
: Automating Inter- and
Intra-Operator Parallelism for
Distributed Deep Learning

Lianmin Zheng*, Zhuohan Li*, and Hao Zhang*, UC Berkeley; Yonghao Zhuang, Shanghai Jiao Tong University;
Zhifeng Chen and Yanping Huang, Google; Yida Wang, Amazon Web Services; Yuanzhong Xu, Google;

Danyang Zhuo, Duke University; Eric P. Xing, MBZUAI and Carnegie Mellon University; Joseph E. Gonzalez
and Ion Stoica, UC Berkeley

Presented by Khoa Pham and Julian Yu

Background - Parallel Training

Parallel Training can boost the training of large-scale model

Many parallelism strategy have been proposed: DP, PP, TP, ZeRO, etc.

Some works try to combine different parallelism: Megatron-LM, etc.

- Most of them heavily rely on manual tuning and requires system expert
experiences

Background - Google Training Stack

● XLA
○ ML Compiler that can take models written in TF, PyTorch, Jax and optimizes them

for high-performance execution across GPUs, TPUs, Trainium, …
● GSPMD

○ Implements at XLA-level, can infer tensor sharding configuration based on users’
annotations.
■ mesh_split(tensor, device_mesh, dims_mapping)

○ GSPDM automatically generate parallel instructions and insert communication
collective.

○ Natively support intra-op parallelism.
○ Alpa intra-op sharding spec take inspiration from and build heavily on it. See more

later!

Target & Challenges

Target: Auto-parallelization

It can significantly accelerate ML research by freeing developers from struggling with
underlying system challenges

Main challenge: It requires navigating a complex space of plans that grows
exponentially with the dimensions of parallelism and the size of the model and
cluster:

1. how many data-parallel replicas
2. which axis to be partitioned
3. how to split the model into pipeline stages
4. how to map devices to the resulting parallel executables

Target & Challenges (Cont.)

Existing Works For Auto-Parallelization:

1. Dapple: only for DP + PP
2. PipeDream: only for PP
3. Autosync: only for DP
4. Tofu: only support single node, no PP
5. FlexFlow: randomized search, can’t find optimal/near-optimal plan

Design Overview - Recategorizing Parallelism

Re-categorizing parallelism as intra-operator and inter-operator:

1. Intra-op: data/operator parallelism
a. Higher utilization
b. Higher communication volume
c. Fit devices with faster network connectivity

2. Inter-op: pipeline parallelism
a. Lower communication volume
b. Idle time
c. Fit devices with slower network connectivity

Design Overview - Problem Formulation

Hierarchically optimizing the parallel plan at two levels: intra-op and inter-op.

 total cost = inter-op cost + intra-op cost

Hierarchically
search plans &

optimize the cost

Design Overview - Compilation Passes

- Optimize intra-op parallel exec
plan on assigned mesh
- Report the cost back to inter-op
pass

- Partition graph and cluster into
disjoint stages
- Optimize total cost
- Invoke intra-op pass to query
the exec cost of this stage

Fulfill the communication
requirement between two
adjacent stages

Design Overview - API

Annotate train_step() by
@parallelize

Upon the first call to train_step():

1. Traces the whole function to get
the model IR

2. Invokes the compilation passes
to converts the function to a
optimized parallel version

Intra-Op Parallelism - Goal

Goal: find a intra-op parallel plan to minimize the intra-op cost

How:

- Building the searching space: device mesh, sharding spec, resharding
- Formulating the cost
- Optimizing the cost

Intra-Op Parallelism - Device Mesh

Device mesh is the logical 2D mesh view of a set of GPUs

Physical View:
2 node, 8 GPUs per node

Logical View

1x16 or 16x1

4x4

2x8 or 8x2

Which mapping? optimized by inter-op pass!

Intra-Op Parallelism - Sharding Spec

Sharding spec is to define the layout of a tensor

N-dimensional matrix: X0X1…Xn-1, where Xi∈{S, R}, means sliced/replicated on
i-th dimension

2D matrix

SR:
row-partitioned

RS:
column-partitioned

RR:
no partitioning

SS:
row- and column-

partitioned

Intra-Op Parallelism - Sharding Spec (Cont.)

Mapping tensor axes to device mesh axes: add superscript to S

2D matrix

2x2 mesh

RR S^0 S^1

RS^1 RS^{01}

Intra-Op Parallelism - Resharding

Means layout conversion, when an input tensor does not satisfy the sharding
spec of the chosen parallel plan for the operator. It will introduce communication
cost

S^0 S^1:
output sharding spec

of previous op

RS^1
sharding spec of

this op

by

all-gather

several cases of
communication cost

Intra-Op Parallelism - Parallel Algorithms of An Operator

Means map the loop axes to mesh axes, introducing communication cost

C=AB

loop axes: b, i, j, k mesh axes: 0, 1

If using i→0, k→1 mapping

Input spec: R S^0 S^1, R S^1 R
Output spec: R S^0 R

Communication cost:

mesh shape: (n0, n1)

Intra-Op Parallelism - ILP Formulation

Formulating the total intra-op cost and optimizing it by an Integer Linear
Programming (ILP) solver: on graph G=(V, E), e∈E, u, v ∈ V

u v
e

Comp. and comm. cost of node v:
number of parallel plan:
comp. cost vector of plans:
comm. cost vector of plans:
choice of parallel: one hot vec

Resharding cost of edge e:
number of parallel plan:
resharding cost matrix:

Total Inta-op Cost optimize
Su Sv !

Intra-Op Parallelism - ILP Formulation (Cont.)

How to get cv, dv, Ruv ?

By profiling? too much cases!

By estimating for simplicity:

- comp. cost cv: set as 0
- heavy ops (e.g. matmul): no replication, so arithmetic complexity is same for

all parallel plans
- light ops (e.g. element-wise): negligible

- comm. cost dv and resharding cost Ruv: communication bytes

Inter-op Parallelism - Goal
Goal: Slice computation graph and device cluster to stage-mesh pair such that

Pipeline execution latency is minimized and model is fit into memory

We want to solve (2), under these additional constraints
● Colocate forward with corresponding backward operator on the same

submesh
● The sliced submesh must fully cover the N x M cluster

mesh (use all compute devices)

Inter-op Parallelism - Goal
Goal: Slice computation graph and device cluster to stage-mesh pair such that

Pipeline execution latency is minimized and model is fit into memory

A

B

C

D

Inter-op Parallelism - Challenges
Challenges: There are many ways to slice computation graph and device cluster
to stage-mesh pair. How do we know which stage-mesh mapping is the best?

A

B

C

D

or

A

B

C

D

… and many
more

Inter-op Parallelism - Challenges
Challenges: There are many ways to slice computation graph and device cluster
to stage-mesh pair. How do we know which stage-mesh mapping is the best?

A

B

C

D

or

A

B

C

D

… and many
more

Solution?
DP!

Inter-op Parallelism - DP Formulation

Our submesh spaces consists of two options

● One-dimensional submeshes
○ I.e use 1, 2, 4, 8, … devices in a single node

● Two-dimensional submeshes
○ i.e use multiple nodes and all the devices of those nodes

Other choices, such as (n, m) where n > 1 and m < M, (i.e use multiple nodes but
not all devices on those nodes) leads to inferior result. The above two choices can
fully cover the device mesh N x M (proof in paper)

Inter-op Parallelism - DP Formulation

Represents the minimal total latency when slicing operators ok to oK
into s stages and putting them onto d devices so that the latency of
each stage is less than tmax

Lowest latency
to run
on

Set to infinity if
OOMs

Inter-op Parallelism -
Putting it all together

Flatten the computation graph and
condense the operators into layers

Inter-op Parallelism -
Putting it all together

Precalculate lowest execution latency for
every stage-mesh pair using

IntraOpPass

Inter-op Parallelism -
Putting it all together

Precalculate lowest execution latency for
every stage-mesh pair using

IntraOpPass

Can interpret a (n, m) physical
mesh as any (n’, m’) virtual mesh
such that n’m’ = nm

Inter-op Parallelism -
Putting it all together

Precalculate lowest execution latency for
every stage-mesh pair using

IntraOpPass

Can interpret a (n, m) physical
mesh as any (n’, m’) virtual mesh
such that n’m’ = nm

Profile memory usage and only keep the
Intra-op parallelism plans that do not
result in OOM

Inter-op Parallelism -
Putting it all together

Run the inter-op dynamic
programming

Parallelism Orchestration

Inter-op Pass

Stage 1 Stage 2 Stage N

JaxPR

Intra-op Pass
Sharded
Stage 1

Sharded
Stage 2

Sharded
Stage N

…

HLO +
(GSPDM)

Runtime
Orchestration

Mesh Executable 1 Mesh Executable 2 Mesh Executable N

Device Mesh 1

Worker D0 D1 D2 D3

Worker D0 D1 D2 D3
…

Device Mesh 2

Worker D0 D1 D2 D3

Worker D0 D1 D2 D3
…

Device Mesh N

Worker Devices …

Worker Devices …
…

Intra-op Parallelism

Inter-op Parallelism

Alpa pipeline
instructions

Actor +

Runtime

Computational
Graph

Device
Cluster

NVIDIA NCCL

Parallelism Orchestration - Cross-mesh resharding

● In Megatron-LM, each pipeline stages have same degrees of data and tensor
parallelism. Point-to-point communication between correspondent devices

● For Alpa, device meshes holding two consecutive stages may have different
shapes.

Evaluation - Setup

● Each node is an Amazon EC2 p3.16xlarge instance with 8 NVIDIA. V100 16
GB GPUs, 64 vCPUs, and 488 GB memory.
○ The 8 GPUs in a node are connected via NVLink. 25Gbps cross-node bandwidth

● Respects the semantics of synchronous gradient descent, thus does not affect model
convergence

● Evaluate weak scaling by increasing model size along with number of GPUs

Evaluation - End-to-end (Weak Scaling)

● Alpa generated
parallelism plan closely
resembles Megatron-LM
best-performed plans

● Key diff: Alpa also
partitions weight-update
operation when DP exists
=> slight improvement to
Megatron-LM in some
config

Evaluation - End-to-end (Weak Scaling)

● Slightly better/matches DeepSpeed
for single node performance

● DeepSpeed MoE does not have PP.
Alpa performs 3.5x on 2 nodes and
9.7x on 4 nodes

● Heterogeneous architecture. Very
hard for manual parallelism plan

● Alpa still manage to find 80%
scaling parallelism plan

Evaluation - Intra-op only study

● ZeRO optimizes for memory but not communication overhead
● Alpa’s ILP always figure out the correct plan that minimize communication overhead in all

cases, achieving near linear-scaling, while making sure the model fits into memory
● For MoE, Alpa ILP managed to find and combine expert parallelism and ZeRO-flavour data

parallelism

Case Study: Wide-ResNet

Compilation Overhead (Runtime of Algorithm 1)

● Most of the time is spent on enumerating and profiling stage-mesh
(preprocessing)

● Speedup profiling by a simple cost model built at XLA instruction level
● Compile executable for each stage in parallel with distributed workers

Alpa Present and Future

● Alpa project is no longer actively maintaining
● Instead, integrating into XLA’s autosharding , idea is to compile model code

(Torch, Jax, TensorFlow) to automatic parallelism executable without relying
on users’ annotation unlike GSPDM

https://github.com/alpa-projects/alpa
https://github.com/openxla/xla/tree/main/xla/hlo/experimental/auto_sharding

Thoughts

● The only functional open-source automatic parallelism framework as of today!
● Works for any model without user code changes
● Built automatic support for GSPMD intra-op parallelism

○ Generalizable view of parallelism
○ All about choosing what dim to replicate/shard

● Matches performance of Megatron-LM in GPT and search results closely
resembles Megatron-LM best-performed plans

● Cross-mesh resharding is not optimal (also acknowledged in the paper)
○ Follow up work MLSys 23’

https://arxiv.org/pdf/2211.05322

