

comp. cost vector of plans:c, € Rkv

comm. cost vector of plans: d, € Rkv
choice of parallel: one hot vec g, ¢ {0,1}*

Total Inta-op Cost Z{ﬂ,’(cv . dv) + Z SIRvuSu

vevV

©

(v,u)€EE

Resharding cost of edge e:
number of parallel plan: k., k,
resharding cost matrix: g =~ Rkv*ku

optimize
SuSv!



Intra-Op Parallelism - ILP Formulation (Cont.)

How to get cv, dv, Ruv ?

T T
By profiling? too much cases! Z sy (ey+dy) + Z Sy RvuSy
vev (vu)eE
By estimating for simplicity:

- comp. costcv. setas 0
- heavy ops (e.g. matmul): no replication, so arithmetic complexity is same for
all parallel plans
- light ops (e.g. element-wise): negligible
- comm. cost dv and resharding cost Ruv.: communication bytes



Inter-op Parallelism - Goal

Goal: Slice computation graph and device cluster to stage-mesh pair such that

Pipeline execution latency is minimized and model is fit into memory

81 5ee45555 1<;<S8
(n1,my),....(ng,mg

T — min {ZS:ti—l—(B—l)-max{tj}}. (2)
¢

We want to solve (2), under these additional constraints
e Colocate forward with corresponding backward operator on the same

submesh
e The sliced submesh (n1,m1),.... (ns, ms)must fully cover the N x M cluster

mesh (use all compute devices)



Inter-op Parallelism - Goal
Goal: Slice computation graph and device cluster to stage-mesh pair such that

Pipeline execution latency is minimized and model is fit into memory

Stagel|a|b|c|d|eff]|g]|h
W—!
Stage2|t.|a|b|c|d|e|[f|[g|h
Stage3| t,| a b c d e f | g h |t
Stage 4 t a b c d e t g h ®

=
=
=1
=

Time ] |

Figure 5: Illustration of the total latency of a pipeline, which
is determined by two parts: the total latency of all stages (t; +
1, + 13 +14) and the latency of the slowest stage ((B—1) - t3).

BEEE
nEEs
pEaE




Inter-op Parallelism - Challenges

Challenges: There are many ways to slice computation graph and device cluster
to stage-mesh pair. How do we know which stage-mesh mapping is the best?

A A
=== ‘ ,
2= 2= 2= = B
=i=l=1= or i ... and many
=== | | more
S2EERE c c




Inter-op Parallelism - Challenges

Challenges: There are many ways to slice computation graph and device cluster
to stage-mesh pair. How do we know which stage-mesh mapping is the best?

o

e
@)

... and many
more

or

IEEE
oo
gEgs

' Solution?
D D DP!




Inter-op Parallelism - DP Formulation

Our submesh spaces (n1.m1). ... (ns. ms) consists of two options
e One-dimensional submeshes (1.1),(1.2).(1.4).....(1, M)
o leuse1,2,4,8,...devices in a single node
e Two-dimensional submeshes (2. M ). (3, M), ....(N. M)

o i.e use multiple nodes and all the devices of those nodes

Other choices, such as (n, m) where n > 1 and m < M, (i.e use multiple nodes but
not all devices on those nodes) leads to inferior result. The above two choices can
fully cover the device mesh N x M (proof in paper)



Inter-op Parallelism - DP Formulation
Lowest latency

F(Sakad;tmax) /\(3)/' to run(ok""’oi)
( tintra((oka oo aoi)yMeSh(nsams)aS) on MeSh(nS’mS)
= min ¢ +F(s—1,i+1,d—n; -mgtuux) > Set to infinity if
e OOMs
ng-ms<d 3 ‘ tintra((oka cee ,oi),Mesh(ns,ms),s) < tmax }

Represents the minimal total latency when slicing operators ok to oK
into s stages and putting them onto d devices so that the latency of
each stage is less than tmax

T" (tmax) — min{F(s,O,N-M; tmaX)} + (B R 1) “Tmax- (4)



Inter-op Parallelism -
Putting it all together

Flatten the computation graph and
condense the operators into layers

Algorithm 1 Inter-op pass summary.

: Input: Model graph G and cluster C with shape (N, M).
: Output: The minimal pipeline execution latency 7*.
: // Preprocess graph.

. (01,...,0k) < Flatten(G)
. (I1,...,Ir) < OperatorClustering(oy, . . .,0k)

N[N AW N =

: // Run the intra-op pass to get costs of different stage-

mesh pairs.

. submesh_shapes <+ {(1,1),(1,2),(1,4),...,(1,M)} U

{2,M),(3,M),...,(N,M)}

8: for 1 <i<j<Ldo

9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

stage < (I;,...,1;)
for (n,m) € submesh_shapes do
for s from 1 to L do
t_intra(stage,Mesh(n,m),s) < o
end for
for (n;,m;),opt € LogicalMeshShapeAndIntraOp
Options(n,m) do
plan < IntraOpPass(stage, Mesh(n;,m;),opt)
11, MmeMyqge , meNye, <— Profile(plan)
for s satisfies Eq. 5 do
if 1y, <t_intra(stage,Mesh(n,m),s) then
t_intra(stage,Mesh(n,m),s) < 1;
end if
end for
end for
end for
end for
// Run the inter-op dynamic programming



Inter-op Parallelism -
Putting it all together

Precalculate lowest execution latency for

every stage-mesh pair using

IntraOpPass

Algorithm 1 Inter-op pass summary.

AN L AW =

~J

: Input: Model graph G and cluster C with shape (N, M).

: Output: The minimal pipeline execution latency 7*.

: // Preprocess graph.

. (01,...,0k) < Flatten(G)

. (I1,...,1r) < OperatorClustering(oy, .. ., 0k)

: // Run the intra-op pass to get costs of different stage-

mesh pairs.

. submesh_shapes <+ {(1,1),(1,2),(1,4),...,(1,M)} U

{2,M),(3,M),...,(N,M)}

\

8: for 1 <i<j<Ldo

9. stage < (li,...,1})
10:  for (n,m) € submesh_shapes do
11 for s from 1 to L do
12: t_intra(stage,Mesh(n,m),s) < o
135 end for
14: for (n;,m;),opt € LogicalMeshShapeAndIntraOp
Options(n,m) do
15: plan < IntraOpPass(stage, Mesh(n;,m;),opt)
16: 11, MmeMyqge , meNye, <— Profile(plan)
17: for s satisfies Eq. 5 do
18: if 1y, <t_intra(stage,Mesh(n,m),s) then
19: t_intra(stage,Mesh(n,m),s) <t
20: end if
13 end for
22: end for
23:  end for
24: end for
25: // Run the inter-op dynamic programming




Inter-op Parallelism -
Putting it all together

Precalculate lowest execution latency for

\

every stage-mesh pair using

IntraOpPass

Can interpret a (n, m) physical

mesh as any (0, m") virtual mesh .— |

such thatn’'m’ = nm

Algorithm 1 Inter-op pass summary.

AN L AW =

~J

: Input: Model graph G and cluster C with shape (N, M).

: Output: The minimal pipeline execution latency 7*.

: // Preprocess graph.

. (01,...,0k) < Flatten(G)

. (I1,...,1r) < OperatorClustering(oy, .. ., 0k)

: // Run the intra-op pass to get costs of different stage-

mesh pairs.

. submesh_shapes <+ {(1,1),(1,2),(1,4),...,(1,M)} U

{2,M),(3,M),...,(N,M)}

15:

8: for 1 <i<j<Ldo
9:
10:
11

stage < (I;,...,1;)
for (n,m) € submesh_shapes do
for s from 1 to L do

12: t_intra(stage,Mesh(n,m),s) < o

13¢ end for

14: for (n;,m;),opt € LogicalMeshShapeAndIntraOp
—— | Options(n,m) do

plan < IntraOpPass(stage, Mesh(n;,m;),opt)

16: 11, MmeMyqge , meNye, <— Profile(plan)

17: for s satisfies Eq. 5 do

18: if 1y, <t_intra(stage,Mesh(n,m),s) then
19: t_intra(stage,Mesh(n,m),s) <t

20: end if

13 end for

22: end for

23:  end for

24: end for

25: // Run the inter-op dynamic programming




Inter-op Parallelism -
Putting it all together

Precalculate lowest execution latency for

\

every stage-mesh pair using

IntraOpPass

Can interpret a (n, m) physical

mesh as any (0, m") virtual mesh .— |

such thatn’'m’ = nm

Profile memory usage and only keep the
Intra-op parallelism plans that do not

result in OOM

Algorithm 1 Inter-op pass summary.

AN L AW =

~J

: Input: Model graph G and cluster C with shape (N, M).
: Output: The minimal pipeline execution latency 7*.

: // Preprocess graph.

. (01,...,0k) < Flatten(G)

. (I1,...,1r) < OperatorClustering(oy, .. ., 0k)

: // Run the intra-op pass to get costs of different stage-

mesh pairs.

. submesh_shapes <+ {(1,1),(1,2),(1,4),...,(1,M)} U

{2,M),(3,M),...,(N,M)}

8:
9:
10:
11
12:
13

15:

for1 <i<j<Ldo
stage < (I;,...,1;)
for (n,m) € submesh_shapes do
for s from 1 to L do
t_intra(stage,Mesh(n,m),s) < o
end for

for (n;,m;),opt € LogicalMeshShapeAndIntraOp

14:
— | Options(n,m) do

plan < IntraOpPass(stage, Mesh(n;,m;), opt)

16: 11, MmeMyqge , meNye, <— Profile(plan)

17: for s satisfies Eq. 5 do

18; if 1y, <t_intra(stage,Mesh(n,m),s) then
9: t_intra(stage,Mesh(n,m),s) <t

20: end if

21: end for

22: end for

23:  end for

24: end for

25: // Run the inter-op dynamic programming




Inter-op Parallelism -
Putting it all together

Run the inter-op dynamic
programming

Algorithm 1 Inter-op pass summary.

AN L AW =

: Input: Model graph G and cluster C with shape (N, M).
: Output: The minimal pipeline execution latency 7*.

: // Preprocess graph.

. (01,...,0k) < Flatten(G)

. (I1,...,1r) < OperatorClustering(oy, .. ., 0k)

: // Run the intra-op pass to get costs of different stage-

mesh pairs.

. submesh_shapes <+ {(1,1),(1,2),(1,4),...,(1,M)} U

{2,M),(3,M),...,(N,M)}

8: for 1 <i<j<Ldo

9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22
23
24:
~// Run the inter-op dynamic programming

stage < (I;,...,1;)
for (n,m) € submesh_shapes do
for s from 1 to L do
t_intra(stage,Mesh(n,m),s) < o
end for
for (n;,m;),opt € LogicalMeshShapeAndIntraOp
Options(n,m) do
plan < IntraOpPass(stage, Mesh(n;,m;),opt)
11, MmeMyqge , meNye, <— Profile(plan)
for s satisfies Eq. 5 do
if 1y, <t_intra(stage,Mesh(n,m),s) then
t_intra(stage,Mesh(n,m),s) < 1;
end if
end for
end for
end for
end for




Parallelism Orchestration

‘:-F” JaxPR

. HLO +
(GSPDM)

Alpa pipeline
instructions

NVIDIA NCCL

o3» RAY Actor +

x Runtime

Computational Device E=E
- Graph D—%—% °§D RAY Cluster EEIE
Inter-op Pass {}
Stage 1 O Stage 2 % Stage N %
Intra-op Pass I I Jb
Sharded Sharded Sharded
Stage 1 Stage 2 Stage N
Runtime
Orchestration @ {} {}
Mesh Executable 1

Intra-op Parallelism /
A
N\

Mesh Executable 2

—

Mesh Executable N

|

Devicmh\\

Device Mesh 2

Device Mesh N

Worker |DO||D1||D2||D3||

>

Worker [DO||D1(|D2||D3

Worker | Devices ...

Worker [DO||D1||D2||D3

Worker [DO||D1(|D2||D3

Worker | Devices ...

Y
Inter-op Parallelism




Parallelism Orchestration - Cross-mesh resharding

e In Megatron-LM, each pipeline stages have same degrees of data and tensor
parallelism. Point-to-point communication between correspondent devices
e ForAlpa, device meshes holding two consecutive stages may have different

shapes.

Device 0

Device 0

Tile O
Tile 1

Device 1

Tile O

Tile 0 +
Tilel

Device 1

Tile 0 <

(a) Megatron-LM

Mesh 2
I : I's
Mesh 1 : Device 0
—_— = 'L TileO
Device 0

Tileo !

Tile1l <

]
_____ \‘ Tile 0
I .
I

|
/. Tile 1

Device 1

(b) Naive send/recv

Mesh 2

Mgkl Device 0

————— , Tileo <
Device 0

eviee Tile1
Tile 0

Device 1

Tia 1 S
_____ \ Tile0 <
"

(c) Local all-gather



Evaluation - Setup

e Each node is an Amazon EC2 p3.16xlarge instance with 8 NVIDIA. V100 16

GB GPUs, 64 vCPUs, and 488 GB memory.
o The 8 GPUs in a node are connected via NVLink. 25Gbps cross-node bandwidth
e Respects the semantics of synchronous gradient descent, thus does not affect model
convergence
e Evaluate weak scaling by increasing model size along with number of GPUs

Table 4: Models used in the end-to-end evaluation. LM =
language model. IC = image classification.

Model Task  Batch size #params (billion) Precision
GPT-3 [10] LM 1024 0.35,1.3,2.6,6.7, 15,39 FP16
GShard MoE [31] LM 1024 0.38,1.3,2.4, 10,27, 70 FP16

Wide-ResNet [59] IC 1536 0.25,1.0,2.0,4.0,6.7, 13 FP32




Evaluation - End-to-end (Weak Scaling)

0 4.0 f e Alpa generated
o & Megatron-LM b f parallelism plan closely
= . f_ DESERRRI Y f resembles Megatron-LM
5207 _ L'jlgj'(c;z:sr)"y < best-performed plans
] 1.01 [ Linear-scaling ' e Key diff: Alpa also
s e N paﬂitiqns Weight-upda’.[e
= 0-0' TR operation when DP exists

The number of GPUs => slight improvement to

Megatron-LM in some
(a) GPT

config



Evaluation - End-to-end (Weak Scaling)

03,01 £0.6
9 BN Deepspeed 9 &N PP-DP
é 50- Inter-op only é 04] ™ Inter-op only
¥ ®& Intra-op only o ®# Intra-op only
2 M Alpa (ours) 2 M Alpa (ours)
£+ 1.0 ; : < 0.2 : : i
=) ] Linear-scaling = ] Linear-scaling
o o i
E 0.0 = T 7IH XX E 0.0 L— 5 na B 7Hﬂ— H XXl XXH
b= =8 1 4 8 16 32 64 =% 1 4 8 16 3 64
The number of GPUs The number of GPUs
(b) MoE (c) Wide-ResNet
e Slightly better/matches DeepSpeed e Heterogeneous architecture. Very
for Sing|e node performance hard for manual parallelism plan

e Alpa still manage to find 80%

e DeepSpeed MoE does not have PP. : _
scaling parallelism plan

Alpa performs 3.5x on 2 nodes and
9.7x on 4 nodes



Throughput (PFLOPS)

Evaluation - Intra-op only study

0.6

0.451

0.31

0.15]

® Data | ZeRO-3
B Heuristic m ILP (ours)
B8 ZeRO-2 [ Linear-scaling

The number of GPUs
(a) GPT

o

o
=

Throughput (PFLOPS)
o
N

M« Data

M ZeRO-3

: o
w »

B Heuristic ™ |ILP (ours)

® Data M ZeRO-3
B Heuristic m& ILP (ours)

Bn ZeRO-2

[ Linear-scaling

_ SWTEN |

1

Hnell |

2

4

B ZeRO-2 [ Linea

r-scaling

1

2

4

8

The number of GPUs
(b) MoE

ZeRO optimizes for memory but not communication overhead
Alpa’s ILP always figure out the correct plan that minimize communication overhead in all
cases, achieving near linear-scaling, while making sure the model fits into memory

For MoE, Alpa ILP managed to find and combine expert parallelism and ZeRO-flavour data

parallelism

The number of GPUs
(c) Wide-ResNet



Case Study: Wide-ResNet
E Stage 1: 4 GPUs g Stage 2: 4 GPUs g
[l

: o)
0 S s R s | N s R s B BN

T o Y o O o O
OO NN O EEOEOOONEAEBRONOEESE S SO . a B E N
(7] Inputs/activations i Stage 3: 8 GPUs
[:]Weights :

= Partitioned on batch/input axis
| ] Partitioned on hidden/output axis
Replicated

Figure 12: Visualization of the parallel strategy of Wide-ResNet on 16 GPUs. Different colors represent the devices a tensor is
distributed on. Grey blocks indicate a tensor is replicated across the devices. The input data and resulting activation of each

convolution and dense layer can be partitioned along the batch axis and the hidden axis. The weights can be partitioned along the
input and output channel axis.



Compilation Overhead (Runtime of Algorithm 1)

e Most of the time is spent on enumerating and profiling stage-mesh

(preprocessing)
e Speedup profiling by a simple cost model built at XLA instruction level

e Compile executable for each stage in parallel with distributed workers

Table 5: Compilation time breakdown of GPT-39B.

3000
£ 2000
é 1580 Steps Ours w/o optimization
= B . Compilation 1582.66 > 16hr
2 4 8 16 32 64 Profiling 804.48 s > 24hr
The number of GPUs Stage Construction DP 1.65s N/A
. , o . Other 4.47s N/A
Figure 10: Alpa’s compilation time on all GPT models. The Total 2393.26 s > 40hr

model size and #GPUs are simultaneously scaled.



Alpa Present and Future

e Alpa project is no longer actively maintaining

e Instead, integrating into XLA's autosharding , idea is to compile model code
(Torch, Jax, TensorFlow) to automatic parallelism executable without relying
on users’ annotation unlike GSPDM



https://github.com/alpa-projects/alpa
https://github.com/openxla/xla/tree/main/xla/hlo/experimental/auto_sharding

Thoughts

e The only functional open-source automatic parallelism framework as of today!
Works for any model without user code changes
e Built automatic support for GSPMD intra-op parallelism

o Generalizable view of parallelism
o All about choosing what dim to replicate/shard

e Matches performance of Megatron-LM in GPT and search results closely
resembles Megatron-LM best-performed plans

e Cross-mesh resharding is not optimal (also acknowledged in the paper)
o Follow up work MLSys 23’



https://arxiv.org/pdf/2211.05322

